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Abstract: Stochastic modeling of biochemical processes at the cellular level has been the subject of
intense research in recent years. The Chemical Master Equation is a broadly utilized stochastic discrete
model of such processes. Numerous important biochemical systems consist of many species subject to
many reactions. As a result, their mathematical models depend on many parameters. In applications,
some of the model parameters may be unknown, so their values need to be estimated from the
experimental data. However, the problem of parameter value inference can be quite challenging,
especially in the stochastic setting. To estimate accurately the values of a subset of parameters, the
system should be sensitive with respect to variations in each of these parameters and they should
not be correlated. In this paper, we propose a technique for detecting collinearity among models’
parameters and we apply this method for selecting subsets of parameters that can be estimated from
the available data. The analysis relies on finite-difference sensitivity estimations and the singular
value decomposition of the sensitivity matrix. We illustrated the advantages of the proposed method
by successfully testing it on several models of biochemical systems of practical interest.

Keywords: stochastic simulation algorithm; stochastic biochemical systems; sensitivity analysis;
finite-difference methods; parameter subset selection; estimability analysis

1. Introduction

Mathematical and computational modeling have become widespread in the study of
complex dynamical systems, particularly in investigating cellular processes and biochemi-
cal networks [1]. Frequently, mathematical modeling of chemical reaction systems relies
on deterministic differential equations and mass action kinetics. However, biochemical
systems in the cell are intrinsically noisy [2,3], and thus stochastic models must be em-
ployed to account for the random fluctuations observed experimentally, especially when
some species have low molecular counts [4,5]. One of the most popular stochastic discrete
models of biochemically reacting systems is the Chemical Master Equation [6,7]. This
model is utilized to describe the dynamics of systems for which molecular populations of
some species are low or noise is significant. It assumes that the system state is a Markov
process [6]. It is generally impracticable to solve this model analytically, except for very
simple systems.

Gillespie developed the Stochastic Simulation Algorithm (SSA) [8,9], a Monte Carlo
technique for simulating statistically exact realizations of the stochastic process whose
distribution is governed by the Chemical Master Equation. The random time change
representation of the stochastic process depicting the system state was introduced in [10].
Based on this representation, Rathinam et al. [11] designed an exact Monte Carlo method
for the Chemical Master Equation, the Random Time Change algorithm. Other simulation
strategies for stochastic models of biochemically reacting systems were presented in the
literature (for references see, e.g., [12–15]).

The biochemical networks arising in applications may be quite complex, involving
many reactions and/or species, which means that their mathematical models have many

Entropy 2023, 25, 1168. https://doi.org/10.3390/e25081168 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25081168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0002-1220-5479
https://doi.org/10.3390/e25081168
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081168?type=check_update&version=2


Entropy 2023, 25, 1168 2 of 22

parameters. Some of the values of a model’s kinetic parameters may not be known [16,17]
and they may need to be estimated from the available data. Also, certain parameters
have a substantial influence on the system’s output. Thus, it is essential to study the
system’s behavior when these parameters are perturbed. While stochastic discrete models
of biochemical systems capture the inherent randomness observed in cellular processes,
they pose challenges with regard to their parameter estimation and identification. Hence,
developing efficient and accurate methods for identifying and estimating their parameters
would be a key advance in studying these models.

Practical identifiability (or estimability) analysis aims to establish if the parameters
can be accurately and reliably estimated from the available data [18]. In this context,
identifiable parameters are those which can be determined with high confidence from
the observed behavior of the system; otherwise, the parameters are unidentifiable. Using
practical identifiability, one can select subsets of parameters that significantly impact the
behavior of the system. If the parameters in such a subset are not interdependent, then they
are identifiable. These parameters can be accurately estimated when sufficient and quality
data is available, and their accurate estimation is crucial for building the model. Also, these
parameters may provide insight into the key underlying mechanisms of the biochemical
system. Furthermore, the identifiability analysis helps select the unidentifiable parameters,
which have a negligible impact on the model behavior and can be eliminated, thus guiding
model reduction. There exist numerous studies of identifiability analysis for deterministic
models, such as the reaction rate equations [19–26]. Nonetheless, much less work has been
dedicated to parameter estimability of stochastic models of biological processes.

One important method for practical identifiability is to utilize sensitivity analysis.
Local sensitivity analysis assesses the change in the system’s behavior caused by a small
variation in the value of a certain parameter. Insignificant changes in the system dynamics
indicate that the specific parameter is not important, and thus it is not identifiable. Also,
a parameter is not identifiable if it is correlated with other parameters, such that a variation
in its value can be compensated by suitable adjustments in other parameters. For stochastic
models, finite-difference methods can be used to estimate the sensitivity of the expected
value of the given function of the system state. In the class of finite-difference sensitivity es-
timators for the Chemical Master Equation, those employing exact Monte Carlo simulation
methods are the Coupled Finite Difference method of Anderson [27], the Common Reaction
Path scheme (based on the Random Time Change algorithm) and the Common Random
Number strategy (utilizing the SSA) of Rathinam et al. [11]. These estimators utilize cou-
pled perturbed and unperturbed trajectories to approximate sensitivities. The coupling
lowers the variance of the estimator so that the method requires fewer realizations to
achieve the same accuracy of the estimation. Due to this, the computational time of the
algorithm is reduced, for a prescribed accuracy. Of the three strategies, the Coupled Finite
Difference algorithm has the lowest variance of the estimator [28]. These schemes perform
best for non-stiff models. For stiff problems, finite-difference techniques can be applied
with various coupled tau-leaping strategies to increase the efficiency of the simulation [29].

