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Abstract: In bearing fault diagnosis, machine learning methods have been proven effective on the
basis of the heterogeneous features extracted from multiple domains, including deep representation
features. However, comparatively little research has been performed on fusing these multi-domain
heterogeneous features while dealing with the interrelation and redundant problems to precisely
discover the bearing faults. Thus, in the current study, a novel diagnostic method, namely the method
of incorporating heterogeneous representative features into the random subspace, or IHF-RS, is
proposed for accurate bearing fault diagnosis. Primarily, via signal processing methods, statistical
features are extracted, and via the deep stack autoencoder (DSAE), deep representation features
are acquired. Next, considering the different levels of predictive power of features, a modified
lasso method incorporating the random subspace method is introduced to measure the features
and produce better base classifiers. Finally, the majority voting strategy is applied to aggregate the
outputs of these various base classifiers to enhance the diagnostic performance of the bearing fault.
For the proposed method’s validity, two bearing datasets provided by the Case Western Reserve
University Bearing Data Center and Paderborn University were utilized for the experiments. The
results of the experiment revealed that in bearing fault diagnosis, the proposed method of IHF-RS
can be successfully utilized.

Keywords: heterogeneous features; random subspace method; bearing fault diagnosis; deep stack
autoencoder; lasso

1. Introduction

Rotating machinery performs an essential function in manufacturing. As a critical
element of rotating machines, the bearing often works in harsh environments and can
affect the entire machinery’s operation [1,2]. Uncertain faults that occur during bearing
performance affect the reliability and safety of the machine, as well as resulting in massive
financial losses and fatalities [3]. Therefore, fault diagnosis in rolling bearings has become
a significant area of study in modern industries.

In recent times, various fault diagnosis methods centered on machine learning have
been proposed for the determination of bearing faults [4]. Feature extraction and fault
pattern recognition are two common and fundamental processes for bearing fault diag-
nosis. During the feature extraction process, features in different domains, like the time
domain, frequency domain, and time–frequency domain, have been utilized to enhance the
fault diagnosis performance [5,6]. Time domain features can be conveniently extracted by
applying statistical calculations, including the mean, variance, standard deviation, etc. [7].
They are suitable for fault diagnosis as well as feature extraction from stationary signals.
The time domain features might demonstrate vulnerability to data distinction; in addition,
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they possess non-linearity, which may cause further difficulties in diagnosis in real appli-
cations [8]. Subsequently, frequency domain techniques are taken as alternative choices
to describe fault patterns in another respect, as they have a better ability to discover and
separate the frequency components. In this class, the most extensively utilized technique
is FFT, i.e., fast Fourier transform [9,10]. Thus, in the frequency domain, some features,
including the root variance of frequency, the frequency root mean square, and the frequency
center, have been extracted by FFT and engaged in bearing fault diagnosis. However, in
bearing fault diagnosis using the above methods, the major constraint is their inability to
manage non-stationary signals [11]. Moreover, features examining signals in both the time
and the frequency domains are known as time–frequency features, and they are viewed as
a potent practice for investigating non-stationary signals [8]. Short-time Fourier transform,
empirical mode decomposition (EMD), and wavelet packet transform (WPT) are three
commonly applied methods for extracting time–frequency domain features that have been
used in previous studies [12]. All the features can reflect faults in different aspects and
contribute to the final fault diagnosis results. Therefore, appropriate feature extraction
approaches and manual feature strategies are required to obtain these statistical features,
which require further expertise and domain knowledge. However, through signal process-
ing methods, the extraction of statistical features includes merely superficial information
about fault patterns, thus limiting the fault diagnosis performance [13]. To better represent
the fault patterns, deeper information about the faults should be considered in the feature
extraction process. Deep learning methods can capture more hidden knowledge within
hierarchical structures [14,15]. Generally, in bearing fault diagnosis, commonly considered
deep learning methods include the convolutional neural network (CNN), long short-term
memory network (LSTM), deep belief network (DBN), and stacked auto-encoder (SAE),
since deep-learning-based fault diagnosis methods use vibration signals directly as inputs
and automatically learn complex diagnostic information from the signals [16,17]. Zhang
et al., for instance, proposed a CNN-based network to process two-dimensional image
features in an attempt to discover the integral process of the CNN model in feature learning
and the classification of fault diagnoses [18]. Further, Qiao et al. developed a dual-input
time–frequency model on the basis of a network of LSTM for rolling bearing fault diagnosis,
which proved the LSTM method’s effectiveness [19]. Moreover, Shao et al. proposed a
unique approach labeled optimization DBN for the bearing diagnosis, whose effectiveness
was validated with simulation and experimental signal data [20]. Although these deep
learning methods have achieved remarkable diagnosis performance, they still usually
require the labeling of information in the learning process since, if the collected labeled
data are insufficient, limitations can develop in industrial applications. To address this
problem, using an autoencoder (AE) is a better choice since it automatically learns to self-
express representations in an unsupervised way. Additionally, by using some stacked AEs,
SAEs can extract high-level representational features by setting target values equivalent
to the inputs, and, comparably with other networks, they can be conveniently and highly
effectively trained. For example, in the SAE network, Liu et al. analyzed the effects of
several hidden layers and, in each hidden layer, the neuron number on the model perfor-
mance [21]. Similarly, Lee et al. mentioned that SAEs can extract highly complex features
and, consequently, can be considered more useful for practical applications when using
non-linear activation functions [22]. In brief, statistical and deep representation features
from diverse perspectives manipulate specific fault information, which also signifies the
existence of heterogeneity. However, these heterogeneous features’ complementarity has
been rarely explored in bearing fault diagnosis, leaving a large gap regarding the supple-
mentary augmentation of the diagnostic performance. Therefore, combining the novel idea
of statistical as well as deep representation features might be a better fusion strategy and a
favorable research idea in fault diagnosis. Hence, for conducting a successful bearing fault
diagnosis, we adopted such a fusing technique to wholly describe the fault information in
this study by combining statistical as well as deep representation features.
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During the process of fault pattern recognition, some machine learning methods, such
as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Decision
Trees (DTs) have been advantageously exploited in the fault diagnosis of bearings [23].
Nonetheless, using a single classification method has some consequences that impact the
bearing fault diagnosis performance, like low generalization capability caused by the
complicated states of bearing systems [24]. Thus, for dealing with such issues, ensemble
learning methods have been utilized, where bearing fault diagnostic decisions are devel-
oped from the consensus of several classifiers. Ensemble learning methods can be separated
into feature partitioning and instance partitioning methods for the aim of base learner gen-
eration. Recently, instance partitioning methods in fault diagnosis, for example, Bagging
and Boosting, have been broadly utilized [25,26]. However, the combination of features
extracted from different domains will result in a high-dimensional and feature-redundant
problem, which may lead Bagging and Boosting methods to perform poorly. Alternatively,
fault diagnosis feature partitioning methods, such as random subspace (RS), have proven
their superior advantage and capability to cope with the high-dimensional issue [27]. Conse-
quently, on the basis of the above discussion and for the objective of bearing fault diagnosis,
the RS method is employed in the present study. Nevertheless, redundant features may be
chosen into the same feature subset in RS, leading to the adverse effect on the precision of
base learners. Fortunately, one of the sparse methods, the Least Absolute Shrinkage and
Selection Operator (lasso) method, can filter out features from high-dimensional feature
sets by L1 regularization, improving the prediction performance [28,29]. Benefiting from
such excellent performance, this method has been favored in past research. For example,
Lateko et al. introduced Lasso into the designed method to achieve effective optimization
of learner parameters, and the experimental results confirmed the effectiveness of this
method [30]. Duque-Perez et al. improved the traditional Logistic regression classifier with
the help of lasso to enhance the model performance of bearing fault diagnosis, and the
experimental results confirmed its effectiveness [31]. However, these methods focus more
on utilizing lasso to optimize the basic classifier parameters without explicitly incorporating
the time domain, frequency domain, and deep representation features related to bearing
faults. To overcome these limitations, the RS method and the lasso method are combined in
this study to better declare the relationship between multi-domain features and different
fault types.

