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Abstract: We propose a universal ensemble for the random selection of rate–distortion codes which
is asymptotically optimal in a sample-wise sense. According to this ensemble, each reproduction
vector, x̂, is selected independently at random under the probability distribution that is proportional
to 2−LZ(x̂), where LZ(x̂) is the code length of x̂ pertaining to the 1978 version of the Lempel–Ziv (LZ)
algorithm. We show that, with high probability, the resulting codebook gives rise to an asymptotically
optimal variable-rate lossy compression scheme under an arbitrary distortion measure, in the sense
that a matching converse theorem also holds. According to the converse theorem, even if the decoder
knew the `-th order type of source vector in advance (` being a large but fixed positive integer),
the performance of the above-mentioned code could not have been improved essentially for the
vast majority of codewords pertaining to source vectors in the same type. Finally, we present a
discussion of our results, which includes among other things, a clear indication that our coding
scheme outperforms the one that selects the reproduction vector with the shortest LZ code length
among all vectors that are within the allowed distortion from the source vector.

Keywords: rate–distortion; source coding; random coding; cumulant generating function; code
ensemble; lossy compression; universal coding; universal distribution; LZ algorithm

1. Introduction

We revisit the well-known problem of lossy source coding for finite-alphabet sequences
with respect to a certain distortion measure ([1]; [2], Chapter 10; [3], Chapter 9; [4]; [5],
Chapters 7 and 8). More concretely, our focus is on d-semifaithful codes, namely, variable–
rate codes that meet a certain distortion constraint for every source sequence (and not
only in expectation). As is very well known [1], the rate–distortion function quantifies
the minimum achievable expected coding rate for a given memoryless source and distor-
tion measure.

During several past decades, many research efforts were motivated by the fact that the
source statistics are rarely (if not never) known in practice, and were, therefore, directed to
the quest for universal coding schemes, namely, coding schemes which do not depend on
the unknown statistics, but nevertheless, approach the lower bound (i.e., the entropy in loss-
less compression, or the rate–distortion function in the lossy case) asymptotically, as the
block length grows without bound. We next provide a very brief (and non-comprehensive)
review of some of the relevant earlier work.

In lossless compression, the theory of universal source coding is very well devel-
oped and mature. Davisson’s work [6] concerning universal coding redundancies has
established the concepts of weak universality and strong universality (vanishing maximin
and minimax redundancies, respectively), and has characterized the connection to the
capacity of the ‘channel’ defined by the family of conditional distributions of the data to be
compressed given the index (or parameter) of the source in the class [7–9]. For many of the
frequently encountered parametric classes of sources, the minimum achievable redundancy
of universal codes is well known to be dominated by k log n

2n , where k is the number of
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degrees of freedom of the parameter, and n is the block length [10–13]. A central idea that
arises from Davisson’s theory is to construct a Shannon code pertaining to the probability
distribution of the data vector with respect to a mixture (with a certain prior function) of all
sources in the class. Rissanen, who was the inventor of the minimum description length
(MDL) principle [14], has proved in [15] a converse to a coding theorem, which asserts that
asymptotically, no universal code can achieve redundancy below (1− ε)

k log n
2n , with the

possible exception of sources from a subset of the parameter space, whose volume tends
to zero as n→ ∞ for every positive ε. Merhav and Feder [16] have generalized this result
to more general classes of sources, with the term k log n

2n substituted by the capacity of the
above-mentioned ‘channel’. Further developments, including more refined redundancy
analyses, have been carried out in later studies.

In the wider realm of universal lossy compression, the theory is, unfortunately, not as
sharp and well developed as in the lossless setting. We confine our attention, in this work,
to d-semifaithful codes [17], namely, codes that satisfy the distortion requirement with
probability one. Zhang, Yang, and Wei [18] have proved that, unlike in lossless compression,
in the lossy case, even if the source statistics are known perfectly, it is impossible to achieve
redundancy below log n

2n , but log n
n is achievable. Not knowing the source conveys the

price of enlarging the multiplicative constant in front of log n
n . Indeed, Yu and Speed [19]

have established weak universality with a constant that grows with the cardinalities of
the alphabets of the source and the reconstruction [20]. Ornstein and Shields [17] have
considered universal d-semifaithful coding for stationary and ergodic sources with respect
to the Hamming distortion measure, and established convergence with probability one
to the rate–distortion function. Kontoyiannis [21] had several interesting findings. The
first is a certain central limit theorem (CLT), with an O(1/

√
n) redundancy term, whose

coefficient is described as a limiting Gaussian random variable with some constant variance.
The second is the so-called law of iterated logarithm (LIL), with redundancy proportional

to
√

log(log n)
n infinitely often with probability one. One of the counter-intuitive conclusions

from [21] is that universality is priceless under those CLT and LIL criteria. In [22], many of
the findings are based on the observation that optimal compression can be characterized
in terms of the negative logarithm of the probability of a sphere of radius nD around the
source vector with respect to the distortion measure, where D is the allowed per-letter
distortion. In the same article, they proposed also the ensemble of random coding with
respect to a probability distribution given by a mixture of all distributions in a certain class.
In two recent articles, Mahmood and Wagner [23,24] have studied d-semifaithful codes
that are strongly universal with respect to both the source and the distortion function. The
redundancy rates in [23] behave like log n

n with different multiplicative constants. Other
interesting results concerning a special distortion measure appear in [25].