In this work, we consider the problem of practical parameter identifiability for stochas-
tic discrete biochemical networks modeled with the Chemical Master Equation. This is a
critical problem, and a direct extension of the techniques developed for ordinary differential
equations to stochastic discrete models is not possible. Our contribution is generalizing a
method by Gábor et al. [30] to find the highest parameter identifiable sets for models of
biochemical systems, from the continuous deterministic to the stochastic discrete models of
well-stirred biochemical systems, which is a difficult task. The proposed method identifies
the subsets of parameters that are independent and significant for the model’s behavior,
based on the existing data, and thus are identifiable. We utilize local sensitivity estimations
to study parameter estimability. For approximating sensitivities, we apply finite-difference
techniques, namely the Coupled Finite Difference [27], the Common Reaction Path, and
the Common Random Number methods [11]. We make use of the normalized sensitivity
matrix to develop several identifiability metrics, which adapt existing techniques for the
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reaction rate equations [19,20] to the more challenging Chemical Master Equation model.
In addition, we apply the singular value decomposition of the non-dimensional sensitivity
matrix, to determine its rank. This analysis helps gain insight into the interrelations be-
tween parameters. Furthermore, the proposed methodology can be employed to decide
which parameters can be reliably estimated from the available data, for the Chemical Master
Equation, and may assist experimental design for more accurate parameter approximations.
It is worth noting that, in general, the expected value of the system state governed by the
Chemical Master Equation may not satisfy the deterministic reaction rate equations, when
some reactions are of second or higher order [14].

This paper is structured as follows. Section 2 is dedicated to the background on
stochastic discrete models for well-stirred biochemical networks and their simulation
methods, parametric sensitivity schemes for stochastic and deterministic models, and
practical identifiability techniques, including the new algorithm for selecting subsets of
identifiable parameters. The proposed algorithm is tested on various stochastic models
arising in applications in Section 3. Section 4 presents a summary of our results.

2. Materials and Methods
2.1. Background

Suppose a system has N biochemical species, denoted by S1, S2, . . . , SN , that undergo
M distinct chemical reactions. It is maintained at a constant temperature, in a constant
volume. Provided that the biochemical network is well-stirred, it may be represented by a
state vector,

X(t) = [X1(t), X2(t), . . . , XN(t)]T ,

where X(t) has entries Xi(t), the amount of Si molecules in the system at time t. A reaction
Rj produces a variation in the system state, which is given by the state change vector
νj ∈ RN ,

νj = [ν1j, ν2j, . . . , νNj]
T ,

where νij is the perturbation in the molecular amount of Si after the reaction fires. If one reac-
tion Rj happens during the time interval [t, t + ∆t], then the resulting state is
X(t + ∆t) = X(t) + νj. The array having νj as the j-th column is called the stoichio-
metric matrix. Also associated with the reaction Rj, we can define the propensity function
aj, by aj(x)dt = the probability that a single reaction Rj occurs between [t, t + dt), assuming
that the system state at time t is x. The form of the propensity function aj is determined by

the type of reaction. For a first-order reaction, Sm
cj−−→ products, the propensity is expressed

as aj(X(t)) = cjXm(t). For a second-order reaction, Sm + Sn
cj−−→ products, the propensity

is aj(X(t)) = cjXm(t)Xn(t), if m 6= n and aj(X(t)) = 1
2 cjXm(t)(Xm(t)− 1), if m = n.

2.1.1. Chemical Master Equation

To study the behavior of the well-stirred biochemical system, we need to determine
P(x, t|x0, t0), the probability of the system state being X(t) = x at time t, if at t0 it was
X(t0) = x0. This probability satisfies the Chemical Master Equation [6,7]

d
dt

P(x, t|x0, t0) =
M

∑
j=1

[
aj(x− νj)P(x− νj, t|x0, t0)− aj(x)P(x, t|x0, t0)

]
. (1)

This is a stochastic discrete model. It is a linear system of ordinary differential equations,
each equation describing the probability of the system being in a particular state x. The bio-
chemical system state X(t) is a discrete in space and continuous in time Markov process.
The space of all possible states is typically quite large, and in such cases the Chemical
Master Equation is of very high dimension. Therefore, it is challenging to solve it directly,
except for some simple systems.



Entropy 2023, 25, 1168 4 of 22

As an alternative to solving the Chemical Master Equation directly, it is possible to
generate correct trajectories one by one. Gillespie [8,9] proposed a Monte Carlo strategy to
compute such trajectories, which are in exact agreement with the probability distribution
associated with the discrete stochastic model (1). The strategy, also referred to as the
Stochastic Simulation Algorithm (SSA), has been broadly employed for solving stochastic
models in Systems Biology [3,14,31]. The SSA is described below.

Gillespie’s Algorithm

1. Initialize the time t← t0 and the state of the system, X(t)← x0.
2. While t < T

3. Calculate each propensity aj(X(t)) for j = 1, . . . , M and the sum a0(X(t))←
M

∑
r=1

ar(X(t))

4. Sample two uniform random variables over [0, 1], to obtain η1, η2.
5. Evaluate the time τ and the index j of the next occurring reaction, according to

(a) τ ← −(ln η1)/a0(x)

(b) j← the smallest integer fulfilling
j

∑
r=1

ar(x) > η2a0(x)

6. Update the state X(t + τ)← X(t) + νj and the time t← t + τ.
7. End while.

The Random Time Change (RTC) algorithm [11], based on the Random Time Change
representation [10], is another exact Monte Carlo simulation strategy for the Chemical
Master Equation. We refer the reader to [11] for details on this algorithm.

2.1.2. Chemical Langevin Equation

An intermediate model between the Chemical Master Equation and the reaction rate
equation is the Chemical Langevin Equation [32]. This is a system of stochastic differential
equations of size equal to the number of reacting species. The Chemical Langevin Equation
is a reduction in the Chemical Master Equation model assuming that the biochemical
system has a macroscopically infinitesimal scale in time step such that, over δt, every
reaction occurs multiple times and, at the same time, its propensity function does not vary
significantly. Under these assumptions, the system state is governed by

dX(t, c) =
M

∑
j=1

νjaj(X(t, c), c)dt +
M

∑
j=1

νj

√
aj(X(t, c), c)dWj(t) (2)

where Wj are independent Wiener processes for j = 1, . . . , M. The state X(t) may be
approximated by a Markov process continuous in space. Equation (2) represents the
Chemical Langevin Equation.

