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Abstract: One of the most important problems in complex networks is the location of nodes that
are essential or play a main role in the network. Nodes with main local roles are the centers of
real communities. Communities are sets of nodes of complex networks and are densely connected
internally. Choosing the right nodes as seeds of the communities is crucial in determining real
communities. We propose a new centrality measure named density-based entropy centrality for the
local identification of the most important nodes. It measures the entropy of the sum of the sizes of
the maximal cliques to which each node and its neighbor nodes belong. The proposed centrality is
a local measure for explaining the local influence of each node, which provides an efficient way to
locally identify the most important nodes and for community detection because communities are
local structures. It can be computed independently for individual vertices, for large networks, and for
not well-specified networks. The use of the proposed density-based entropy centrality for community
seed selection and community detection outperforms other centrality measures.

Keywords: networks; undirected graphs; community detection; node centrality; label propagation

1. Introduction

Complex networks represent complex interactions among multiple nodes representing
objects in many real systems. One of the most important problems in complex networks
is the location of nodes that are essential or play a main role within the network. Nodes
having main local roles are the centers of real communities.

Communities are sets of nodes joined together in tightly connected groups, with only
a few connections with nodes belonging to other communities. They can be used as an
intermediate step to select the most influential nodes. By incorporating information on
the community structure of the input network into the optimization process of influence
maximization, the efficiency of the most influential nodes is improved [1].

An analysis of complex networks can uncover new knowledge and improve our
understanding of the processes and structures of networks [2]. One important aspect of
network analysis is to uncover the community structure, which has been shown to be an
important property of networks [3].

Many community-detection methods [4] have been proposed, and some of them can
also cope efficiently with dynamic networks [5]. Global community-detection methods
require the structural information of the whole networks, while local community-detection
algorithms require only the local information of one subnetwork. Many existing global
community-detection approaches use a network’s most important nodes, i.e., seeds, and
some global scoring functions in the optimizing process for seed identification and the
expansive growth of each seed into a larger set of similar nodes named communities [6].
Many local community-detection algorithms also start from a number of the locally most
important nodes (seeds) and expand them into communities by examining only the neigh-
borhood of the seeds. The chosen seed nodes have a great influence on the identified
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communities and on the performance and efficiency of the community-detection meth-
ods [7,8]. Until now, different centrality measures tied to the network topology have been
introduced to solve the issue of finding these initial community seeds, as the locally most
influential nodes in a complex network [9].

Several centrality measures take advantage of various network topological properties
to estimate the influence. However, the majority of centrality measures ignore the com-
munity structure, although it is one of the main features of many real-world networks.
The centrality of a node in a network depends on two influences: its local influence on
the neighboring nodes belonging to its community and its global influence on the nodes
belonging to the other communities. The goal of our research was to create a new centrality
measure, which can enable better estimation of the local importance and identification
of the locally most important nodes. They are the centers of real communities. The new
centrality measure can be used for the ranking nodes regarding the node’s importance
in one network, and it is not appropriate for a comparison of the importance of values
from different complex networks. The important nodes from different complex networks
can have different centrality values, while the complex networks may not have the same
structure. Centrality measures have to provide a quick prediction of real communities
in large complex networks for the task of community detection. Therefore, an efficient
centrality measure should not require processing of a whole network but require only
local information of the subnetwork. The new local centrality measure should also be
based on empirical observations rather than on a theoretical analysis, so that it can be used
in real systems to identify the most important nodes as the centers of the communities
in a network. The realization of this goal has practical value, since the nodes with the
highest centrality values can be used directly for the identification of real communities.
On the other hand, our research also has a theoretical value: achieving an understanding of
the ability to identify communities using the new proposed factor density-based entropy,
which can be estimated by humans or calculated automatically.

We introduce a local entropy-based centrality measure that can enable better identifi-
cation of the most important central vertices as the seeds of real communities in networks.
Furthermore, the proposed entropy-based centrality measure requires no control param-
eters to be tuned to achieve the optimal solution. The entropy-based centrality measure
used considers the nodes and the number of links in the neighborhood of a node.

In this work, we make the following contributions. We extend the current list of the
significant factors described in previous research on node centrality with entropy. We
demonstrate that the proposed density-based centrality measure is correlated with the local
centrality and correlated weakly with the global nodes’ centrality measures. This makes it
useful for the identification of the locally most important nodes in a network, which are the
seeds of the communities, while the communities are local structures.