A parallel line of research work on universal lossless and lossy compression, which
was pioneered by Ziv, pertains to the individual sequence approach. According to this
approach, there are no assumptions on the statistical properties of the source. The source
sequence to be compressed is considered an arbitrary deterministic (individual) sequence,
but limitations are imposed on the encoder and/or the decoder to be implementable by
finite-state machines. This includes, first and foremost, the celebrated Lempel–Ziv (LZ)
algorithm [26–28], as well as further developments that extend the scope to lossy com-
pression with and without side information [29,30], as well as to joint source–channel
coding [31,32]. In the lossless case, the article [33] provides an individual sequence ana-
logue of the above-mentioned result due to Rissanen, where the expression k log n

2n continues
to designate the best achievable redundancy, but the main term of the compression ratio
there is the empirical entropy of the source vector instead of the ordinary entropy of the
probabilistic setting. The converse bound of [33] applies to the vast majority of source
sequences within each type, and the vast majority of types (in analogy to the vast majority
of the parameter space in Rissanen’s framework). In a way, this kind of a converse result
still contains some flavor of the probabilistic setting, because arguing that the number



Entropy 2023, 25, 1199 3 of 16

of exceptional typical sequences is relatively small is actually equivalent to imposing a
uniform distribution across the type and asserting that the induced probability of violating
the bound is small. The achievability result of [33], on the other hand, holds pointwise
for every sequence. A similar comment applies to [34], where asymptotically pointwise
lossy compression was established with respect to first-order statistics (i.e., “memoryless”
statistics) with an emphasis on distortion universality, similar to in [23,24].

A similar kind of a mix between the individual sequence setting and the probabilistic
setting applies to this paper as well, in the context of universal rate–distortion coding,
but here, just like in [34], there is no limitation to finite-state encoders/decoders as in [33].
In particular, our converse theorem asserts that given an arbitrary variable-rate code,
and given an arbitrary distortion function within a certain wide class, the vast majority of
reproduction vectors that represent source sequences of a given type (of any fixed order),
must have a code length that is essentially at least as large as the negative logarithm of the
probability of a ball with normalized radius D (D being the allowed per-letter distortion)
centered at the given source sequence. The probability of this ball is taken with respect to a
universal distribution that is proportional to 2−LZ(x̂), where LZ(x̂) is the code length of LZ
encoding of the reproduction vector, x̂.

The emphasis on the word “majority” in the previous paragraph (which was also
mentioned earlier) calls for an explanation: it should be understood that in the absence
of limitations on the encoding memory resources (such as the finite-state machine model
described above), there cannot exist any non-trivial lower bound that applies to each and
every given individual sequence. The reason is simple: given a particular individual source
sequence, one can always tailor an encoder that compresses that sequence to a single bit
(even losslessly), for example, by assigning the bit ‘0’ to be the compressed representation
of the given sequence and by appending the bit ‘1’ as a header to the uncompressed
binary representation of any other source sequence. For the given individual sequence,
the compression ratio would then be 1/n, which tends to zero as n grows without bound (of
course, this encoder would be very poor for many other source sequences). It is, therefore,
unavoidable that any non-trivial lower bound must apply collectively over some set of
source sequences, allowing at least some minority of exceptional sequences that may violate
the bound.

We also present a matching achievability result, asserting that for every source se-
quence, this code length is essentially achievable by random coding, using a universal
ensemble of codes, which is defined by independent random selection, where each code-
word is drawn under the above-described universal probability distribution.

While the achievability result in [34] was pointwise as well, it was tailored to a
memoryless structure, in the sense that it was given in terms of the rate–distortion function
of the first-order empirical distribution, which is blind to any empirical dependencies
and repetitive patterns within the source sequence. In this paper, we both extend the
scope to general individual sequences beyond the memoryless statistics and extend the
allowable class of distortion measures. In terms of the technical aspects, the proof of the
achievability result is similar to a parallel proof in [34], but the novelty lies considerably
more in the converse theorem and its proof, which is very different from the one in [34]
because here there is no information-theoretic single-letter expression for the best achievable
asymptotic performance.

Our main novel messages in this work can be summarized as follows.

1. We essentially derive an asymptotic formula for the rate–distortion function of an
individual sequence. It is given by the normalized negative logarithm of the universal
probability of a sphere of radius nD (in the distortion metric sense) around the given
source sequence.

2. We establish the universality of the LZ probability distribution, not only in the context
of lossless compression, but also for lossy compression, in the role of a universal
distribution for independent random selection of a rate–distortion codebook.



Entropy 2023, 25, 1199 4 of 16

3. The expression of this rate–distortion function is intimately related to a converse result
due to Kontoyiannis and Zhang [22] (in terms of the probability of a sphere), but it is
more explicit in a certain sense, that will be discussed in Section 5.

4. We provide some intuitive insight regarding this rate–distortion function by demon-
strating the analogy to the ordinary rate–distortion function (see Section 5).

5. We show that our achievability scheme outperforms the (seemingly) natural extension
of LZ compression to the lossy case, where one seeks, within a sphere of radius nD,
the reproduction vector whose LZ code length is minimal (see Section 5).

The outline of this paper is as follows. In Section 2, we establish the notation con-
ventions, define a few terms and quantities, and provide some background. In Section 3,
we present the converse theorem and its proof. In Section 4, we present the achievability
theorem and prove it. Finally, in Section 5, we summarize the paper and discuss our results.