2.1.3. Reaction Rate Equation

A coarser level of resolution in modeling biochemically reacting networks is provided
by the continuous deterministic model of chemical kinetics. This model, known as the
reaction rate equations, is valid under the assumption of the thermodynamic limit. In the
thermodynamic limit, the molecular amounts for all species and the system volume tend
towards infinity, as the concentrations of species within the system remain constant. Hence,
the stochastic terms in the Chemical Langevin Equation are much smaller than the deter-
ministic terms. As a result, the Chemical Langevin Equation model reduces to the reaction
rate equations, in the thermodynamic limit. This condition is satisfied when all Si molecular
counts are very large. The reaction rate equations (RRE) are of the form

dX(t, c)
dt

=
M

∑
j=1

νjaj(X(t, c), c) . (3)
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Equation (3) is a set of ordinary differential equations, with one equation for each biochemi-
cal species. In the event that all reactions in the system are of order at most one, the reaction
rate equation can be obtained from the Chemical Master Equation (1), by considering the ex-
pected value of the system state. However, in general, the evolution of the mean trajectory
in the Chemical Master Equation model does not obey the continuous deterministic model.
Then, the RRE does not properly depict the true behavior of the biochemical network.
In fact, there are numerous cellular networks for which noise significantly influences the
system dynamics [12,31,33].

2.2. Parametric Correlations

Sensitivity analysis plays a central role in constructing models [24]. It assesses how
changes in parameters cause variations in a model’s output. If a negligible adjustment in
a parameter leads to significant alterations in the outcomes, we consider the model to be
sensitive to that specific parameter. Precise estimations are not necessary for parameters
with low sensitivity. Conversely, parameters with high associated sensitivity become key
control points for the behavior of the system. In what follows, we shall focus on the
sensitivity analysis of system outputs with respect to rate parameters.

2.2.1. Parametric Sensitivity for the Chemical Master Equation

Let f be a function of interest of the system state and c a model parameter. In the stochas-

tic setting, the local sensitivity with respect to a parameter c is defined as
∂

∂c
E[ f (X(t, c))]

where E(·) is the expected value. Popular methods for estimating local sensitivities
with respect to the model’s parameters for the Chemical Master Equation often rely
on finite-difference schemes and Monte Carlo methods for generating the perturbed
and unperturbed trajectories. By forward finite-difference schemes, one can estimate
∂

∂c
E[ f (X(t, c))] ≈ {E[ f (X(t, c + θ))]− E[ f (X(t, c))]}/θ, where θ is a small perturbation

of the parameter of interest, c. To efficiently approximate the sensitivity by Monte Carlo
methods, the trajectories for X(t, c + θ) and X(t, c) are generated using common ran-
dom numbers. Among such methods are the Common Random Number (CRN), the
Common Reaction Path (CRP) algorithms [11], and the Coupled Finite-Difference (CFD)
algorithm [27].

2.2.2. Common Random Number

The Common Random Number presented in [11] is a finite-difference numerical
method for estimating parametric sensitivities for the stochastic discrete model (1). It reuses
random numbers to generate the perturbed and unperturbed paths. In doing so, it reduces
the variance of the sensitivity estimator, and thus it has increased efficiency compared
to a strategy based on independent random numbers. For the r-th iteration, it computes
two SSA trajectories, X[r](t, c + θ) -the perturbed and X[r](t, c) -the unperturbed path, each
employing the same stream of uniform (0, 1) random numbers. Usually, the coupling of the
CRN technique is less efficient than that of the CRN and CFD schemes [27]. The sensitivity
of the r-th path is approximated by

Z[r](t, c) =
f (X[r](t, c + θ))− f (X[r](t, c))

θ
, (4)

while an estimate of the sensitivity is obtained from the sample mean (
R

∑
i=1

Z[r](t, c))/R, R

being the number of paired trajectories simulated.

2.2.3. Common Reaction Path

The Common Reaction Path technique is also a finite-difference sensitivity estimator
for the Chemical Master Equation [11]. The CRP strategy applies the RTC algorithm to sim-
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ulate sample paths. In this method, coupling of the processes involves some independent
unit-rate Poisson processes, {Yj}1≤j≤M. The coupling of the perturbed—X(·, c + θ) and
unperturbed—X(·, c) processes is achieved using the random time change representation

X(t, c) = x0 +
M

∑
j=1

νjYj

(∫ t

0
aj(X(s, c), c)ds

)

X(t, c + θ) = x0 +
M

∑
j=1

νjYj

(∫ t

0
aj(X(s, c + θ), c + θ)ds

) (5)

The r-th iteration of the CRP algorithm generates the paired trajectories X[r](t, c + θ) and
X[r](t, c) with the RTC algorithm, each using the same M independent streams of unit-rate
exponential random numbers. As before, the sensitivity of the r-th trajectory is estimated
by (4). This coupling has been shown to be typically stronger than that of the CRN method,
leading to a lower variance of the estimation [11,27].

2.2.4. Coupled Finite-Difference

Another finite-difference sensitivity estimator for the stochastic discrete model is the
Coupled Finite-Difference scheme [27]. The CFD method relies on the random time change
representation of the unperturbed and perturbed processes

X(t, c) = x0 +
M

∑
j=1

νjY
(1)
j

(∫ t

0
min(aj(X(s, c), c), aj(X(s, c + θ), c + θ))ds

)
+

M

∑
j=1

νjY
(2)
j

(∫ t

0
[aj(X(s, c), c)−min(aj(X(s, c), c), aj(X(s, c + θ), c + θ)]ds

)
X(t, c + θ) = x0 +

M

∑
j=1

νjY
(1)
j

(∫ t

0
[min(aj(X(s, c), c), aj(X(s, c + θ), c + θ)]ds

)
+

M

∑
j=1

νjY
(3)
j

(∫ t

0
[aj(X(s, c + θ), c + θ)−min(aj(X(s, c), c), aj(X(s, c + θ), c + θ)]ds

)
(6)

where {Y(1)
j }1≤j≤M, {Y(2)

j }1≤j≤M. and {Y(3)
j }1≤j≤M are independent unit-rate Poisson

processes. Furthermore, the CFD strategy uses a version of the Next Reaction Method to
compute the coupled perturbed and unperturbed trajectories, X[r](t, c + θ) and X[r](t, c),
and (4) to approximate the local sensitivity of the r-th path. Among the finite-difference
sensitivity estimators with exact underlying simulation techniques for the CME, the CFD
performs the best, followed by the CRP and the CRN [27,28]. Indeed, the CFD achieves
the smallest variance of the sensitivity estimator of the three methods described above [28].
As a consequence, for the same number of trajectories simulated, we shall consider in our
investigations the CFD sensitivity approximations to be the most accurate and reliable.