In the current study, a novel random subspace method, i.e., IHF-RS, is proposed by
fusing statistical and deep representation features for the precise diagnosis of bearing
fault. Firstly, heterogeneous features, including statistical features and deep representation
features, are extracted by statistical methods in time domain, frequency domain, and
time–frequency domain methods, as well as a deep learning method. Secondly, taking the
different predictive power of feature sets into account, a modified lasso is introduced into
the RS method for better base classifier construction. Finally, for the purpose of improving
the diagnosis accuracy of the bearing fault, a majority voting strategy is employed to
aggregate the outputs of various based learners. For verification of the proposed IHF-RS
performance, comprehensive experiments are performed on the datasets granted by the
bearing data center of Case Western Reserve University (CWRU) and Paderborn University.
The experiment results revealed improvements regarding fault diagnosis of bearings via
the proposed method, IHF-RS, in comparison with other methods.

The foremost contributions of the current study are summarized as follows:

(1) A bearing uncertain breakdown may result in massive financial losses, and an im-
peccable fault diagnosis is always needed. A framework to enhance bearing fault
diagnosis performance is proposed that can fully utilize the heterogeneous features
extracted from the bearing vibration data. In this framework, statistical features
that are rich in domain knowledge and deep representation features representing
high-level non-linear characteristics are incorporated and utilized to further improve
the accuracy of bearing fault diagnosis.
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(2) A novel method for integrating heterogeneous features into a random subspace for
conducting a fault diagnosis of bearings is proposed. With such a method, both statistical
features and deep representation features are extracted and integrated. Lasso and RS
are further combined to handle the problem caused by high-dimensional features. In
this way, fault features from different domains can be effectively fused, and the negative
impact caused by irrelevant and redundant features can be addressed appropriately.

(3) On the CWRU bearing dataset and Paderborn University bearing dataset, empirical
studies are performed, and the results attained from the experiments prove that the
proposed IHF-RS for bearing fault diagnosis is more effective and viable than other
commonly used methods.

The current study is further organized in the following form: In Section 2, the fault
diagnosis method, which includes the framework, data acquisition, feature extraction, and
model construction, is illustrated. Section 3 explains the experimental design exploiting the
CWRU bearing dataset and the Paderborn University bearing dataset. Section 4 depicts the
results of the experiments and the discussion. Lastly, a brief study conclusion and future
research directions are discussed in Section 5.