2. Notation, Definitions, and Background

Throughout the paper, random variables will be denoted by capital letters, specific
values they may take will be denoted by the corresponding lower case letters, and their
alphabets will be denoted by calligraphic letters. Random vectors and their realizations will
be denoted, respectively, by capital letters and the corresponding lower case letters, both
in a bold face font. Their alphabets will be superscripted by their dimensions. The source
vector of length n, (x1, . . . , xn), with components, xi, i = 1, . . . , n, from a finite alphabet,
X , will be denoted by x. The set of all such n-vectors will be denoted by X n, which is the
nth-order Cartesian power of X . Likewise, a reproduction vector of length n, (x̂1, . . . , x̂n),
with components, x̂i, i = 1, . . . , n, from a finite alphabet, X̂ , will be denoted by x̂ ∈ X̂ n.
We denote the cardinalities of X and X̂ by J and K, respectively.

For i ≤ j, the notation xj
i will be used to denote the substring (xi, xi+1, . . . , xj). Proba-

bility distributions will be denoted by the letter P or Q with possible subscripts, depending
on the context. The probability of an event E will be denoted by Pr{E}, and the expectation
operator with respect to a probability distribution P will be denoted by E{·}. For two
positive sequences, an and bn, the notation an

·
= bn will stand for equality in the exponential

scale, that is, limn→∞
1
n log an

bn
= 0. Similarly, an

·
≤ bn means that lim supn→∞

1
n log an

bn
≤ 0,

and so on. The indicator function of an event E will be denoted by I{E}. The notation [x]+
will stand for max{0, x}. The logarithmic function, log x, will be understood to be defined
to the base 2. Logarithms to the base e will be denoted by ln.

Let ` be a positive integer that divides n. The `th-order empirical distribution of
x ∈ X n, which will be denoted by P̂`

x, is the vector of relative frequencies {P̂`
x(a`), a` ∈

X `}, where

P̂`
x(a`) =

`

n

n/`−1

∑
i=0
I{x(i+1)`

i`+1 = a`}. (1)

The set of all `th-order empirical distributions of sequences in X n will be denoted by P `
n.

For P` ∈ P `
n, the type class {x ∈ X n : P̂`

x = P`} will be denoted by Tn(P`). Likewise,
Tn(Q`) will denote {x̂ ∈ X̂ n : P̂`

x̂ = Q`}, where P̂`
x̂ is the `th-order empirical distribution

of x̂. Finally, P̂`
xx̂ will denote the `th-order joint empirical distribution of (x, x̂), i.e.,

P̂`
xx̂(a`, b`) =

`

n

n/`−1

∑
i=0
I{x(i+1)`

i`+1 = a`, x̂(i+1)`
i`+1 = b`}, (a`, b`) ∈ X ` × X̂ `. (2)

For a given positive integer n, a distortion function, d, is a function from X n × X̂ n

into R+. In the two main parts of this paper, different assumptions will be imposed on the
distortion function.

1. For the achievability theorem, the distortion function can be completely arbitrary.
2. For the converse theorem, we assume that d(x, x̂) depends on x and x̂ only via their

first-order joint empirical distribution, P̂1
xx̂, and that for a given such distribution,
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it grows linearly in n, that is, d(x, x̂) = nρ(P̂1
xx̂), where the function ρ is independent

of n.

Regarding item 2, additive distortion measures, which obviously comply with the
requirement, are given by linear functionals of P̂1

xx̂. However, here arbitrary non-linear
functionals are allowed as well.

A rate–distortion block code of length n is a mapping, φn : X n → Bn, Bn ⊂ {0, 1}∗,
that maps the space of source vectors of length n, X n, into a set, Bn, of variable-length
compressed bit strings. The decoder is a mapping ψn : Bn → Cn ⊆ X̂ n that maps the set
of compressed variable-length binary strings into a reproduction codebook Cn. A block
code is called d-semifaithful if for every x ∈ X n, d(x, ψn(φn(x))) ≤ nD. The code length
for x, denoted L(x), is the number of bits of φn(x). Since L(x) depends on x only via φn(x),
we will also denote it sometimes as L(φn(x)) or by L(x̂) (x̂ being the reproduction vector
pertaining to φn(x)), with a slight abuse of notation. For the converse theorem, we assume
that correspondence between Bn and Cn is one-to-one. For the achievability theorem, we
consider prefix-free codes. Accordingly, the encoder can equivalently be presented as a
cascade of a reproduction encoder (also known as a vector quantizer), which maps X n

into Cn, followed by an entropy coder, which maps Cn into Bn with no additional loss
of information.

For the purpose of presenting both the converse theorem and the achievability theorem,
we need to recall a few terms and facts concerning the 1978 version of the LZ algorithm
(also known as the LZ78 algorithm) [27]. The incremental parsing procedure of the LZ78
algorithm is a procedure of sequentially parsing a vector x̂ ∈ X̂ n such that each new
phrase is the shortest string that has not been encountered before as a parsed phrase,
with the possible exception of the last phrase which might be incomplete. For example,
the incremental parsing of the vector x̂ = abbabaabbaaabaa is a,b,ba,baa,bb,aa,ab,aa. Let
c(x̂) denote the number of phrases in x̂ resulting from the incremental parsing procedure.
Let LZ(x̂) denote the length of the LZ78 binary compressed code for x̂. According to ([27],
Theorem 2),

LZ(x̂) ≤ [c(x̂) + 1] log{2K[c(x̂) + 1]}
= c(x̂) log[c(x̂) + 1] + c(x̂) log(2J) + log{2K[c(x̂) + 1]}

= c(x̂) log c(x̂) + c(x̂) log
[

1 +
1

c(x̂)