2.2.5. Parametric Sensitivity for the Chemical Langevin Equations

Glasserman [34] developed a technique for computing pathwise parametric sensi-
tivities for certain problems modeled by stochastic differential equations. This method
was applied to the Chemical Langevin Equation (CLE) model in [33]. For computing the
sensitivity of each path, we differentiate Equation (2) with respect to parameter c and obtain

d(
∂X
∂c

) =
M

∑
j=1

νj

[∂aj(X)

∂X
∂X
∂c

+
∂aj(X)

∂c

]
(t)dt

+
M

∑
j=1

νj

[ 1

2
√

aj(X)

(∂aj(X)

∂X
∂X
∂c

+
∂aj(X)

∂c

)]
(t)dWj .

(7)

Solving the coupled system of Equations (2) and (7) for (X, ∂X/∂c) will determine the path-
wise sensitivities. At time t = 0, the local sensitivities with respect to the rate parameters
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are zero. The Chemical Langevin Equation is, in general, valid when all molecular amounts
are sufficiently large. Effective simulation strategies for this model require adaptive time-
stepping methods [35,36].

2.2.6. Parametric Sensitivity for the Reaction Rate Equations

In the deterministic scenario, the behavior of the biochemical system is governed by
the reaction rate Equation (3). To find the local sensitivity for this model, the derivative
with respect to the desired kinetic parameter is applied to Equation (3), yielding

d
dt
S =

M

∑
j=1

νj

(
∂aj(X(t, c), c)

∂c
+

N

∑
i=1

∂aj(X(t, c), c)
∂Xi

Si

)
. (8)

Here, S = ∂X(t, c)/∂c is the sensitivity with respect to parameter c. The sensitivity is
computed by solving for (X,S) the system of ordinary differential Equations (3) and (8),
with the initial conditions X(0, c) = x0 and S(0) = 0. The deterministic model is applicable
when all reacting molecular populations are very large. Nonetheless, when low molecular
counts of some species exist or noise plays a significant role, this approach may fail in
accurately capturing the characteristics of the biochemical system. Then, deterministic
techniques for sensitivity-based identifiability analysis are not valid.

2.3. Practical Identifiability Analysis

When a model’s performance is investigated, it is important to evaluate the accuracy
of the parameter values. Still, poor or noisy data, interdependence of parameters, or weak
dependence of the system dynamics on certain parameters may hinder the accurate estima-
tion of parameter values. As a result, it is possible for these values to change significantly,
without influencing the model’s output. Consequently, the concept of identifiability is
essential for the analysis of a mathematical model [19,24].

Identifiability can be classified into two main categories: structural identifiability
and practical identifiability. For a structurally identifiable model, there exists a unique
parameterization for any specified output of the model (see, e.g., [21,26]). On the other
hand, practical identifiability involves detecting non-identifiable parameters by fitting the
model to data that closely resemble the available observations (see, e.g., [18,19,22,25] for
analyses of deterministic models). For this type of identifiability, it is helpful to study the
parametric sensitivity of the model. In this work, we use sensitivity-based identifiability
for the Chemical Master Equation. We determine identifiability and collinearity indexes
by generalizing methods for deterministic models [19] to the more challenging case of
stochastic discrete biochemical systems.

2.3.1. Sensitivity-Based Identifiability Analysis

Several identifiability strategies for deterministic models exist in the literature. One
such approach by Brun et al. [19] is based on local sensitivity analysis of deterministic
models. Sensitivity analysis quantifies the impact of parameter variations on the sys-
tem’s dynamics.

Below, we review some techniques for identifiability analysis of deterministic models
relying on local parametric sensitivity. These techniques can be applied to the reaction rate
Equation (3). Denote by

Sik(X, t, c) =
∂Xi(t, c)

∂ck
(9)

the local sensitivity of the molecular amount Xi(t, c) at time t, with respect to the kinetic

parameter ck. For time t, the parametric sensitivity matrix is S(X, t, c) =
∂

∂c
X(t, c) =
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{Sik(X, t, c)}1≤i≤N,1≤k≤M. In addition, the non-dimensional sensitivity coefficient corre-
sponding to the i-th species and the parameter ck at time t is

sik(t) =
ck

Xi(t, c)
∂Xi(t, c)

∂ck
. (10)

Here, c = [c1, . . . , cM] is the vector of kinetic parameters associated to reactions {Rj}1≤j≤M.
Furthermore, let t1 < t2 < · · · < tL be a sequence of time-points spanning the integration
interval [0, T]. Ideally, some of these time-points should be inside the interval correspond-
ing to the biochemical network’s transient behavior, when applicable. Also, consider
the concatenated non-dimensional sensitivity matrix, for all the time-points in the grid,
and apply the normalization (10) for each entry,

s(X, c) =

 s11(t1) · · · s1M(t1)
...

. . .
...

sN1(tL) · · · sNM(tL)

 . (11)

To rank the parameters of the model, we utilize the non-dimensional sensitivity matrix
of size (NL) × M from (11). The k-th column in this matrix measures the sensitivities
with respect to ck, the rate parameter of reaction Rk. Let us calculate the norm of each
column in the sensitivity matrix (11) to obtain a parameter ranking. The norm of each
column sk(X, c) = [s1k(t1), . . . , sNk(t1), . . . , s1k(tL), . . . , sNk(tL)]

T serves as a measure of the
significance of parameter ck on the dynamics of the system. A higher norm indicates that
altering that parameter value has a substantial impact on the system state. Parameters can
be arranged in order of their significance. The following sensitivity measure is employed
for evaluating the significance of the parameters, based on the sensitivity matrix (adapted
after [19])

δ
msqr
k =

√
1
n

n

∑
i=1

s2
ik . (12)

The larger the measure δ
msqr
k , the more significant the parameter ck is (for 1 ≤ k ≤ M).