2. The Proposed Bearing Fault Diagnosis Method
2.1. Framework

In modern industries, the bearing is one of the most imperative elements of rotating
machinery. To avoid the possible incidence of bearing fault, it is necessary to check the
machine bearings’ condition in advance. As shown in Figure 1, the framework in this study
has three subsections:

(1) Data acquisition. The bearing’s vibration signal data with various faulty forms are
acquired.

(2) Feature extraction. Using signal processing methods, statistical features in the time,
frequency, and time–frequency domains are extracted. Additionally, further significant
deep features are extracted via DSAE.

(3) Model construction. To weigh different features, modified lasso is introduced, which
can help the RS method develop high-quality feature subsets. Then, to train base clas-
sifiers, the feature subsets are used. The final fault diagnosis outcomes are achieved
by fusing the outputs of each base learner with majority voting.

In practical cases, the process of implementing fault diagnosis by the model is offline;
that is, for newly acquired industrial data, the model directly obtains diagnostic results
using the trained parameters, which is in real time. Therefore, the proposed method can
achieve real-time fault diagnosis.

2.2. Data Acquisition

In this paper, we present data on rolling bearings obtained via a specific data acquisi-
tion system to build an appropriate bearing fault diagnosis model. In case of localized fault
existence, bearing rolling elements run over the fault periodically and generate a series of
impulses. The faulty bearing vibration signal has carrier frequencies that are the mechanical
structure resonance frequencies besides the fault site. The reciprocal of the period between
the impulses is known as modulating frequency, and healthy bearing signals do not have
this modulation. The fault in the bearing can be discovered by examining the modulation.

2.3. Feature Extraction

The fault existence in machinery parts, such as bearings, can hardly be classified
from the raw signal. Based on raw vibration signal data, time domain, frequency domain,
time–frequency domain, and deep domain features are extracted in this study.
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2.3.1. Time Domain Features

As an initial linear analysis method, time domain analysis can examine the charac-
teristics and structure information of the signals. Time domain features have adequate
information regarding a fault, which provides a basic description of the bearing condition.
Hence, as presented below in Tables 1 and 2, in this study, some time domain features are
carried out, including square root of amplitude (SRA), root mean square (RMS), shape
factor (SF), impulse factor (IF), skewness value (SV), etc. [7,32]. In the table, xi means
the i-th vibration signal value in the vibration signal sequence, and N is the length of the
vibration signal sequence.
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Table 1. Time domain feature definitions.

Formula Formula

Xmean = 1
N

N
∑

i=1
xi Xmav = 1

N

N
∑

i=1

∣∣xi
∣∣

Xrv =

(
1
N

N
∑

i=1
(xi − Xmean)

2)1/2
Xmax = max(xi)

Xmin = min(xi) Xrms =

(
1
N

N
∑

i=1
x2

i

)1/2

Xsra =

(
1
N

N
∑

i=1

√
|xi|
)2

Xkv =

(
1
N

N
∑

i=1
( xi−Xmean

Xrv
)

)4

Xsv =

(
1
N

N
∑

i=1
( xi−Xmean

Xrv
)

)3
Xppv = Xmax − Xmin

Xc f = max(|xi|)/Xrms Xi f = max(|xi|)/Xabs

Xm f = max(|xi|)/Xsra Xk f = Xkv/X4
rms

Xsh f = Xrv/Xabs Xsk f = Xkv/X3
rv

Table 2. Description of time domain features.

Features Description Features Description

Xmean Mean of time domain signals Xmav

Mean of absolute
values of time
domain signals

Xrv
Standard deviation of time

domain signals Xmax
Maximum value of
time domain signal

Xmin
Minimum value of time

domain signal Xrms
Root mean square of
time domain signal

Xsra
Square root of amplitude of

time domain signal Xkv
Kurtosis of time
domain signal

Xsv
Skewness value of time

domain signal Xppv
Peak-to-peak value of

time domain signal

Xc f
Ratio of maximum absolute
value to Mean squared error Xi f

Ratio of maximum
absolute value to

absolute value

Xm f

Ratio of maximum absolute
value to square root

of amplitude
Xk f

Ratio of kurtosis to
the 4th power of the

root mean square

Xsh f
Ratio of standard deviation to

absolute value Xsk f

Ratio of kurtosis to
the 3rd power of the
standard deviation

2.3.2. Frequency Domain Features

Frequency domain features explore lots of valuable information that cannot be identi-
fied by time domain features [33]. Previously studies have broadly utilized FFT, i.e., Fast
Fourier Transform, to transform the signals in the time domain to the frequency domain.
Thus, frequency domain features based on FFT are utilized in this paper. For instance,
kurtosis factor of frequency (KFF), skewness factor of frequency (SKFF), kurtosis value of
frequency (KVF), skewness value of frequency (SVF), mean of frequency (MEANF), mini-
mum of frequency (MINF), and maximum of frequency (MAXF) are extracted in this paper.
The details are shown below in Tables 3 and 4, wherein yl is the l-th vibration signal value
in the vibration signal sequence, and L shows the length of the vibration signal sequence.
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Table 3. Frequency domain features definitions.