]
+ c(x̂) log(2K) + log{2K[c(x̂) + 1]}

≤ c(x̂) log c(x̂) + log e +
n(log K) log(2K)
(1− εn) log n

+ log[2K(n + 1)]

4
= c(x̂) log c(x̂) + n · ε(n), (3)

where we remember that K is the cardinality of X̂ , and where ε(n) clearly tends to zero
as n → ∞, at the rate of 1/ log n. We next define a universal probability distribution (see
also [35,36]):

U(x̂) =
2−LZ(x̂)

∑x̂′∈X̂ n 2−LZ(x̂′)
, x̂ ∈ X̂ n. (4)

Finally, we define the D-sphere around x as

S(x, D) = {x̂ : d(x, x̂) ≤ nD}, (5)

and
U[S(x, D)] = ∑

x̂∈S(x,D)

U(x̂). (6)

For later use, we also define

Ŝ(x̂, D) = {x : d(x, x̂) ≤ nD}. (7)
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Our purpose is to derive upper and lower bounds on the smallest achievable code
length, L(x), for d-semifaithful block codes of length n, and individual sequences, {x},
from a given `th-order-type class, Tn(P`). As will be seen shortly, in both the converse
and the achievability theorems, the main term of the bound on the length function will be
− log(U[S(x, D)]).

3. The Converse Theorem

The following converse theorem asserts that even if the type class of the source vector
was known to the decoder ahead of time, the code length could not be much smaller than
− log(U[S(x, D)]) for the vast majority of the codewords pertaining to that type.

Theorem 1. Let ` be a positive integer that divides n and let P̂` be an arbitrary empirical distri-
bution pertaining to a certain type class, Tn(P̂`), of source sequences in X n. Let d be a distortion
function that depends on (x, x̂) only via P̂1

xx̂. Then, for every d-semifaithful variable-length block
code, with one-to-one correspondence between Bn and Cn, and for every ε > 0, the following lower
bound applies to a fraction of at least (1− 2n−ε) of the codewords, {φn(x), x ∈ Tn(P̂`)}:

L(φn(x)) ≥ − log(U[S(x, D)])− n∆n(`)− ε log n, (8)

where ∆n(`) has the property limn→∞ ∆n(`) = 1/`.

As a technical note, observe that ∆n(`) can be made small when ` is chosen to be
large, as ∆n(`) behaves like 1/` for fixed ` and large n. This suggests that the theorem is
meaningful mainly when ` is appreciably large, which is not surprising, because the larger `
is, the better one can exploit empirical dependencies within the source sequence. Enlarging
` also increases the asymptotic lower bound and, thus, makes it tighter. An alternative
approach would be to let ` = `n grow with n, but sufficiently slowly such that ∆n(`n)→ 0
as n→ ∞.

The remaining part of this section is devoted to the proof of Theorem 1. The proof is
based on two main steps whose aim is to bypass the need for the traditional information-
theoretic expression of the rate–distortion function. The first step is based on a simple
counting argument, displayed in Equations (9)–(14) below, which leads to the identity (15)
and, more specifically, to (16). Equation (16) is pivotal to the proof because it establishes
exact equality between the sphere-covering ratio (on the left-hand side) and a quantity (on
the right-hand side) that can be interpreted as one over the probability of falling into an
nD-sphere around x under random coding with respect to the uniform distribution over the
type class, Tn(Q`). The sphere-covering ratio on the left-hand side belongs to the converse,
and the expression on the right-hand side is strongly related to achievability (see Theorem 2
below), as it directly supports random coding. Therefore, these identities create the basic
link between the converse and the direct theorems. The second step is to replace the uniform
distribution over Tn(Q`) by the universal LZ distribution, U(x) ∝ 2−LZ(x̂), and thereby
relax the dependence upon P` (or Q`), as well as on the parameter `, without sacrificing
the asymptotic performance. This proof is entirely different from the one in [34].

Proof. We first establish a relationship that will be used later on. For two given types
Tn(P`) ⊂ X n and Tn(Q`) ⊂ X̂ n, consider the quantity,

N(D) = ∑
x,x̂
I{x ∈ Tn(P`), x̂ ∈ Tn(Q`), d(x, x̂) ≤ nD}. (9)
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We can evaluate N(D) in two ways. The first is as follows:

N(D) = ∑
x∈Tn(P`)

∣∣∣∣Tn(Q`)
⋂
S(x, D)

∣∣∣∣ (10)

= |Tn(P`)| ·
∣∣∣∣Tn(Q`)

⋂
S(x, D)

∣∣∣∣, (11)

where the second equality is since |Tn(Q`)
⋂ S(x, D)

∣∣∣∣ is the same for all x ∈ Tn(P`), due to

the permutation-invariance assumption on the distortion function. By the same token, we
can also express N(D) in the following manner:

N(D) = ∑
x̂∈Tn(Q`)

∣∣∣∣Tn(P`)
⋂
Ŝ(x̂, D)

∣∣∣∣ (12)

= |Tn(Q`)| ·
∣∣∣∣Tn(P`)

⋂
Ŝ(x̂, D)

∣∣∣∣, (13)

which follows from the same consideration by symmetry. It follows then that

|Tn(P`)| ·
∣∣∣∣Tn(Q`)

⋂
S(x, D)

∣∣∣∣ = |Tn(Q`)| ·
∣∣∣∣Tn(P`)

⋂
Ŝ(x̂, D)