We use an extended simple label propagation community-detection algorithm, LPA [10],
with different centrality measures for the identification of communities and prove the
efficiency of the proposed centrality measure. We extended the LPA using the seed nodes
and link strength to create cores of the communities around the identified seed nodes before
detecting whole communities, since the recent research has shown that maximal neighbor
similarity reveals real communities [11].

We show that the proposed density-based entropy centrality outperforms the other
local centrality measures in identifying real community structures. The proposed density-
based entropy centrality measure identifies all the centers that are related to the centers of
natural communities. The proposed centrality and extended LPA community-detection
method enable local community detection. The density-based entropy centrality is a
local node centrality index, and the link strength used in the extended LPA algorithm
for community identification is a local similarity index. They enable local community
identification of any number of communities, while no prior knowledge is required about
the number of communities.
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The rest of this article is organized as follows. Section 2 presents related work.
Section 3 gives basic definitions and proposes the density-based entropy centrality.
Section 4 proposes the use of the centrality for community detection with the extended LPA.
Section 5 provides the experiments and results. Finally, Section 6 concludes this article.

2. Related Work

Each centrality measure considers some of the properties of complex systems and es-
tablishes its own definition of centrality, while each community-detection method considers
some of the properties of the complex systems and establishes its own definition of a com-
munity [12]. We introduce a local entropy-based centrality measure that can enable better
identification of the most important central vertices as the seeds of real communities
of networks.

The modern science of networks has brought significant advances to our understand-
ing of complex systems and different community-detection methods [13].

Many community-detection algorithms select the seed vertices randomly to detect
communities using methods that enhance or expand the k-means clustering method [14].
The label propagation methods take all vertices as possible seeds of communities at the
beginning [10]. Weskida [15] showed the use of an evolutionary algorithm for selecting
the seeds in social networks. Erlandsson et al. [16] identified the most influential users
using association rule learning. Gleich and Seshadhri [17] proposed a localized method
of detecting seeds, which are vertices with local minimal conductance. However, most
existing local community-detection algorithms use one centrality index to identify the most
important vertices as the seeds for communities and then extend the seeds into communities
by running a greedy optimization process using one quality function [12].

Finding influential nodes in a complex network is an important research topic [18,19].
Different centrality measures tied to the network topology have been introduced for finding
these influential nodes [20]. Several centrality measures take advantage of various network
topological properties to evaluate the influence, while the majority of research works
ignore the network community structure, although it is one of the main features of real-
world networks.

3. Centrality Measures

Node centrality is one of the most intuitive methods to identify the important nodes
in a network. Node centrality evaluates the efficiency of the propagation of information
from a central node and estimates the influence and the strength of the connection of the
node with its neighborhood [21].

The popular centrality measures are degree centrality [22,23], betweenness central-
ity [24,25], and closeness centrality [26]. A significant correlation between node degree
and the geometric centrality measures and also between other centrality measures has
been reported in [27]. The betweenness centrality and closeness centrality belong to the
global-based approaches which exploit the information of the whole network to rank nodes
with their topological importance in the network.

Let GU be an input undirected unweighted graph consisting of a set of vertices V and
a set of edges E ⊂ V ×V. A is an adjacency matrix, sometimes also called the connection
matrix, with rows and columns labeled with the graph vertices, with values Ai,j = 1 when
the vertices i and j are adjacent (connected with an edge) or 0 otherwise.

Degree centrality finds the most connected vertex with the greatest degree as the most
central. The degree centrality Di of a vertex i is proportional to the degree (or number of
directly connected neighbors) of that vertex.

Di =
∑n

j!=i,j=1 Aij

n− 1
(1)
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Closeness centrality finds the vertex with the smallest distances to all other vertices in the
network as the most central.

Ci =
n− 1

∑n
j!=i,j=1 d(i, j)

(2)

where d(i, j) is the shortest path distance between the vertices i and j.
Betweenness centrality identifies the vertex of the graph with the highest number of

shortest paths going through the vertex as the most central.

Bi = ∑
i!=j!=k

σjk(i)
σjk

(3)

where σjk is the total number of shortest paths from the graph vertex j to k, and σjk(i) is
the number of those paths from vertex j to k that pass through graph vertex i. The use
of betweenness and closeness centrality makes the algorithm costly because they use the
whole network for evaluation of the centrality of each vertex, while the degree centrality is a
local centrality measure. Studies in [28] showed that the degree-based and centrality-based
approaches may result in less influence over the network because these measures do not
consider the effect of the neighborhood.