Formula Formula

Xmean f =
1
L

L
∑

l=1
yl Xrv f =

(
1
L

L
∑

l=1

(
yl − Xmean f

)2)1/2

Xmax f = max(yl) Xmin f = min(yl)

Xrms =

(
1
L

L
∑

l=1
y2

l

)1/2

Xsv f =

(
1
L

L
∑

l=1
(

yl−Xmean f
Xrv f

)

)3

Xkv f =

(
1
L

L
∑

l=1
(

yl−Xmean f
Xrv f

)

)4
Xsk f f = Xkv f /X3

rv f

Xk f f = Xkv f /X4
rms f X f c =

L
∑

l=1
( fl · yl)/Xmean f

Xrmsw f =

(
1
L

L
∑

l=1

(
f 2
l · yl

)
/Xmean f

)1/2

Xrvw f =

(
1
L

L
∑

l=1

(
fl − X f c)

2 · yl

)
/Xmean f

)1/2

Table 4. Description of frequency domain features.

Features Description Features Description

Xmean f Mean of frequency Xrv f
Standard deviation

of frequency

Xmax f Maximum of frequency Xmin f Minimum of frequency

Xrms
Root mean square

of frequency Xsv f
Skewness value

of frequency

Xkv f Kurtosis value of frequency Xsk f f
Skewness factor

of frequency

Xk f f Kurtosis factor of frequency X f c Gravity frequency

Xrmsw f
Mean square deviation

waveform factor Xrvw f
Standard deviation

waveform factor

2.3.3. Time–Frequency Domain Features

Signals produced by the momentary vibrations from rolling bearings are always non-
stationary due to structural faults. In indicating time-varying signals, the time–frequency
approach is a useful method as it is more appropriate for non-stationary signals, as time
or frequency domain analysis alone is not enough to provide thorough information on
these particular signals [34]. Based on signal decomposition, different kinds of Time–
Frequency Analysis (TFA) have previously been employed to examine bearings conditions,
such as wavelet package transforms (WPTs), short-time Fourier transform (STFT), and
empirical mode decomposition (EMD) [12,35–37]. WPT has the potential to find defect-
induced transient elements entrenched inside the vibration signal of the bearing, showing
its strength in discriminative feature extraction [38,39]. Thus, WPT is adopted to extract
time–frequency features in this paper.

Usually, inside several particular frequency bands, fault impulses will be assembled
and show fault features along with local energy absorption. So, for feature learning, these
informative sub-bands are significant. By calculating the average energy distribution
for each sub-band, the fault-relevant frequency band can be chosen. From the original
vibration signals, using the WPT 2j, final leaves of wavelets can be attained with j tree
depth. The node energies of 2j final wavelet packets are computed and normalized as the
time–frequency domain features.
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2.3.4. Deep Stack Autoencoder-Based Features

AE method is valuable in locating the raw data representative features, as it can
diminish vibration data dimension well and mine the hidden information from high-
dimensional features [40]. Normally, an autoencoder is a sort of unsupervised learning and
includes three layers. The main process of an AE is illustrated in Figures 2 and 3; the input
layer, output layer, and hidden layer are portrayed.
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The SAE is generally attained by stacking some AEs [41,42]. In detail, an encoder and
a decoder exist in an AE network [43]. The encoder maps the input data into a hidden
representation, whereas the decoder reconstructs input data from hidden representations.
Specifically, the unlabeled input dataset X ∈ RN . The encoder layer can squeeze X into the
representative feature Y ∈ RM(M < N); furthermore, the function is exploited as follows:

Y = f (W(1)X + b(1)) (1)
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where W(1) and b(1) are size M×N weight matrix and bias vector of size M, correspondingly.
f (x) is the activation function of AE network. Subsequently, representative feature Y is
rebuilt into the vector X̂ by the decoder layer in this manner:

X̂ = f (W(2)Y + b(2)) (2)

where W(2) along with b(2) are prescribed similarly as W(1) and b(1), correspondingly. The
key objective of AE network training is to obtain θ =

{
W(1), W(2), b(1), b(2)

}
by decreas-

ing reconstruction error involving X and X̂. From the stacked encoding layers, deep
representation features can be acquired once all layers have been trained.

2.4. Model Construction

One of the significant phases in bearing diagnosis for fault identification is that high-
dimensional features extracted from raw signals in multi-domains often include unneces-
sary interconnected components. The base classifiers’ performance is negatively influenced
by this, which may cause an inappropriate diagnostic output of the ensemble methods in
the future. The feature subsets are randomly selected in the RS method instead of utilizing
the complete feature set to assure the base classifiers’ differences [44]. Although there will
be more chances of selecting relevant and redundant features in case the feature sampling
process is fully random, this will result in generating deprived base classifiers, which
will further result in a deprived ensemble. So, in the feature subset construction phase,
it is essential to regard the significance of each feature to make sure that, with greater
probability, significant features can be chosen compared to redundant features. To choose
high-quality feature subsets for training each base classifier, a semi-random subspace tech-
nique is presented in this paper. Hence, this will enhance the accuracy of base classifiers
while conserving their diversity at the same time. For attaining this objective, lasso entailing
a contraction estimation method is exploited in this study to make enhancements to the RS
method. Specifically, the lasso method is employed to adaptively select reliable features for
different feature subspaces. In this way, the process of feature selection is embedded in the
optimization process, which means that for the proposed method, the selection of reliable
features is adaptively selected based on the optimization objective. Tibshirani suggested the
lasso method, which assists in the enhancement of classification performance by obtaining
a sparse way out of high-dimensional feature space and concurrently avoiding overfit-
ting [28]. The class label and features are taken as dependent and independent variables,
and afterward, every single variable coefficient is calculated using linear regression. With
penalty parameter adjustments, several coefficients can shrivel to zero, and more correlated
features for the class label can be recognized and chosen. Unlike the conventional feature
selection method, which assesses every single feature in isolation, in the model selection
process, the lasso estimation shrinks the overall universal feature space [29].