∣∣∣∣, (14)

or, equivalently,
|Tn(P`)|∣∣∣∣Tn(P`)
⋂ Ŝ(x̂, D)

∣∣∣∣ =
|Tn(Q`)|∣∣∣∣Tn(Q`)
⋂ S(x, D)

∣∣∣∣ . (15)

Now, let Q`
∗ be the type of x̂ that maximizes |Tn(P`)

⋂ Ŝ(x̂, D)

∣∣∣∣. Then, the last equation

implies that

|Tn(P`)|

maxx̂∈X̂ n

∣∣∣∣Tn(P`)
⋂ Ŝ(x̂, D)

∣∣∣∣ =
|Tn(Q`

∗)|∣∣∣∣Tn(Q`∗)
⋂ S(x, D)

∣∣∣∣ , ∀ x ∈ Tn(P`). (16)

This relationship will be used shortly.
Let P` ∈ P `

n be given. Any d-semifaithful code must fully cover the type class Tn(P`)
with spheres of radius nD (henceforth, referred to as D-spheres) centered at the various
codewords. Let x̂1, . . . , x̂M ∈ X̂ n be M codewords. The number of members of Tn(P`) that
are covered by x̂1, . . . , x̂M ∈ X̂ n is upper-bounded as follows.

G =

∣∣∣∣ M⋃
i=1

[
Tn(P`)

⋂
Ŝ(x̂i, D)}

]∣∣∣∣
≤

M

∑
i=1

∣∣∣∣Tn(P`)
⋂
Ŝ(x̂i, D)}

∣∣∣∣
≤ M · max

x̂∈X̂ n

∣∣∣∣Tn(P`)
⋂
Ŝ(x̂, D)}

∣∣∣∣, (17)
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and so, the necessary condition for complete covering, which is G ≥ |Tn(P`)|, amounts to

M ≥ |Tn(P`)|

maxx̂∈X̂ n

∣∣∣∣Tn(P`)
⋂ Ŝ(x̂, D)}

∣∣∣∣
=

|Tn(Q`
∗)|∣∣∣∣Tn(Q`∗)

⋂ S(x, D)

∣∣∣∣
4
= M0, (18)

where the second line is from (16). Consider now a variable-length code with a codebook of
size M. Let L(x̂) denote the length (in bits) of the compressed binary string that represents x̂.
The number of codewords with L(x̂) ≤ log M− ε log n is upper-bounded as follows:

|{x̂ ∈ Cn : L(x̂) ≤ log M− ε log n}| =
log M−ε log n

∑
k=1

|{x̂ : L(x̂) = k}|

≤
log M−ε log n

∑
k=1

2k

= 2log M−ε log n+1 − 1

< 2n−ε M, (19)

where in the first inequality we have used the assumed one-to-one property of the map-
ping between the reproduction codewords and their variable-length compressed binary
representations. It follows then, that for at least M(1− 2n−ε) out of the M codewords in
Cn (that is, the vast majority of codewords), we have

L(φn(x)) ≥ log M− ε log n

≥ log M0 − ε log n

= − log


∣∣∣∣Tn(Q`

∗)
⋂ S(x, D)

∣∣∣∣
|Tn(Q`∗)|

− ε log n

= − log

 ∑
x̂∈S(x,D)

UQ∗(x̂)

− ε log n, (20)

where UQ∗ is the uniform probability distribution across the type class Q`
∗, i.e.,

UQ∗(x̂) =

{
1

|Tn(Q`∗)|
x̂ ∈ Tn(Q`

∗)

0 elsewhere
(21)

We now argue that for every x̂ ∈ X̂ n

UQ∗(x̂) ≤ exp2{−LZ(x̂) + n∆n(`)}. (22)

For x̂ /∈ Tn(Q`
∗), this is trivial as the left-hand side is equal to zero. For x̂ ∈ Tn(Q`

∗), we
have the following consideration. In ([37], Equation (30)), it is shown (with somewhat
different notation) that a certain quantity called the (unnormalized) s-state complexity [27]

of x̂, nρs(x̂), for s = S(`)
4
= (K`+1 − 1)/(K− 1), is upper-bounded by

nρs(x̂) ≤ n
`
[HQ∗(X̂`) + 1], (23)
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where
HQ∗(X̂`) = − ∑

b`∈X̂ `

Q`
∗(b

`) log Q`
∗(b

`). (24)

On the other hand, nρs(x̂) is lower-bounded (see [37], Equation (32)) by

nρs(x̂) ≥ c(x̂) log c(x̂)− n log(4S2(`)) log K
(1− εn) log n

− S2(`) log(4S2(`)), (25)

where εn → 0, and so,

n
`
[HQ∗(X̂`) + 1] ≥ c(x̂) log c(x̂)− n log(4S2(`)) log K

(1− εn) log n
− S2(`) log(4S2(`)). (26)

Combining this with the inequality ([38], p. 17, Lemma 2.3),

|Tn(Q`
∗)| ≥

(n
`
+ 1
)−K`

· 2nHQ∗ (X̂`)/`, (27)

we have

log |Tn(Q`
∗)| ≥ c(x̂) log c(x̂)− nδn(`)− K` log

(n
`
+ 1
)

≥ LZ(x̂)− nε(n)− nδn(`)− K` log
(n
`
+ 1
)

4
= LZ(x̂)− n∆n(`), (28)

where

δn(`) =
log[4S2(`)] log K
(1− εn) log n

+
S2(`) log[4S2(`)]

n
+

1
`

, (29)

and where the second inequality in (28) follows from (3). The last line of (28) is equivalent
to (22). It follows then, that for at least M(1− 2 · n−ε) out of the M codewords in Cn,

L(φn(x)) ≥ − log

 ∑
x̂∈S(x,D)

2−LZ(x̂)

− n∆n(`)− ε log n

= − log

 ∑
x̂∈S(x,D)

2−LZ(x̂)

∑x̂′∈X̂ n 2−LZ(x̂′)

−
log

(
∑

x̂∈X̂ n

2−LZ(x̂)
)
− n∆n(`)− ε log n

≥ − log(U[S(x, D)])− n∆n(`)− ε log n, (30)

where in the last step we have applied Kraft’s inequality to the LZ code-length function.
This completes the proof of Theorem 1.