2.3.2. Parameter Collinearity

Extensive research has been conducted to examine the collinearity in various problems.
Brun et al. [19] introduces a strategy for identifying parameter relationships based on
collinearity analysis, in the deterministic framework, and presents a novel approach to
explore the connections between parameters. Note that the columns of a matrix B are
nearly linearly dependent (or near collinear) if a non-zero vector z = [z1, . . . , zM]T exists
such that Bz ≈ 0, where B has M columns. If the Bz = 0 holds and z 6= 0, the columns of B
are linearly dependent (or collinear).

Now, take the normalized sensitivity matrix S̃, having as the m-th column the vector

s̃m(X, c) =
sm(X, c)
‖sm(X, c)‖2

,

for 1 ≤ m ≤ M. It is useful to first normalize these vectors, to prevent biases due to
differences in the absolute value of local sensitivities for various parameters. A large
norm of ‖sm‖2 indicates that a small variation in parameter cm can significantly impact the
system’s behavior; thus, this parameter is important. For this parameter to be identifiable,
it should not be correlated with other parameters.

Let us consider any subsets K of k parameters (k ≤ M) from the set of parameters
{c1, c2, . . . , cM} and the corresponding sub-matrix S̃K(X, c) of the normalized sensitivity
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matrix, with columns the k sensitivity vectors. A measure of collinearity of the subset K of
parameters, with corresponding matrix S̃K, is given by

CIK =
1

min
‖z‖2=1

‖S̃Kz‖2
=

1√
λk

(13)

where λk is the minimum eigenvalue of the matrix S̃T
K S̃K and ‖ · ‖2 is the norm-2 of a vector.

The measure (13) is known as the collinearity index of the subset K [19,30]. The closest
the columns of the matrix S̃K are to a linearly dependent set of vectors, the smallest
min
‖z‖2=1

‖S̃Kz‖2 is. Thus, a large collinearity index CIK indicates a high level of collinearity

of the parameters in the set. This implies that changes in the model dynamics due to
small perturbations in one of the parameters of the almost collinear set may be prevented
by suitable variations in the other parameters of the set. As a consequence, if a set of
parameters is collinear, it is not identifiable. According to [19], a subset of parameters is
considered identifiable if the associated collinearity index satisfies CIK < 20. With this
observation, it is possible to uncover the subsets of model parameters that can be identified
as well as those that cannot be identified. The collinearity index may be computed for
all the subsets K of the parameter space, to determine the parameter subsets that are not
collinear. When a group of parameters has a high collinearity index, any set containing it
as a subset will also have a high collinearity index.

Another technique to assess the identifiability of the model parameters is to use the
singular value decomposition (SVD) of a matrix. In general, the SVD [37,38] of an n×M
matrix s is

s = UΣVT , (14)

where the U is an n× n unitary matrix, V is an M×M unitary matrix and Σ is an n×M
non-negative diagonal matrix with the diagonal entries

σ1 ≥ σ2 ≥ . . . σr > σr+1 = · · · = σM = 0 .

The values {σ2
m}1≤m≤M are the eigenvalues of the matrix sTs. The index r measures the rank

of the matrix s and it is the largest number of linearly independent columns of this matrix.
Numerically, the singular values σr+1, · · · , σM, which are below a specified small tolerance
are considered practically zero. In this work, we use the singular value decomposition of
the matrix s to determine its rank. This rank is a reliable measure of the number of rate
parameters that are not collinear. Furthermore, zero or very close to zero singular values
show that the group of all the reaction rate parameters of the model are collinear. Therefore,
there are some model parameters that cannot be estimated from the available data.

Brun et al. [20] also introduced a determinant measure

ρk = det(ST
KSK)

1/2k (15)

to find the appropriate number of parameters to estimate.
The metrics considered above can be utilized to determine the identifiability of param-

eter sets as follows. The sensitivity measure δ
msqr
k is used to evaluate the importance of

each parameter ck. On the other hand, the collinearity index measures whether the set K
of parameters are independent, whenever CIK < 20. In the case that both conditions are
satisfied, (a) the parameters in the subset K are not collinear and (b) each parameter in the
group is important, the parameters in K are identifiable. Finally, the determinant ρK can be
employed to compare the identifiability of various groups of parameters.

2.3.3. Method for Selecting Subsets of Identifiable Parameters

The practical identifiability methods presented above were developed for continuous
deterministic models [19,20], and are thus applicable for the reaction rate equation model.
However, this model may fail to faithfully represent the behavior of biochemical systems,
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which involve low molecular counts of some species. Consequently, new methodologies
are required for the parameter identifiability of stochastic discrete models of biochemical
systems. In this work, we develop novel strategies for determining sets of identifiable
parameters for the Chemical Master Equation. We generalize the work of Gábor et al. [30]
on identifying subsets of identifiable parameters in deterministic models, to address the
much more challenging case of stochastic discrete models of well-stirred biochemical
systems. This generalization is essential as stochasticity plays a significant role in accurately
modeling real-world biological systems, and our approach allows for an in-depth study of
more complex biochemical networks encountered in applications.

The measures presented above were designed for deterministic models. We aim to
adapt these measures to systems modeled by the Chemical Master Equation. For this
model, the sensitivity coefficients are computed as

Sik(E[X], t) =
∂

∂ck
E[Xi(t, c)].

Then, we shall compute the sensitivity matrix for the CME according to

S(t) =
∂E[X(t, c)]

∂c
=


∂

∂c1
E(X1(t, c)) · · · ∂

∂cM
E(X1(t, c))

...
. . .

...
∂

∂c1
E(XN(t, c)) · · · ∂

∂cM
E(XN(t, c))

 . (16)

Take a sequence of time-points 0 = t1 < t2 < . . . < tL = T, relevant to the biochemical
system under consideration. The fully normalized (non-dimensional) sensitivity coefficient
of the i-th species with respect to the ck parameter at time t` is

sik(t`) =
ck

E[Xi(t`, c)]
∂

∂ck
E[Xi(t`, c)] for 1 ≤ i ≤ N, 1 ≤ k ≤ M. (17)

The concatenated non-dimensional sensitivity matrix over these discrete time-points with
entries (17) is

s(E[X], c) =

 s11(t1) · · · s1M(t1)
...