Other proposed centrality measures are the eigencentrality measure [29,30], informa-
tion centrality [31], and communicability centrality [32].

The eigencentrality makes the centrality of a graph vertex proportional to the sum of
the centralities of its neighborhood.

ci =
1

λmax

n

∑
j!=i,j=1

Aijcj; i = 1, 2 . . . n (4)

where λmax is the largest eigenvalue of the adjacency matrix A.
Google’s PageRank [33] and the Katz [34] centrality are variants of the eigenvector cen-

trality.
The information centrality observes how information flows between all the pairs of

vertices in the network.
Ii =

n
∑n

j=1 Iij
(5)

Iij is the combined path information. It can be computed from the matrix D(i, j) containing
the number of links that share the paths in a combined path.

The communicability centrality [32] is a subgraph centrality. It is calculated from all
the closed paths of all lengths that start and end at a graph vertex i. Paths with a shorter
length have a greater influence on the centrality of the vertex i. The communicability of a
vertex i is calculated using the exponential of the adjacency matrix A:

Comm(i) =
[
eA

]
ii

(6)

Vertices with more neighbors have a greater influence on their surroundings than
vertices with few ties with their neighborhood and can propagate information to the other
vertices in the network more efficiently. Because they have many links with the surrounding
vertices, they are often involved in exchanges with other vertices. They have access to more
resources of the network. Therefore, a node degree is a very simple and effective local
centrality measure.

Degree centrality calculates the centrality using only direct neighbors, but those
neighbors can be disconnected from the whole network, and therefore, it can identify the
local unimportant centers. However, local metrics like degree centrality are relatively
simple and less effective in the identification of the central vertices of a whole network,
although the global metrics, such as closeness and betweenness centralities, can identify
the most important vertices of the whole network better. Nevertheless, the local metrics of
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centrality are more efficient in revealing real community centers, while the communities
are local structures. The extent to which different centrality measures offer unique or
redundant information depends on the topology of the network. Past empirical work has
identified correlations between the different centrality measures in different applications.
As an example, the closeness and eigenvector centralities were correlated very highly
in a network of collaborations between high-energy physicists (r = 0.91), but not in a
Power Grid network (r = −0.04) [35]. The different centrality measures identify different
choices of the most central vertex within a graph. The centrality which is optimal for one
application can be sub-optimal for a different application. As an example, individuals who
influence the flow around a system have the greatest betweenness centrality, while the
betweenness centrality is not efficient for community detection, where the graph vertices
with the highest betweenness centrality can be bridges between two or more communities
or the central vertices of communities. The closeness centrality identifies the nodes which
influence the entire network most quickly. The degree centrality can best identify locally
popular or informed individuals, which can be the centers of real communities. They
are sometimes bridges between two or more communities and not the centers of real
communities. Therefore, we want to define a centrality measure that can identify the
centers of real communities better.

4. Density-Based Entropy Centrality

We exploited the entropy and cliques in the proposed centrality measure. The cliques
are ideal communities’ structures, which are subsets of individuals who interact with each
other more frequently than other individuals outside the clique. This is a similar definition
to the definition of a community. A clique represents a densely connected structure in a
graph, and, as such, it can be used to recover the locally most related elements useful for
several data mining tasks such as clustering, frequent patterns, and community mining [36].
The cliques can also be used in the optimization functions of community detection. In [20], a
novel community-detection method was proposed that minimizes a new objective function,
called the clique conductance.

Mhadhbi et al. [37] solved the problem of influence maximization using a maximal
clique problem. Their solution is based on the fact that the presence of a dense neighborhood
around a network node is fundamental to the maximization of the influence.

We built our centrality measure from the following simple and relevant principle: a
node that is a good infector can be contained in multiple cliques. A dense neighborhood
around a node maximizes the influence and spread of the information.

Network nodes with the maximal proposed centrality should contain the most in-
formation presented in the network. The Shannon entropy is related to the information
present in systems. In the research on complex networks, a number of different entropy
measures have been introduced [38,39], where the entropy is used to analyze the statistical
behavior or the structural features of a network.

4.1. Basic Definitions

Let GU be an input undirected unweighted graph consisting of a set of vertices
V = v1, . . . , vn and a set of m edges E ⊂ V × V that models a network with n nodes
and m links. A(vi, vj) is an adjacency matrix, sometimes also called a connection matrix
with rows and columns labeled by the graph vertices, with a value of 1 when the vertices
are adjacent (connected with an edge) or 0 otherwise.