In Figure 4, the process of the proposed method is presented, based on three major
steps. The initial step is about feature subspace generation. The next step is base classifier
training for the ensemble. The final step is the combination of different base learner outputs.

Initially, in the first step, a predefined number of feature subsets are formed after
splitting the original feature set by regulating significant parameters, i.e., penalty parameter
λ and subspace rate r of lasso estimation. Where penalty parameter λ influences the
feature set shrinkage, r decides each partitioned feature subset ratio to the universal feature
set. Using lasso estimation, the weight of each feature is decided. The theory is further
explained in this way. For obtaining the model, the addition of the squared residuals should
be reduced by lasso, utilizing summation of the regression coefficients to constrain the
absolute value to be smaller than a constant.
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In a given set of data D = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}T , where vector space
pattern is stated as xi ∈ Rm, xi = {x1,i, x2,i, . . . , xc,i, . . . xm,i} means features, m is feature
number, and the label is represented by yi, whereas the number of instances is denoted by
n. Since in the regression setup, the observations are independent, or the labels are indepen-
dently and provisionally given c the feature xc,i. Furthermore, xc,i can be standardized as
1
n ∑n

i=1 xc,i = 0, 1
n ∑n

i=1 x2
c,i = 1. Accordingly, the lasso estimate is defined by the following:

argmin
γ

{
n

∑
i=1

(yi −
m

∑
c=1

(γcxc,i)
2

}
+ λ

m

∑
c=1
|γc| (3)

When the λ value is suitably large, so highly correlated variables can be discovered
and retained, it will root the shrinkage of the solution to 0, with several coefficients probably
equivalent absolutely to 0. Here, γc defines the regression coefficient of the feature xc, and
λ defines penalty parameter, which administers the shrinkage degree. Global feature set
T series will be generated once λ value is comparatively smaller, and its limitation will
be eradicated. Subsequently, the determination of feature weight can be illustrated as
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follows: Initially, degree of correlation between xc feature and class label yi is produced
by employing lasso estimation. Afterward, a set of significant scores can be given for each
feature, which can be represented as {γ1, γ2, . . . γc, . . . γm}. Moreover, the weight of the
feature is then decided by the following:

Wc =
|γc|

∑
m
c=1|γc|

(4)

After the feature weight determination, from the original set of data D, S sub-datasets
are randomly generated. For the feature xc, once the feature weight wc is obtained, it can
be randomly extracted with its feature weight and the subspace rate r. The weights
of all features can be represented as w = {w 1, w2, · · · , wc, · · · , wm}. Let us assume
number of subspaces to be s, and semi-random feature subspace can be depicted like
Lj

sub =
{
(xj

1, y1), . . . , (xj
i , yi), . . . , (xj

n, yn)
}

, 1 ≤ j ≤ s. A set regarding feature subspaces{
L1

sub, L2
sub, . . . , Lj

sub, . . . , Ls
sub

}
can be attained by repetitively extracting the features for

every subspace. The key significant features that have greater probability can be extracted
from the feature subset. Additionally, by randomly selecting the features, assortment of the
base learners is raised. Thus, classification accuracy can be notably enhanced. Thereafter,
in the next step, based on the sub-datasets construction, selected base learners are trained.
In this study, SVM is chosen as a base learner since it has been verified as the best classifier
in bearing fault diagnosis [25,45,46]. Moreover, in complex classification models, SVM
works better and has the quality of handling non-linear data. Normally, SVM minimizes
generalization error by minimizing structural risk. In a high-dimensional feature space,
non-linear input vectors in SVM with a kernel function are mapped.

Given training set instances D = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}T and
xi = {x1,i, x2,i, . . . , xc,i, . . . , xm,i}, here, feature dimension size is denoted by m, and
i ∈ {1, 2, · · · , n} indicates vector space pattern. For minimizing the probable rate of
misclassification, SVM strives to seek a hyperplane linear classifier f (x), characterized as
f (x) = sgn(wTx + b). In SVM, looking for the most favorable classifier f (x) is similar to
finding solution for a convex quadratic optimization problem:

max
w,b

1
2‖w‖

2 + C
n
∑

i=1
ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi(ξi ≥ 0, i = 1, . . . , n)
(5)

where C indicates regularization parameter. On the training set D, it is utilized to stabilize
classifier’s complications and classification accuracy. Above quadratic problem is usually
answered via its twofold conception. With a non-linear kernel function shift of the engaged
vector inner-product, linear SVM can be transformed into further alterable non-linear SVM.
Ordinary kernel functions are comprised of polynomial, linear, sigmoid, and radial bases.

Further, in the third step, the objective is to cumulate each base learner classification
result to reduce the classification errors. Many researchers utilized the majority voting rule,
which is considered a useful aggregation method. Based on its advantages, in this study,
we also applied it to cumulate the base learner results.