. . .
...

sN1(tL) · · · sNM(tL)

 . (18)

Normalizing the `-th column of matrix (18), namely s`(E[X], c), gives

s̃`(E[X], c) =
s`(E[X], c)
‖s`(E[X], c)‖2

. (19)

Finally, the normalized sensitivity matrix S̃ has s̃`(E[X], c) as it is `-th column. For the
Chemical Master Equation, the sensitivity measure δ

msqr
k and the collinearity index CIK are

computed using (12) and (13), respectively, for the sensitivity matrix of the expected value
E[X] rather than the system state X, as was the case for the reaction rate equation.

Moreover, we will employ the finite-difference methods described above to estimate
parametric sensitivities. Recall that a finite-difference estimate of the sensitivity with respect
to parameter ck, over R coupled perturbed and unperturbed paths, is

∂

∂ck
E[X(t, c)] ≈ ZR =

1
R

R

∑
r=1

X[r](t, ck + θ)− X[r](t, ck)

θ
.

While we compute the coupled trajectories using the CFD, CRP, or CRN strategies, our
method can be applied to other finite-difference sensitivity estimators [29].
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The measure (12) can be calculated to rank parameters from most to least influential.
Small values of δmsqr correspond to parameters with a small influence on the model. We
select those parameters that show the value of δmsqr larger than 0.2 [39]. With an initial
ranked list, we compute the collinearity indices for this list. This method can be applied to
models of moderate size.

Algorithm 1 calculates the normalized sensitivity matrix, as follows. A grid with L
time-points ranging from 0 to T is selected. We choose equally distributed time steps, such
that data is collected from all important regions of the interval of integration. This depends
on the particular model. We note that an adaptive time-stepping procedure can be included
instead. Then, the sensitivity matrices S(tl) from Equation (16) are approximated with a
specific finite-difference sensitivity estimator. Afterwards, we compute the concatenated
non-dimensional sensitivity matrix s. We normalize each column of s individually to ensure
consistency and comparability. The normalization implies dividing each column sk by its
vectorial norm-2. Column normalization yields a matrix denoted by S̃. This matrix has as
its k-th column {s̃k} = sk/‖sk‖2. Also, for each parameter ck we compute the sensitivity
measure δ

msqr
k from Equation (12), using the entries of the k-th columns of the sensitivity

matrices S(t`).

Algorithm 1 Computing the Normalized Sensitivity Matrix

Initialize: Time grid: 0 = t1 < t2 < . . . < tL = T.
Input: Estimates of sensitivity matrices S(t`) from (16).
Compute the concatenated non-dimensional sensitivity matrix s from (18) with en-
tries (17)
for k = 1 to M do

normalize s̃k =
sk
‖sk‖2

where sk is the k-th column of s and ‖ · ‖2 is norm-2

end for
Compute normalized matrix S̃ = {s̃k}1≤k≤M
for k = 1 to M do

Compute sensitivity measure δ
msqr
k according to (12) for parameter ck

end for

In Algorithm 2, we introduce a method for the selection of identifiable parameter
subsets based on sensitivity measures and collinearity indices. This procedure extends
and refines a methodology by Gábor et al. [30] from the deterministic to the more difficult
case of stochastic biochemical networks. The goal of Algorithm 2 is to iteratively assess
the practical identifiability of subsets of model parameters. A threshold value is set for
the collinearity indices, which measure the level of collinearity between parameter groups.
The threshold value determines the acceptable level of collinearity. With a normalized
sensitivity matrix obtained from Algorithm 1 as input, the following steps are considered.
The parameters are ranked according to their sensitivity measure, those with a sensitivity
measure below a critical value (chosen here as 0.2) are considered unimportant and may be
discarded. If the ranked list of parameters is of moderate size, combinations of parameters
are generated. For each combination, the algorithm computes the corresponding collinearity
index. This involves calculating the collinearity indices for pairs, triples, etc. These indices
quantify the degree of collinearity between the parameters of a certain group. When the
computed collinearity index for a parameter subset is below the threshold value, that subset
of parameters is deemed identifiable. By applying this algorithm, a subset of parameters
with low collinearity and high identifiability can be selected. This allows for the reduction
in model complexity and for the accurate and reliable estimation of the most important
parameters, from the input data.
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Algorithm 2 Selecting a Subset of Identifiable Parameters

Input: Normalized sensitivity matrix;
Input: Set threshold value of collinearity index: CIcr = 20
Require: Rank parameters cj based on δ

msqr
j > 0.2

if Ranked list is of moderate size then
1: Number of all combinations: C = Length(combnk)
2: Compute collinearity indices for all combinations of the ranked list of parameters:
for k = 1 to C do

For every combination of the ranked list of parameters, calculate the collinearity
indices:

CI2 = collinearityindex(pairs), CI3 = collinearity(triples), etc.
L2 = pair combination, L3 = triple combination, etc.

end for
end if
if CIk ≤ CIcr then

The corresponding combination recorded as an identifiable set
end if

3. Results

In this section, we apply our method to select subsets of practically identifiable pa-
rameters in the Chemical Master Equation on three realistic models. We observe that the
collinearity indices play a significant role in finding the subsets of estimable parameters, us-
ing local stochastic sensitivities. The parametric sensitivities of the stochastic discrete model
of well-stirred biochemical systems are approximated by finite-difference schemes, namely
the Common Random Number, Common Reaction Path, and Coupled Finite Difference
techniques. By applying perturbation in each of these finite-difference techniques, we can
assess the sensitivity of the model outputs to changes in the model’s parameters. The choice
of perturbation size for finite-difference approximations is essential for obtaining accurate
and reliable results while minimizing computational effort. The specific perturbation sizes,
representing 5%, 1%, 2% of the parameter value, are often chosen based on a trade-off
between accuracy and numerical stability. In addition, we find the parameters with high
sensitivities. Those with low sensitivity have a reduced impact on the model outputs
and cannot be estimated accurately. In the stochastic context, we consider the SVD of the
normalized sensitivity matrix to determine its rank. This rank gives the number of model
parameters that are not collinear.