Using a weight function, we obtained a weighted graph G from unweighted GU .
G is an undirected weighted graph defined with an ordered triplet G(V, E, ω), where
the third element of the triplet is a weight function ω : V × V → R+ ⋃

0 satisfying
ω(u, v) = ω(v, u) for all u, v ∈ V. The weighted adjacency matrix W of the graph is defined
as W(i, j) = ω(vi, vj). Since G is an undirected graph, we have W = WT . We used the
weighted function ω, which estimates all the maximal cliques to which an edge belongs.



Entropy 2023, 25, 1196 6 of 17

A clique is a subset of the vertices in a graph, also called complete subgraphs, where
all the vertices are adjacent to each other. A k-clique is a complete subgraph consisting of k
vertices all with pairwise connections, where k is any positive integer. A maximal clique is
a clique that cannot be extended by including one more adjacent graph vertex, meaning it
is not a subset of a larger clique.

Clique and maximal clique are defined below.
Let G = (V, E) be an undirected graph. Then, a clique C of graph G is a subset of the

vertices C ⊆ V such that whenever v1 and v2 belong to clique C, then the edge (v1, v2)
belongs to E.

A clique C of G is maximal if, for any x ∈ V \ C, C
⋃ ⊆ {x} is not a clique. A maximal

clique is a clique that cannot be extended by including one more adjacent graph vertices.
The number of vertices constituting a clique δ is called the size of the clique and is

denoted as ϑ(δ).
In this paper, we use Sk to represent the collection of all maximal k-cliques and

S =
⋃

k Sk to represent the collection of all maximal cliques.
We introduce a new weighted graph G, which contains the maximal-clique information

of the unweighted graph GU . G = (V, E, ω) is an undirected weighted graph, where the
weight function ω(vi, vj) is the sum of the sizes ϑ(δmax) of the maximal cliques δmax that
the graph vertex vi and vertex vj both engage with. ω measures how densely two vertices
are connected.

ω(vi, vj) = ∑
δ∈S

∑
vi ,vj∈δ

ϑ(δ) (7)

4.2. Density-Based Entropy Centrality

By requiring only the sum of information of the local maximal cliques, we encode all
the clique information adaptively and obtain a computationally inexpensive measure in
comparison with global measures. Links between the vertices in a graph that belong to the
more maximal cliques are more important. The importance of links is measured with link
strength. The link strength of an edge between vertices vi and vj is 1 when the vertices do
not belong to any maximal clique, and 1 + ω(vi, vj) otherwise:

W(vi, vj) = (1 + ω(vi, vj)) · A(vi, vj) (8)

Link strength is a localized vertices similarity index for assessing the similarity between
adjacent vertices. A larger link strength value means a stronger relationship between two
adjacent vertices. The calculation of link strength between adjacent vertices involves the
cliques containing both the adjacent vertices. To denote that two connected vertices are
more similar, although they do not belong to any clique, than two not connected vertices,
we increased the weight value ω by 1.

We used the entropy of the link strength of all the graph vertex neighbors to calculate
the density-based entropy centrality. The density-based entropy centrality CE of a graph
vertex v is

CE(v) = − ∑
vi∈N(v)

W(v, vi)

∑vj∈N(v) W(v, vj)
· log

W(v, vi)

∑vj∈N(v) W(v, vj)
(9)

where N(v) is the neighbors of the graph vertex v:

N(vi) = {vi|(v, vi) ∈ E} (10)

where (v, vi) is a link and E is the set of links of the graph. The proposed density-based
centrality reveals the locally most important vertices, which are at the center of a denser
subgraph compared with their surroundings.
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We defined the sum of weights of the edges, which connect a graph vertex with its
neighbor vertices, as clique centrality. The clique centrality CC of a vertex v is

CC(v) = ∑
vi∈N(v)

W(v, vi) (11)

Clique centrality finds the graph vertex with the greatest sum of link strengths as the
most important, although it is not at the center of a dense subgraph.

5. Evaluating the Efficiency of Density-Based Entropy Centrality for
Community Detection

The centrality value of each network node can be calculated using the proposed
density-based centrality. All the network nodes with centrality values greater than their
neighbors are the locally most important nodes. They can be used as seeds in any
community-detection method and the weights of network links determined via link
strength can also be used in any community-detection method.