Given a base learner set {Ci(x), 1 ≤ i ≤ S}, the majority voting rule is expressed
as follows:

C∗(x) = sgn

{
∑

i
Ci(x) − S− 1

2

}
(6)

The pseudo-code of IHF-RS algorithm is presented below (Algorithm 1):
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Algorithm 1. Pseudo-code of IHF-RS algorithm.

Semi− RS(D, λ, r, S, L)
Input : Dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}
Lasso penalty parameter λ;

Random subspace rate r;
Baseleaner number S;
Baseleaner L.

Output : H(x)
Processing :
f or c ∈ {1, 2, . . . , m} do

γc = grouplasso(D, λ)

wc =
|γc|

Σm
c=1|γc|

end f or
f or s ∈ {1, 2, . . . , S} do

Ds = RS(D, r, w)
hs = L(Ds)

end f or
H(x) = argmaxy∈YΣS

s=11(y = hs(x))

3. Experimental Design
3.1. Experimental Dataset

For the validation of the proposed method in the current paper, two signal datasets
regarding bearing vibration given by the CWRU Bearing Data Center and Paderborn
University were utilized. For the CWRU bearing dataset, the dataset was obtained with
bearing accelerometer sensors during multiple bearing conditions and functional loads.
The test rig apparatus is given in Figure 5, which was utilized to obtain the vibration data
with the help of an electric motor, a torque transducer/encoder, and a dynamometer. For
testing purposes, three sorts of bearing faults, i.e., outer race fault, ball fault, and inner race
fault, from a diameter of 0.007 to 0.028 inches, were introduced by an electro-discharge
apparatus. From healthy and faulty bearings, the vibration signals were obtained on the
test rig at 12 kHz and 48 kHz sampling frequencies around 10 s. The test rig functioned with
four distinct loads of 0, 1, 2, and 3 hp at a speed of 1797–1720 Rpm. More comprehensive
details concerning the test set can be found in [47]. For the Paderborn bearing dataset, the
dataset was given by Christian Lessmeier from Paderborn University. The test rig consists
of five key components, such as the electric motor, flywheel, testing module, measurement
shaft, and load motor, which are shown in Figure 6. In this dataset, 6 normal bearing sets
as well as 26 damaged bearing sets are collected, plus both the vibration signal and the
current signal were collected for 4 s at 64 kHz. The details of the dataset can be found
in [48]. In this study, only six sets of them, including the inner fault bearing set, the outer
fault bearing set, and the normal sample set were selected.

For evaluating the performance of the proposed methods in this paper, the CWRU
bearing vibration dataset was divided into four subsets that are symbolized with VD_0,
VD_1, VD_2, and VD_3. Using drive-end bearings, these specific subsets are obtained at
a sampling frequency of 48 kHz during four dissimilar motor loads of 0 hp, 1 hp, 2 hp,
and 3 hp, respectively. Ten dissimilar bearing states are simulated in the present study,
comprising a regular condition, a ball fault (BF), an outer fault (OF), and an inner fault
(IF). The complete signals are split into uninterrupted intervals every 1024 points without
any overlapping. The purpose was to feed classifiers by generating more instances. In
Table 5, more details about the experimental datasets are mentioned, in which “007”, “014”,
and “021” show that the diameters of the faults are 0.007, 0.014, and 0.021 inches. In the
Paderborn bearing dataset (Pdata), three inner fault types of samples, two outer fault types
of samples, and the normal samples with 64 kHz resolution are selected from the dataset
every 1024 points without overlap. To verify the proposed scheme, the dataset is divided
into training datasets (90%) and test datasets (10%).
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Table 5. The Experimental Datasets.

Datasets Description Number of Classes Number of Instances

VD_0
Normal, BF007, BF014,

BF021, IF014, IF021, OF007,
OF014, OF021

9 9 × 200

VD_1
Normal, BF007, BF014,

BF021, IF007, IF014, IF021,
OF007, OF014, OF021

10 10 × 200

VD_2
Normal, BF007, BF014,

BF021, IF007, IF014, IF021,
OF007, OF014, OF021

10 10 × 400

VD_3
Normal, BF007, BF014,

BF021, IF007, IF014, IF021,
OF007, OF014, OF021

10 10 × 400

Pdata
Normal, Inner Fault 1,

Inner Fault 2, Inner Fault 3,
Outer Fault 1, Outer Fault 2

6 6 × 1000

From instances of 10 dissimilar fault types in VD_3 of the CWRU bearing dataset,
Figure 7 depicts waveforms related to the time domain along with their subsequent fre-
quency spectra. Even so, because of the original vibration signals’ incredibly high dimen-
sionality, it is further required to process and calculate the signal features. Based on the
proposed method, from the time domain (F1), 16 features are extracted, whereas from the
frequency domain (F2), 12 features are extracted. While 25 features are attained by utilizing
WPT with the mother wavelet for time–frequency domain features (F3) for breaking the
original signals down at the fifth level. Thus, from the time, frequency, and time–frequency
domains, the total extracted features by the signal processing methods are 60. The deep
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representation features extracted through DSAE (F4) are 64. Specifically, the layer number
of the SDAE is 7, and the detailed network parameter settings are 1024, 700, 300, 64, 300,
700, and 1024. Adam is selected as the optimizer with a learning rate of 0.001, and the batch
size is set to 256, training for 200 batches. Meanwhile, Dropout and Batch Normalization
are adopted to defeat the overfitting problem during deep representation feature extraction.
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3.2. Performance Evaluation Criteria