For validation of the methods introduced above, we compare the results obtained with
the Chemical Master Equation, with those derived with the Chemical Langevin Equation
and those for the reaction rate equations, on two models of biochemically reacting systems.
Still, we emphasize the importance of considering stochastic discrete models of biochemical
networks to accurately describe the dynamics of these systems, particularly when some
molecular populations are small or noise is driving the system behavior. The parametric
sensitivities estimated for the reaction rate equations or the Chemical Langevin Equations
may not yield accurate estimability results, in general. For each model, we generated
10,000 coupled trajectories to approximate the parametric sensitivities of the Chemical
Master Equation by finite-difference schemes. The CFD strategy is considered to be more
accurate and reliable than the CRN and the CRP methods [28]. The case studies tested are an
infectious disease network [40], the Michaelis–Menten system and a genetic toggle-switch
model [11].

3.1. Infectious Disease Model

An infectious disease model [40] considers two species: S1—the infected particles
and S2—the particles which can be infected. These species, which may depict molecules,
cells, or humans, participate in five reactions. The first two reactions represent the death
of species S1 and S2, respectively, while the third and fourth reactions describe the birth



Entropy 2023, 25, 1168 13 of 22

or production of particles of the S1 and S2 type. The two species interact through the fifth
reaction, in which an infected particle S1 infects a particle S2. The initial conditions are
S1(0) = 20 and S2(0) = 40. The system is studied on the time-interval [0, 10]. For our
simulations, 10,000 trajectories were generated to estimate the solution of the Chemical
Master Equation.

Table 1 provides information on the reaction channels of the biochemical system and
the values of their rate parameters. It includes the reaction channels denoted by R1, R2,
R3, R4, and R5. Each reaction is described by its reactants and products. The last column
lists the parameter values corresponding to the rates at which the reactions occur. These
parameter values are specified for the stochastic model considering molecular numbers,
rather than for the deterministic reaction rate equations expressed in terms of concentrations.
A sample trajectory of the number of the infected S1 particles and of the susceptible S2
particles as functions of time, computed using Gillepie’s algorithm, is given in Figure 1.

Table 1. Infectious disease model: the list of reactions and the corresponding rate parameter values.

Reaction Channel Rate Parameter Value

R1: S1−→∅ c1 = 2.0
R2: S2−→∅ c2 = 0.1
R3: ∅−→S1 c3 = 25
R4: ∅−→S2 c4 = 75
R5: S1 + S2−→S1 + S1 c5 = 0.05
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Figure 1. Infectious disease model: the evolution in time of the number of molecules of the species
S1—infected individuals and S2—individuals which can be infected, generated with Gillespie’s
algorithm, on the interval [0, 10].

The finite-difference sensitivity estimations are calculated with 10,000 trajectories
using the CFD, the CRN, and the CRP strategies, with a perturbation of 5% of the parameter
value. The path-wise sensitivities for the Chemical Langevin Equation are computed over
10,000 trajectories, with the Euler-Maruyama scheme applied to the Equations (2) and (7),
and are utilized to estimate the sensitivities of the expected value of the state vector.
Also, the parametric sensitivities are approximated for the reaction rate equations. These
estimations are used to calculate the collinearity indices for all parameter combinations,
for the Chemical Master Equation, the Chemical Langevin Equation, and the RRE models.
The results are presented in Tables 2–6. The sensitivity measures are reported in Table 2,
showing that c2 is the least significant among all the parameters.
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Table 2. Infectious disease model: comparison of δmsqr for a 5% perturbation.

Parameter δmsqr

of CFD Sensitivity
δmsqr

of CRP Sensitivity
δmsqr

of CRN Sensitivity
δmsqr

of RRE Sensitivity
δmsqr

Path-Wise Sensitivity

c1 0.97 0.96 0.94 0.97 0.98

c2 0.02 0.02 0.1 0.02 0.02

c3 0.26 0.29 0.26 0.26 0.26

c4 0.55 0.66 0.54 0.55 0.55

c5 0.68 0.69 0.67 0.71 0.71

Tables 3–6 reveal that the collinearity indices for the reaction rate equation and the
Chemical Langevin Equation models exhibit greater consistency with the collinearity in-
dices for the Chemical Master Equation, computed using with the CFD sensitivity estimator,
compared to the CRN and the CRP estimators. Notably, the pair subset {c1, c3} has the
highest collinearity index; however, it is relatively low for the CRP and the CRN schemes
in comparison with the other estimations. This is due to the lower accuracy of the CRP
and the CRN schemes when compared to the CFD technique. For pair sets, the subset
{c1, c3}, for the triple sets, the subset {c3, c4, c5} and among the quadruple ones, the subset
{c2, c3, c4, c5} have high value of collinearity indices in relation to the other subsets.

Table 3. Infectious disease model: collinearity indices for pair subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c4 c5 1.18 1.13 1.18 1.2 1.19

c3 c5 1.93 1.17 1.94 1.92 1.95

c3 c4 1.339 1.25 1.32 1.32 1.31

c2 c5 1.103 1.15 1.13 1.18 1.17

c2 c4 4.69 2.37 1.16 9.77 9.96

c2 c3 1.43 1.27 1.02 1.34 1.33

c1 c5 1.86 1.89 1.9 1.85 1.86

c1 c4 1.35 1.28 1.33 1.34 1.34

c1 c3 10.816 3.04 7.2 11.34 11.22

c1 c2 1.466 1.31 1.00 1.36 1.35

There is no subset with high collinearity indices (>20) in pair subsets (Table 3) but
there is a parameter subset of size 3 with collinearity index greater than 20 (Table 4). In fact,
the parameter subset {c3, c4, c5} is not identifiable with the Coupled Finite Difference
sensitivity estimator, the Chemical Langevin Equation, or the deterministic sensitivities.
However, the Common Random Number and the Common Reaction Path sensitivities
show different results. In Table 5, two parameter subsets of size 4 show a collinearity
index greater than 20 with the deterministic, stochastic continuous, and CFD sensitivity
estimations. All subsets containing the parameters {c3, c4, c5} are collinear, which is in
agreement with the results in Table 4. This indicates that these parameter subsets are
poorly identifiable. Consequently, the sensitivity-based estimability analysis performed on
the RRE, the CLE, and the CME models are in agreement, thus validating the proposed
method for the more general discrete stochastic model. The Common Random Number
and the Common Reaction Path techniques could not provide an accurate assessment of
the identifiability of various subsets, with only 10,000 realizations, being thus less reliable.
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Table 4. Infectious disease model: collinearity indices for triple subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c3 c4 c5 21.19 2.63 9.6 21.3 21.77