4. The Achievability Theorem

The lower bound of Theorem 1 naturally suggests achievability using the universal
distribution, U, for random selection of the various codewords. The basic idea is quite
standard and simple: the quantity U[S(x, D)] is the probability that a single randomly
chosen reproduction vector, drawn under U, would fall within distance nD from the source
vector, x. If all reproduction vectors are drawn independently under U, then the typical
number of such random selections that it takes before one sees the first one in S(x, D) is
of the exponential order of 1/U[S(x, D)]. Given that the codebook is revealed to both the
encoder and decoder, once it has been selected, the encoder merely needs to transmit the
index of the first such reproduction vector within the codebook, and the description length
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of that index can be made essentially as small as log{1/U[S(x, D)]} = − log(U[S(x, D)]).
We use this simple idea to prove achievability for an arbitrary distortion measure. The proof
is similar to the parallel proof in [34], and it is presented here mainly for completeness.

The achievability theorem is the following.

Theorem 2. Let d : X n × X̂ n → R+ be an arbitrary distortion function. Then, for every ε > 0,
there exists a sequence of d-semifaithful, variable-length block codes of block length n, such that for
every x ∈ X n, the code length for x is upper-bounded by

L(x) ≤ − log(U[S(x, D)]) + (2 + ε) log n + c + δn, (31)

where c > 0 is a constant and δn = O(nJne−n1+ε
).

Proof. The proof is based on the following simple well-known fact: Given a source vector
x ∈ X n and a codebook, Cn, let I(x) denote the index, i, of the first vector, x̂i, such that
d(x, x̂i) ≤ nD, namely, x̂i ∈ S(x, D). If all reproduction vectors are drawn independently
under U, then, for every positive integer, N:

Pr{I(x) > N} = (1−U[S(x, D)])N = exp{N ln(1−U[S(x, D)]} ≤ exp{−N ·U[S(x, D)]}, (32)

and so, if N = Nn = eλn /U[S(x, D)], for some arbitrary positive sequence, {λn}, that tends
to infinity, then

Pr{I(x) > Nn} ≤ exp{−eλn}. (33)

This fact will be used few times in this section.

For later use, we also need the following uniform lower bound to U[S(x, D)]: for a
given x, let x̂0 ∈ X̂ n denote an arbitrary reproduction vector within S(x, D). Then,

U[S(x, D)] ≥ U(x̂0) (34)

=
2−LZ(x̂0)

∑x̂∈X̂ n 2−LZ(x̂) (35)

≥ 2−LZ(x̂0). (36)

Next, observe that LZ(x̂0) is maximized by the K-ary extension of the counting
sequence ([27], p. 532), which is defined as follows: for i = 1, 2, . . . , m (m – positive
integer), let u(i) denote the K-ary string of length iKi that lists, say, in lexicographic order,
all the Ki words from X̂ i, and let x̂0 = (u(1)u(2) . . . u(m)), whose length is

n =
m

∑
i=1

iKi

= K ·
m

∑
i=1

iKi−1

= K · ∂

∂K

(
m

∑
i=1

Ki

)

= K · ∂

∂K

(
Km+1 − K

K− 1

)
=

K
(K− 1)2 [mKm+1 − (m + 1)Km + 1]. (37)

The LZ incremental parsing of x̂0, which is exactly (u(1), u(2), . . . , u(m)), yields

c(x̂0) =
m

∑
i=1

Ki =
Km+1 − K

K− 1
, (38)
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and so, considering Equation (3), it follows that LZ(x̂0) ≤ (1 + εn)n log K for some εn → 0
as n→ ∞. It follows then, that

U[S(x, D)] ≥ 2−n(1+εn) log K. (39)

Remark 1. For an alternative to this upper bound on the LZ code length, one can slightly modify
the LZ algorithm as follows: if LZ(x̂) ≤ n log K, use the LZ algorithm as usual, otherwise, send x̂
uncompressed using n log K bits. To distinguish between the two modes of operation, append a flag
bit to indicate whether or not the data are LZ-compressed. The modified code length would then be
LZ′(x̂) = min{LZ(x̂), n log K}+ 1. Now, replace LZ(x̂) by LZ′(x̂) in all places throughout this
paper, including the definition of U.