In this paper, for evaluating the performance of the proposed method, a commonly
used metric, i.e., average accuracy (ACC), is utilized. For a sample to be classified with a
given classifier, four different types of conceivable results exist, which are True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). In these results,
bearing faulty instances can be treated as a positive class and the others as a negative class.
The accuracy of commonly used indicators is defined as follows:

AverageAccuracy =
TP + TN

TP + FP + FN + TN
(7)

3.3. Compared Methods

In our experiments, the given proposed method IHF-RS is compared to the SVM, MLP,
and four other popular ensemble methods. These methods are Bagging, Adaboost, and
the standard RS method. For a valid comparison, we set the base learners of Bagging,
Adaboost, and the RS method as the SVM. The rate of the RS method and the penalty
parameter of l2,1 norm regularization are significant parameters of this method. The details
about the parameters used in the experiments are listed in Table 6. It must be noted that the
features that can achieve optimal accuracy are considered reliable features of the compared
models and are adopted.
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Table 6. Details of the parameters used in the experiments.

Methods Parameters

SVM Kernel: ‘rbf’. Gamma: 1/number of features. Penalty: 1.0.
Bagging Number of base classifiers: 10. Base classifier: SVM.

Adaboost Number of base classifiers: 10. Base classifier: SVM.

Random Subspace Subspace ratio: (0.1, 0.3, 0.5, 0.7, 0.9). Number of base classifiers:
10. Base classifier: SVM.

IHF-RS Penalty: (0.0001, 0.001, 0.01, 0.1, 1). Subspace ratio: (0.1, 0.3, 0.5,
0.7, 0.9). Number of base classifiers: 10. Base classifier: SVM.

3.4. Experimental Procedure

For verification of the proposed method, IHF-RS, all the comparative experiments are
conducted ten times with 10-fold cross-validation, for a total of one hundred experiments.
In a cross-validation, nine folds are taken for training, whereas the remaining fold is
left for testing. For classifying the testing set, the highest average accuracy parameter
settings selected from training were selected. During this process, we ensured that the
distribution of the training data was the same as that of the test data, which means that the
training data covered all possible types of faults. The number of selected features was fixed
throughout the entire process. By calculating the classification accuracy and mean of these
100 experiments, the ultimate results were obtained, which makes the results statistically
sound. In RS, the regularization coefficient and learning rate are imperative parameters.
The experimental flow is illustrated in Figure 8. The proposed method is fully capable
of generalizing it to solve multiple fault diagnosis tasks. Specifically, by combining the
lasso method and the RS method, we can adaptively select reliable fault features from
multi-domains, and train multiple basic classifiers with multiple fault data to obtain their
respective multi-classification results. Finally, we can use the major voting mechanism to
achieve integration, thereby obtaining accurate multiple fault recognition results.

3.5. Experimental Results

The mean accuracy calculated by using the result of tenfold cross-validation with
10 times the methods is chosen as the evaluation criteria. The mean accuracy of the proposed
and comparison methods is presented in Table 7, and the best results are highlighted.
From Table 5, it is depicted that practically every single mean accuracy optimum result is
performed by the proposed method, i.e., 98.37% (VD_0), 96.30% (VD_1), 95.95% (VD_2),
95.83% (VD_3), and 98.51% (Pdata), respectively. Meanwhile, it is clearly visible that
these results are better than the other methods compared. Bearing fault diagnosis method
performance degradation occurred due to the increased load of the bearing system, and the
possible reason for this is that an increasing load makes the test rig highly complex [49].
Consequently, under such operating situations, the datasets may comprise some noisy
data. Accordingly, the proposed method demonstrates better steadiness compared to the
other methods. Moreover, the Adaboost method exhibits poorer performance than other
ensemble methods. Thus, it is clearly sensible to assert that there exists an overfitting issue
in the Adaboost training process that is caused by the noise instances. Hence, incorporating
heterogeneous features improves the prediction accuracy, and the proposed method is
appropriate for implementation. In brief, the results based on the experiment revealed that
our proposed method can be lucratively utilized for fault diagnosis of bearing.
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Table 7. Comparison methods’ accuracy (mean).

Methods VD_0 VD_1 VD_2 VD_3 Pdata

SVM 0.9374 0.9200 0.8804 0.8550 0.9376
Bagging 0.9648 0.9469 0.9230 0.8740 0.9533

Adaboost 0.9529 0.8993 0.8909 0.8563 0.9421
Random subspace 0.9752 0.9576 0.9524 0.9510 0.9803