For evaluation of the proposed centrality measure, we extended and used the label
propagation algorithm (LPA) because the LPA is a simple and fast community-detection
algorithm with a nearly linear time complexity [10]. Instead of selecting network nodes
randomly for label propagation used in LPA, we used the identified nodes with the high-
est local values of density-based entropy centrality as the seeds of communities. Then,
communities were created using label propagation.

We first calculated the cliques, the link strength for each link, and the density-based
entropy for each network node. Then, we detected the seeds and formed the cores of the
communities. We finished with community extension step using the LPA algorithm (see
Algorithm 1).

Algorithm 1: CDCE.
Data: graph GU(V, E) with a set of vertices V, and a set of edges E
Result: C is a set of core vertices
Identify all max cliques
Calculate link strength W([vi][vj] (Equation (8)) for all edges.
for all vi ∈ V:

Calculate CE[vi]. (Equation (9))
Sort vertices by importance.
Seed and core detection (G(V, E, W)).
Community extension-label propagation algorithm-LPA(G(V, E, W)).

The following three steps are necessary in the extended LPA method for community
detection using a density-based entropy centrality named CDCE.

Step 1: Calculate the density-based entropy centrality. First, we have to calculate the
influence power with the proposed density-based entropy centrality (Equation (9)).

Step 2: Identify the seeds of communities and the cores of communities. The vertices
are labeled using sequential integer values. The vertices in the center of the density
subgraphs on the density peaks have a higher density-based entropy centrality than the
others. The vertices with a higher density-based entropy centrality than all their neighbor
vertices are seeds. The seed node labels become the community labels. We have a seed
s and assign a seed’s neighbor vertex i to the same community as the seed if it has all
neighbor vertices with a smaller value of the density-based entropy centrality than vertex
i and seed s. Such vertices form, together with seed node, the core of community (see
Algorithm 2). The neighbor node of seed node s connected with the greatest link strength
maxLinkStrength among all links with the seed’s neighbors becomes a member of the core
of community s. All the neighbor vertices of node i connected with a link strength greater
than 0.9 · maxLinkStrength also form the same core of community i. Some networks, like
the football network described in the next Section, consist of vertices with the same or
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nearly the same degrees (number of neighbor vertices). In such networks, there are a lot
of core vertices.

Step 3: Identify communities using the LPA algorithm.

Algorithm 2: Core detection.
Data: Graph G(V, E, W) with a node set V, edge set E and link strength matrix

W[vi][vj]
Result: Vector commNo[v] with set of id of community to which each node v

belongs , and a vector containing core vertices core[v];
for all v ∈ V:

commNo[v] = −1;
for all v ∈ V:

for all vi ∈ N(v):
search the neighbor maxSim with max link strength W[v][vi]

greater = 1; for all vi ∈ N(v):
if !(CE[v] ≥ CE[vi] or (CE[v] < CE[vi] and
W[vi][v] > W[vi][vk]∀vk ∈ N(vi − v))):

greater = 0;
if greater = 1:

core[v] = 1; commNo[v] = v; if comm[maxSim] = −1:
core[maxSim] = 1; commNo[maxSim] = commNo[v];

else:
core[v] = 1; commNo[v] = commNo[maxSim];

for all vi ∈ N(v):
if LinkStrength[v][vi] > 0.9 ·maxLinkStrength:

core[vi] = 1; commNo[vi] = commNo[v];

Community labels of the core vertices around a seed are assigned to the seed’s com-
munity label. These community labels then propagate to neighbors of the community cores,
so that, at the end, each node is assigned one community label. All vertices with the same
community label form a community. The community labels propagate using the majority
principle of label propagation. Instead of counting links to different communities, we use
the sum of link strengths to different communities. Community label propagation is per-
formed in more iterations until all vertices have their community label. We do not choose
unlabeled vertices for label propagation randomly, but we choose the unlabeled vertices
with the highest density-based entropy centrality value for the propagation continuously,
with the aim to avoid different resulting partitions in multiple runs and to improve the
labeling quality in an computationally efficient label propagation.