Consider now an independent random selection of all reproduction vectors to form a
codebook, Cn, of size M = An (A > K) codewords, x̂1, x̂2, . . . , x̂M, according to U. Once the
codebook Cn = {x̂1, x̂2, . . . , x̂M} has been drawn, it is revealed to both the encoder and the
decoder. Consider next the following encoder. As defined before, let I(x) be defined as the
index of the first codeword that falls within S(x, D), but now, with the small modification
that if none of the An codewords fall in S(x, D), then we define I(x) = An anyway (and
then the encoding fails). Next, we define the following probability distribution over the
positive integers, 1, 2, . . . , An:

u[i] =
1/i

∑An

k=1 1/k
, i = 1, 2, . . . , An. (40)

Given x, the encoder finds I(x) and encodes it using a variable-rate lossless code with the
length function (in bits, and ignoring the integer length constraint)

L(x) = − log u[I(x)]

≤ log I(x) + log

(
An

∑
k=1

1
k

)
≤ log I(x) + log(ln An + 1)

= log I(x) + log(n ln A + 1)

≤ log I(x) + log n + c, (41)

where c = log(ln A + 1). It follows that the expected codeword length for x ∈ X n (with
respect to the randomness of the code) is upper-bounded by

E{L(x)} ≤ E{log I(x)}+ log n + c

≤ logE{I(x)}+ log n + c

= log

(
An

∑
k=1

k · (1−U[S(x, D)])k−1 ·U[S(x, D)] + An · (1−U[S(x, D)])An

)
+ log n + c

= log

(
∞

∑
k=1

min{k, An} · (1−U[S(x, D)])k−1 ·U[S(x, D)]

)
+ log n + c

≤ log

{
∞

∑
k=1

k · (1−U[S(x, D)])k−1 ·U[S(x, D)]

}
+ log n + c

= log
(

1
U[S(x, D)]

)
+ log n + c, (42)

and we denote

L+(x)
4
= log

(
1

U[S(x, D)]

)
+ log n + c. (43)
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Consider now the quantity

En
4
= E

{
max

(
max
x∈X n

I{d(x, X̂) > nD},[
max
x∈X n

(
L(x)− L+(x)− (1 + ε) log n

)]
+

)}
, (44)

where the expectation is with respect to the randomness of the code Cn. If En can be upper-
bounded by δn, which tends to zero as n→ ∞, this will imply that there must exist a code
for which both

max
x∈X n

I{d(x, x̂) > nD} ≤ δn (45)

and
max
x∈X n

(
L(x)− L+(x)− (1 + ε) log n

)
≤ δn (46)

at the same time. Observe that since the left-hand side of (45) is either zero or one, then if we
know that it must be less than δn → 0 for some codebook Cn, it means that it must vanish
as soon as n is large enough such that δn < 1, namely, d(x, x̂) ≤ nD for all x, in other words,
the code is d-semifaithful. Furthermore, by (46), for the same codebook, we must have

L(x) ≤ L+(x) + (1 + ε) log n + δn x ∈ X n, (47)

and δn adds a negligible redundancy term.
To prove that En → 0, we first use the simple fact that the maximum of two non-

negative numbers is upper-bounded by their sum, i.e.,

En ≤ E
{

max
x∈X n

I{d(x, X̂) > nD}
}
+

E
{[

max
x∈X n

(
L(x)− L+(x)− (1 + ε) log n)

)]
+

}
, (48)

and, therefore, it is sufficient to prove that each one of these terms tends to zero. As for the
first term, we have:

E
{

max
x∈X n

I{d(x, X̂) > nD}
}
≤ E

{
∑

x∈X n
I{d(x, X̂) > nD}

}
= ∑

x∈X n
E
{
I{d(x, X̂) > nD}

}
= ∑

x∈X n
Pr{d(x, X̂) > nD}

= ∑
x∈X n

(1−U[S(x, D)])An

≤ ∑
x∈X n

exp{−AnU[S(x, D)]}

(a)

≤ ∑
x∈Xn

exp{− exp{n[ln A− (1 + εn) ln K]}}

≤ Jn exp(− exp{n[ln A− (1 + εn) ln K]}}, (49)

where in (a) we have used (39). This quantity decays double-exponentially rapidly as
n→ ∞ since we have assumed A > K.
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As for the second term of (48), we have:

E
{[

max
x∈X n

(
L(x)− L+(x)− (1 + ε) log n

)]
+

}
(a)

≤ E
{[

max
x∈X n

(
log I(x)− log

1
U[S(x, D)]

− (1 + ε) log n
)]

+

}
=

∫ ∞

0
Pr
{

max
x∈X n

[
log I(x)− log

1
U[S(x, D)]

− (1 + ε) log n)
]
≥ s
}

ds

=
∫ n log A

0
Pr
{

max
x∈X n

[
log I(x)− log

1
U[S(x, D)]

− (1 + ε) log n
]
≥ s
}

ds

=
∫ n log A

0
Pr

[ ⋃
x∈X n

{
I(x) ≥ 2(1+ε) log n+s

U[S(x, D)]

}]
ds

≤ ∑
x∈X n

∫ n log A

0
Pr

{
I(x) ≥ 2(1+ε) log n+s

U[S(x, D)]

}
ds

(b)

≤ ∑
x∈X n

∫ n log A

0
exp{−2sn1+ε}ds

≤ Jn · (n log A) · exp{−n1+ε}, (50)

where in (a) we have used (41) and (43), and in (b) we have used (33). The right-most
side of this chain of inequalities clearly decays as well when n grows without bound. This
completes the proof.

5. Summary and Discussion

By deriving asymptotically matching upper and lower bounds, we have established
the quantity − 1

n log(U[S(x, D)]) as having the significance of an empirical rate–distortion
function for individual sequences. While this quantity is not easy to calculate for large
n, the operative meaning of our results is that we propose a universal ensemble for rate–
distortion coding. According to this ensemble, the codewords are drawn independently
under the probability distribution that is proportional to 2−LZ(x̂).