IHF-RS 0.9837 0.9630 0.9595 0.9583 0.9851

4. Model Analysis
4.1. Evaluation of the Incorporated Features

For assessing the significance and usefulness of diversified feature subsets, a corre-
lation analysis was carried out using features from the time domain, frequency domain,
time–frequency domain, and DSAE. For verifying the effectiveness of different feature
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subsets, Figure 9 illustrates the classification accuracies of different domain features. These
include time domain features (F1), frequency domain features (F2), time–frequency do-
main features extracted by WPT (F3), deep representative features extracted by DSAE (F4),
and their combinations [50]. Furthermore, it is visible from Figure 10, that in statistical
features, a resilient internal correlation exists, while in deep representation features ex-
tracted by DSAE, it is low. This reveals the effectiveness of the DSAE approach in coping
with redundant and interrelated features. Regarding distinct features, it is depicted in
Figure 10, that from time domain and frequency domain features, the prediction results of
time–frequency domain features are almost better. Besides, compared with the statistical
features, the prediction results produced by deep representation features are preeminent.
From the accuracies of different datasets, it can be comprehended further that the increasing
bearing system load results in bearing fault diagnosis methods performance degradation.
Such as the time domain feature rates of 5.90%, 17.52%, and 22.52%, and the frequency
domain feature prediction accuracy in inconsistent loads of 16.43%, 18.32%, and 22.11%,
comparatively lower than VD_0. During these operating circumstances, some noisy data
may prevail in the dataset. However, deep learning features reduced prediction accuracy
by 6.27%, 8.63%, and 2.56% in comparison with VD_0. Comparatively, with the statistical
features, the information expression enhancement degree is considerably impacted by the
noise. Therefore, deep representation feature extraction of DSAE features is steadier, and
the information description is extra thorough and inclusive.
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Additionally, according to Figure 10, most of the methods have attained optimum
accuracies under combined features, which shows that they can further improve each
other’s performance and complement each other. In VD_0, the average performance of
combined features is improved by 8.34% compared with F1, 8.81% compared with F2,
2.79% compared with F3, and 2.35% compared with F4. In bearing fault diagnosis, such
significant enhancements in accuracies confirm and verify the usefulness of the fusing
features. Moreover, compared with the usual random subspace, each dataset’s performance
is improved with the method by 0.85% (VD_0), 0.53% (VD_1), 0.71% (VD_2), 0.73% (VD_3),
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and 0.48% (Pdata), respectively. However, not all methods are appropriate for combined
feature prediction. The prediction results of Adaboost on combined features declined as
compared to the deep representative features, either because of the noise or the overly
large feature dimensions. Overall, the combination of features has a positive effect on
bearing fault diagnosis, and the proposed method can rationally solve the correlation and
redundancy issues among features.
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4.2. Evaluation of the Parameter

The proposed method has a superlative diagnostic effect prediction for combined
features, but its performance fluctuates in various parameters. In the current study, the
learning rate parameter is selected, whose influence on the accuracy is shown in Figure 11.
From the view of the following datasets, the proposed method attained preeminent accuracy
with ratio = 0.5 on VD_0, ratio = 0.7 on VD_1, ratio = 0.7 on VD_2, ratio = 0.7 on VD_3,
and ratio = 0.7 on Pdata. It can be observed that the performance of the proposed method
gradually rises and then falls with different ratio values ranging from 0.1 to 0.9. This is a
sign that indicates that redundant features may be present in the original feature space [51].
Likewise, the highest mean accuracy was achieved with ratio values equal to 0.5 and 0.7.
The reason is that the import features are selected first by the structured sparsity learning
model in this method. It is not easy to identify the exact optimum values of this parameter,
as different optimum values are obtained on different datasets. Yet, it is clear that the
performance of the proposed method is probably affected by the ratio. Generally, it can be
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summarized that the proposed method’s effectiveness for bearing fault diagnosis can be
significantly enhanced if the engaged parameters are tuned properly.
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4.3. Confusion Matrix

To further validate the effective performance of the proposed method in bearing fault
diagnosis, we visualized the diagnostic results of the proposed method and the comparison
methods on the Pdata dataset. The details of the confusion matrix are shown in Figure 12.
It can be observed that the proposed method has superior performance in fault recognition
accuracy for various categories compared to other comparative methods. In addition,
in terms of identifying two types of outer faults, the proposed method is significantly
superior to other methods. The reason should be that the two types of fault patterns are
relatively similar, and it is necessary to fully integrate multi-domain features to achieve
accurate differentiation.
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5. Conclusions and Future Research Directions

For enhancing the mechanical system’s performance and reliability in rotary machin-
ery, the diagnosis of faults in the rolling component bearing is very essential, since the
failure of bearings is one of the most recurring reasons for breakdowns in rotary machinery.
Thus, a novel approach that incorporates heterogeneous features into the random subspace
method is suggested for bearing fault diagnosis in the present study. In this suggested
method, both statistical features and DSAE-based deep representative features are extracted.
Then, a modified lasso that can guide the feature fusion is introduced in the RS method
to handle the issue of high dimensionality and further enhance the performance of the
fault diagnosis. For substantiating the method’s efficacy assimilated with existing methods,
experiments are conducted on the CWRU bearing dataset and the Paderborn University
bearing dataset. It is also further revealed that the proposed method adeptly attains finer
accuracies, illustrating the superiority of the proposed method in bearing fault diagnosis.

It’s vital to state that the proposed method has resulted in positive results with im-
proved accuracy, even though some further directions for future research exist. Firstly,
in this paper, the proposed framework requires verification on vast and assorted bearing
datasets to validate the generalization performance further. Secondly, although the lasso
is introduced in the semi-random subspace method in this paper, other suitable methods
can also be used for effective feature subspace construction. Thirdly, to cope with the
high-dimensional problem, as the proposed method is intensive computationally, parallel
computing methods need to be further discovered to solve such difficulties in future stud-
ies. Fourth, we will further explore the situation where training data only contains partial
fault-type data in future research work and combine more advanced technology to solve
this problem. More advanced technologies will be considered to solve this problem, such
as transfer learning.
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