For listing all the maximal cliques in sparse graphs, the node-ordering version of the
Bron–Kerbosch algorithm can be made to run in time O(dn3d/3), where d is the degeneracy
of the graph and a measure of its sparseness [40]. Computation of the vertices’ density-
based entropy centrality requires the neighbors of each node, which can be identified in
O(1) time using the adjacency matrix data structure. The time complexity of the calculation
of density-based entropy centrality is O(d2) (Equation (9)), where d is the average node
degree (the average number of the node’s neighbors). The time complexity of the calculation
of density-based entropy centrality for n vertices is O(n). Each node is initialized with
a unique node label in O(n) time. The sorting of important values can be performed
with the time complexity O(n · log(n)). Then, the link strength is calculated for all edges
(Equation (8)). The calculation of the maximal cliques can be computed in polynomial-
time [41]. Then, in the second step, the core vertices are identified in O(m) time, where m
is the number of edges. In the third step, the label propagation of the community central
candidates has near linear time complexity O(n). The total time complexity of the proposed
algorithm is O(m + n · log(n)).



Entropy 2023, 25, 1196 9 of 17

6. Experiments and Analysis

We tested the performance of the proposed density-based entropy centrality measure
on real network structures. All the real-world datasets used for testing are listed in Table 1.

The measures that are used most often for the evaluation of community-detection
methods are Normalized Mutual Information (NMI) [42] for the evaluation of synthetic
datasets with known resulting communities, the modularity Q [43] for evaluation of
the quality of the communities in the real-world datasets, and the F1-score measure for
assessing the performances of a community-detection algorithm for large datasets [44].

Table 1. Networks used in the experiments with the number of vertices, edges, and averaged
node degrees.

Networks Vertices Edges Average
Degree Description Reference

Karate 34 78 4.6 Zachary’s Karate Club [45]

Dolphins 62 159 5.1 Dolphins social network [46]

Polbooks 105 441 4.2 Books about US politics [47]

Polblocks 1490 19,062 12.8 Hyperlinks in blogs on US
politics [48]

Football 115 613 10.6 American college football [49]

Jazz 198 2742 27.7 Jazz musicians network [50]

Ecoli 423 519 2.4 Biological network [51]

Power Grid 4941 6594 2.7 The Western States Power
Grid in US [52]

PGP 10,680 24,340 4.5 Yeast PPI dataset [53]

DBPL 317,080 925,872 5.8 Co-authorship network [54]

YouTube 1,134,890 2,987,624 5.3 Video-sharing website
users [54]

Amazon 334,863 925,827 5.5 Who-Bought-This-Item-
Also-Bought

customers feature in
Amazon website [54]

6.1. Real-World Networks

We tested the performance of the community detection using a density-based entropy
on the twelve real networks listed in Table 1. The testing set of networks consisted of one
biological network, one technical network, and ten social networks.

The Zachary karate network contains 34 members of a university karate club. The links
model the interaction of the members outside the club. A conflict between an administrator
and an instructor led to the split of the club into two clubs.

The Dolphins’ dataset is a network of 62 dolphins living in New Zealand. The nodes
in the network represent the dolphins, and the links connect two dolphins with frequent
contact. There are two communities of dolphins.

US politics books is a social network of books about US politics. Each node in the
network represents a book, and a link between two books indicates that they are often
bought together. There are three communities in the network.

US political blogs is a network of Internet blogs on the subject of US politics with
partitioning of the graph into liberal and conservative bloggers.

The American College football network models American football games between
Division IA colleges during the regular season Fall 2000.

The Jazz network is the collaboration network among Jazz musicians.
We also tested our method on several networks without ground-truth community

partitions (see Table 1): the Ecoli network dataset, the Power Grid dataset represents the
topology of the Western States Power Grid of the United States, and the PGP network of
users using the Pretty-Good-Privacy algorithm for secure information interchange.
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We also tested the proposed centrality on some large-scale network datasets from the
SNAP datasets [54]: DBLP, YouTube, and Amazon (see Table 1). The DBLP network is a
co-authorship network where two authors of computer science papers are connected if
they publish at least one paper together. The ground-truth communities are defined by the
publication journal or conference because all the authors who published in a certain journal
or conference form a community.

YouTube is a popular video-sharing website, where the users can create groups
that other users can join. The user-defined groups are the ground-truth communities
of the network.

The Amazon network is based on Customers-Who-Bought-This-Item-Also-Bought
feature of the Amazon website. An undirected edge between two products denotes that the
products are co-purchased together frequently. The product category provided by Amazon
defines each ground-truth community.

6.2. Experimental Results

The application of the proposed method to the Zachary karate network is shown in
Figure 1. We found that the most central node has a label of 1 (density-based centrality
110) and that the second highest is node 34 (density-based centrality 108) and then node
33 (density-based centrality 95) (see Figure 1). The two identified communities model two
groups of members that are in conflict, with the result of splitting the club into two clubs.