There are several observations, insights, and perspectives that should be addressed.
Relation to earlier converse bounds. The converse bound is given in terms of the probabil-

ity of a sphere of radius nD around the source vector x, under the universal distribution,
U, defined in (4). This is intimately related to a converse result due to Kontoyiannis and
Zhang ([22], Theorem 1, part i), which states that for any d-semifaithful code, there exists a
probability distribution Q on X̂ n such that L(x) ≥ − log(Q[S(x, D)]) for all x (see also [21]).
Here, upon giving up any claims on a minority of the codewords pertaining to a given
type class, we derived a lower bound of essentially the same form with the benefit of
specifying a concrete choice of the distribution Q, i.e., we propose Q = U, the universal
distribution (unlike the distribution in [22] (Section III.A), which is proportional to 2−L(x̂)

across the codebook).
Interpretation of the main term of the bound. First, observe that in the special case of

lossless compression (D = 0), the expression − log(U[S(x, D)]) boils down to LZ(x),
as expected. In the lossy case, since LZ(x̂) is essentially bounded by a linear function of n
(see (39)), we can approximate the main term as follows:
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− log(U[S(x, D)]) ≤ − log

 ∑
x̂∈S(x,D)

2−LZ(x̂)


= − log

(
∑
L≥1

2−L ·
∣∣∣∣{x̂ : LZ(x̂) = L}

⋂
S(x, D)

∣∣∣∣
)

≈ min
L≥1

{
L− log

∣∣∣∣{x̂ : LZ(x̂) = L}
⋂
S(x, D)

∣∣∣∣}. (51)

This expression, when normalized by n, can be viewed as a certain extension of the rate–
distortion function, from the memoryless case to the general case, in the following sense.
For a memoryless source P, the rate–distortion function has the following representation,
which is parallel to (51):

R(D) = min
PX̂

[
H(X̂)− max

{PX|X̂ : Ed(X,X̂)≤D, PX=P}
H(X̂|X)

]
, (52)

where the maximum over the empty set is understood to be −∞. Indeed, if we replace U
by the the uniform distribution across the first-order type pertaining to the optimal PX̂ , this
is the corresponding single-letter expression of − log(PX̂ [S(x, D)]) that is obtained using
the method in [38].

Comparing to the LZ description length of the most compressible x̂ ∈ S(x, D). Since our
achievable bound involves LZ compression, it is interesting to compare it to the conceptually
simple coding scheme that encodes x by the vector x̂ that minimizes LZ(x̂) within S(x, D).
Consider the following chain of equalities and inequalities:

min
x̂∈S(x,D)

LZ(x̂) = − log

(
max

x̂∈S(x,D)
2−LZ(x̂)

)

≥ − log

 ∑
x̂∈S(x,D)

2−LZ(x̂)


≥ − log

 ∑
x̂∈S(x,D)

2−LZ(x̂)

∑x̂′∈X̂ n 2−LZ(x̂′)


= − log(U[S(x, D)]), (53)

which means that the performance of our proposed scheme is never worse (and conceivably
often much better) than that of selecting the vector x̂ with the smallest LZ(x̂) among all
reproduction vectors in S(x, D). The reason for the superiority of the proposed scheme is
that it takes advantage of the fact that x̂ cannot be any vector in X̂ n, but it must be a member
of the codebook, Cn, i.e., one of the possible outputs of a vector quantizer. On the other
hand, in view of [27], minx̂∈S(x,D) LZ(x̂) is essentially achievable upon compressing the
output of a certain reproduction encoder (or vector quantizer) using a finite-state encoder,
but a finite-state machine does not have enough memory resources to take advantage of
the fact that vectors outside Cn cannot be encountered by the encoder. Another interesting
comparison between the two schemes is in terms of computational complexity. While in our
scheme, the encoder has to carry out typically about 1/U[S(x, D)] distortion calculations
before finding the first x̂ ∈ S(x, D), in the alternative scheme the number of calculations
is |S(x, D)|. The former is a decreasing function of D, whereas the latter is an increasing
function of D. Therefore, in terms of computational complexity, the preference between the
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two schemes might depend on D. Specifically, for an additive distortion measure, it is easy
to see that

1
U[S(x, D)]

·
≤ exp2{nR(D, P1

x)} (54)

and, by the method of types [38]:

|S(x, D)| ·= exp2{nE(D, P1
x))}

4
= exp2[max{H(X̂|X), Ed(X, X̂) ≤ D, PX = P1

x}]. (55)

Therefore, whenever D is large enough such that R(D, P1
x) < E(D, P1

x)), it is guaran-
teed that the coding scheme proposed here is computationally less demanding than the
alternative scheme of minimizing LZ(x̂) across S(x, D).

Implementation of the random coding distribution. The universal random coding distribu-
tion is not difficult to implement. One way to achieve this is by feeding the LZ decoder
with a sequence of purely random bits (fair coin tosses) until we have obtained n symbols
at the decoder output. The details can be found in [36].

Universality with respect to the distortion measure. As mentioned in the Introduction,
in [23,24,34], there are results on the existence of rate–distortion codes that are universal,
not only in terms of the source, but also in the sense of the distortion measure. Since the
proof of our achievability scheme is very similar to that of [34], it is possible to extend the
achievability proof here too, so as to make our code distortion-universal for a wide class of
distortion measures. This can be carried out by redefining En to include the maximization
of both terms over a dense grid of distortion functions, as was performed in [34]. We opted
not to include this in the present paper since it is straightforward given the results we
already have here and in [34].
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