Figure 1. Karate network and two identified communities via CDCE. Vertices with the same color
form a community. Numbers in circles are vertices’ labels, followed below by density-based centrality
values ·100.

In Figure 2, we note that there is a difference between the ranking of density-based
centrality measures of nodes in the Zachary karate club network and the other centrality
measures. We emphasize the difference between the results obtained with density-based
centrality and those obtained with clique centrality, although both measures have similar
heuristics. We can see that the most important vertices (1,34,33) have the highest density-
based entropy centrality values. However, other vertices also have higher density-based
entropy centrality values than other centrality values, including clique centrality. This
also allows for locally identifying the most important nodes in weakly connected parts
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of network and for forming not only strongly connected communities but also weakly
connected communities.

Figure 2. Karate network and node centrality values using different centrality measures: clique
centrality, density-based entropy centrality, degree, betweenness, eigenvector, communicability,
closeness, and information centrality.
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For the dolphin datasets, political books, and political blogs, all the real datasets were
uncovered with a resulting modularity better than that of the other considered methods
(see Table 2).

Table 2. The results shown here are the modularity (Q) obtained via the CDCE and the considered
methods (Infomap, LPA, and Louvian) and the number of uncovered communities when different
from the real number in brackets.

CDCE
without
Core Detection

CDCE Infomap LPA Louvian

Karate 0.372 0.372 0.4 0.37 0.42

Dolphin 0.490 0.527 0.52 0.5 0.52

Polbooks 0.457 0.52 0.52 0.5 0.52

Jazz 0.021 0.44 0.28 (7) 0.28 (2) 0.44 (4)

Polblogs 0.426 0.43 0.42 0.43 0.43

Football 0.57 0.577 0.6 0.57 0.6

Ecoli 0.717 (67) 0.717 (67) 0.71 (39) 0.68 (42) 0.88 (102)

PowerGrid 0.75 (586) 0.767 (563) 0.82 (483) 0.81 (479) 0.93 (40)

PGP 0.81 (960) 0.84 (357) 0.82 (1070) 0.81 (955) 0.88 (190)

Community detection of the American football dataset divides the football teams
into 12 groups or conferences, with more frequent intra-conference matches than inter-
conference matches. All the real communities are identified and shown in Figure 3.

Figure 3. The partition results obtained via the proposed method CDCE for football network. Vertices
with the same color form a community. Numbers in circles are vertices’ labels, followed below by
density-based centrality values ·100 . Core vertices are marked with the character ‘C’.

The Jazz network is separated into three real communities, and all three identified are
shown in Figure 4, where two overlapping communities (blue and violet) are connected
very densely and, thus, were difficult to uncover.
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Figure 4. The partition results for jazz network with three overlapped communities uncovered.
Vertices with the same color form a community. Numbers in circles are vertices’ labels, followed
below by density-based centrality values ·100. Core vertices are marked with the character ‘C’.

The results of Jazz communities prove that the proposed method and the use of
density-based entropy centrality enables the efficient identification of also overlapping com-
munities.

The improved label propagation method CDCE using the proposed centrality uncov-
ered all the real communities (also very overlapping) in the upper real-world datasets often
used as a test-bed for the evaluation of community-detection methods. We also evaluated
the efficiency on the large datasets below.

For assessing the performances of a community-detection algorithm for large datasets,
we used the F1-score measure proposed by Rossetti et al. [44]. The F1-measure obtained
with the proposed method compared with the values published by Rossetti et al. also
showed the efficiency of the proposed method for identifying the communities also in large
real-world networks (see Table 3).

Table 3. The F1-score obtained via the CDCE, Louvain, and Infomap for Amazon, DBPL, and
YouTube datasets.

Dataset/Method CDCE Louvain Infomap

Amazon 0.463 0.40 0.46

DBLP 0.57 0.26 0.45

YouTube 0.16 0.16 0.59

From the upper F1-scores, we can see that the use of the proposed centrality is efficient,
although cliques larger in size than four tend to be very sparse in large networks. The pro-
posed density-based entropy centrality emphasizes the power of the maximal cliques in
defining the central node and in community detection. The vertices in each community
tend to be interconnected densely and may form multiple cliques with large sizes. We
considered the sum of all the maximal sizes of these cliques and not only above some certain
threshold. The maximal cliques allowed for encoding all clique information adaptively,
based on whatever clique sizes are available.

We compared the results of CDCE using different centrality measures for small real-
world datasets often used as a test-bed for the evaluation of community-detection methods.
We used the density-based entropy centrality, clique centrality and degree centrality. Even
for these small datasets, the density-based centrality performed better than degree and
graph centrality, as shown in Table 4. It can be seen that the best results were obtained using
the density-based entropy centrality. Degree centrality can sometimes identify vertices that
are bridges between two or more communities, instead of the real centers of communities.
Identification of the wrong centers can lead to the identification of unreal communities.
Using degree centrality gives communities with the smallest modularity values for the
most considered dataset (see Table 4). Using graph centrality identifies centers, which give,



Entropy 2023, 25, 1196 14 of 17

as a result, communities with smaller modularity (for four datasets from six) than using
density-based entropy centrality.

Table 4. The results shown here are the modularity (Q) obtained via the CDCE using density-based
entropy centrality, clique centrality, and degree centrality.

CDCE Using
Density-Based
Entropy Centrality

CDCE Using Clique
Centrality

CDCE Using Degree
Centrality

Karate 0.372 0.371 0.37

Dolphin 0.527 0.52 0.5

Polbooks 0.52 0.52 0.52

Jazz 0.44 0.439 0.439

Polblogs 0.43 0.426 0.425

Football 0.577 0.577 0.553

The correlation of different centrality measures is shown in the correspondence graph
in Figure 5. Clique centrality is labeled “Clique”, density-based entropy centrality is labeled
as “DE”, and the members of the karate club are labeled with numbers 1 through 34.
In Figure 5, clique centrality is a central measure, correlating with degree centrality. We
demonstrate that the proposed centrality measure is correlated with local centrality (degree
centrality) and correlated weakly with the global node centrality measures. The local
nature of density-based entropy centrality is useful for identification of the most important
vertices, which are the seeds of communities, while the communities are local structures.

Figure 5. Correspondence analysis for centrality measures for karate club data.

6.3. Comparison with Other Methods

We tested our proposed method on real-world network datasets. We compared the
obtained results with the results published for the popular Louvain algorithm [55], which
optimizes the modularity measure; Infomap [56], since it is one of the best-performing
methods; and LPA [10]. Infomap focuses on trying to compress the list of vertices visited by
a random walker on a graph, with the aim to obtain a description of the random walk, which
is as short as possible. From Table 2, we can see that, for small networks with ground-truth
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communities, our method often performs better than other algorithms. For the real-world
networks without the ground-truth information (Ecoli, Power Grid, and the PGP dataset),
we can see that the modularity values of our partitions are lower than those obtained
with the Louvain, as CDCE does not optimize modularity as the Louvain algorithm does.
However, the modularity values obtained via our method were almost always equal or
better than those of the other two algorithms, i.e., Infomap and Label propagation (see
Table 2). The results in Table 2 show that CDCE is competitive in most of the considered
networks, with the other considered algorithms used for community detection. The results
of the CDCE method using only the seeds of communities without core detection show
lower modularity than those obtained with the whole proposed CDCE algorithm.

CDCE is particularly efficient for networks whose community centers have sparse
inter-connections between each other (e.g., PGP and Power Grid) and also for overlapping
communities (e.g., Jazz).

For large datasets, the F1-measure obtained with the proposed method and compared
with values published by Rossetti et al. [44] also shows the efficiency of the proposed
method for identifying communities also in large real-world networks (see Table 3). For
the Amazon and DBLP datasets, the highest F1-score was obtained using the proposed
method, while for the YouTube dataset, the same F1-score was obtained as that obtained
using the Louvain method.

7. Conclusions

This article introduces density-based entropy centrality. It is a local measure of node
centrality. The proposed density-based entropy centrality can be applied efficiently for
community detection, which is also efficient for the identification of dense and overlapping
communities. We identified the seed vertices, and then, the extended LPA method was used
to identify the final communities. The empirical evaluations on real-world networks show
that the used method identifies more ground-truth community members more efficiently
than the other considered methods. The use of density-based entropy centrality gave
better results than two other considered local centrality measures: clique centrality and
degree centrality.

The use of the centrality measure and a community-detection method for identifying
communities in specific real-world networks like Facebook can be our future research work.
The enhancement of a method for identifying dynamic communities can be a promising
direction of our research.
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