c2 c4 c5 5.0444 2.38 1.2 9.97 10.15

c2 c3 c5 7.7768 2.91 2.01 10.48 10.51

c2 c3 c4 4.88 2.38 1.43 9.83 10.01

c1 c4 c5 9.92 3.65 9.4 10.83 10.98

c1 c3 c5 11.07 3.12 7.2 11.68 11.73

c1 c3 c4 10.87 3.05 7.2 11.46 11.45

c1 c2 c5 7.44 4.8 2 7.87 7.95

c1 c2 c4 4.95 2.38 1.43 9.82 10.01

c1 c2 c3 11.02 3.06 7.3 11.45 11.44

Table 5. Infectious disease model: collinearity indices for quadruple subsets. The CME sensitivities
are estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c1 c2 c3 c4 11.509 3.06 7.3 11.53 11.49

c1 c2 c3 c5 11.092 4.88 7.3 13.65 13.53

c1 c2 c4 c5 10.2347 4.94 9.4 13.82 14.20

c1 c3 c4 c5 22.6313 3.87 10.54 22.19 22.49

c2 c3 c4 c5 21.4369 2.91 9.6 25.71 27.77

Table 6. Infectious disease model: collinearity indices for the set of all kinetic parameters. The CME
sensitivities are estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 5%
perturbation. The singular values for the CFD, the CLE, and the RRE sensitivity estimations show
that the number of parameters that are not collinear is four.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

Collinearity Index
of Path-Wise Sensitivity

c1 c2 c3 c4 c5 22.65 5.01 10.54 26.17 28.09

singular values 16.31, 9.48, 16.27, 10.35, 15.86, 9.28, 36.73, 21.86, 37.03, 21.76,
1.06, 0.21, 0.06 2.98, 1.79, 0.14 1.31, 1.1, 0.52 2.21, 0.48, 0.09 2.19, 0.48, 0.09

3.2. Michaelis–Menten Model

The second model we analyze is the Michaelis–Menten biochemical system, which
involves four species—a substrate S1, an enzyme S2, a complex S3 and a product S4—and
three reactions. We denote by Yi the number of molecules of the species Si. With this
notation, the initial conditions for the number of molecules are Y1(0) = [5× 10−7nAvol],
Y2(0) = [2× 10−7nAvol] and Y3(0) = Y4(0) = 0, where nA = 6.023× 1023 is Avogadro’s
number and vol = 10−15 denotes the volume of the system. The reactions and the values of
the rate parameters are included in Table 7. This model is integrated on the interval [0, 50].
Figure 2 depicts a realization of the system state, simulated with Gillespie’s algorithm.
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Figure 2. Michaelis–Menten model: the evolution in time of the number of molecules of a substrate,
an enzyme, a complex and a product, generated with Gillespie’s algorithm, on the interval [0, 50].

Table 7. Michaelis–Menten model: the list of reactions and the corresponding rate parameter values.

Reaction Channel Rate Parameter Value

R1: S1 + S2−→S3 c1 = 106/(nAvol)
R2: S3−→S1 + S2 c2 = 10−4

R3: S3−→S4 + S2 c3 = 10−1

We start by approximating the parametric sensitivities for the Chemical Master Equa-
tion. The finite-difference sensitivity estimations obtained with the CFD, the CRP, and
the CRN algorithms use a perturbation which represents 1% and 5%, respectively, of the
value of the parameter of interest. The sensitivity measures provided in Table 8 indi-
cate that c2 may not be estimated as accurately as the other parameters. The collinearity
indices obtained for the perturbation value 1% with each sensitivity estimator for pairs
of parameters are reported in Table 9, while the indices for the set of all parameters are
recorded in Table 10. For each subset, the results for the stochastic Michaelis–Menten model
demonstrate low collinearity indices, below 20. The choice of the finite-difference sensi-
tivity estimator does not significantly affect the parameter identifiability. The stochastic
discrete modeling approach to identifiability analysis yields parameter subsets that are
not collinear for the Michaelis–Menten system. Additionally, the Tables include the RRE
identifiability metrics to validate the CME estimability results. The collinearity indices for
the perturbation value of 5% can be found in the Appendix A, and they are consistent with
the results obtained using a perturbation of 1%.

Table 8. Michaelis–Menten model: comparison of δmsqr for a 1% perturbation.

Parameter δmsqr

of CFD Sensitivity
δmsqr

of CRP Sensitivity
δmsqr

of CRN Sensitivity
δmsqr

of RRE Sensitivity

c1 1.11 1.1 1.07 1.07

c2 0.002 0.01 0.003 0.002

c3 1.31 1.30 1.29 1.29
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Table 9. Michaelis–Menten model: collinearity indices for pair subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 1% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 2.9 1.35 1.47 4.85

c1 c3 2.21 2.17 2.17 2.17

c2 c3 1.56 1.21 1.2 1.87

Table 10. Michaelis–Menten model: collinearity indices for the triple subset. The CME sensitivities
are estimated over 10,000 trajectories with the CFD, CRN, and CRP algorithms and a 1% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 c3 3.92 2.25 2.43 5.3

3.3. Genetic Toggle Switch Model

The last biochemical system investigated is the genetic toggle switch [11,28]. Multi-
stable stochastic switches arise in modeling key biological processes. The model considers
two gene pairs, whose interaction creates a bistable switch, as each gene negatively regulates
the synthesis of the other gene. Due to the presence of noise, the system can transition
between the states represented by an abundance of one species and an almost total absence
of the other. In this genetic switch system, the two species U and V take part in four
reactions. Table 11 specifies the reaction channels and their propensities. We examine the
system using the following parameter values [11]

α1 = 50, β = 2.5, α2 = 16, γ = 1 , (20)

and the initial conditions XV(0) = XU(0) = 0. Figure 3 displays a sample path for the
molecular numbers of the two species, simulated with Gillespie’s algorithm (left) along
with the standard deviation of the CFD, CRP, and CRN sensitivity estimators as functions
of time (right).
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Figure 3. Genetic toggle switch model: (Left): the evolution in time of the number of molecules of
the species U and V, generated with Gillespie’s algorithm, on the interval [0, 50]. (Right): standard
deviations of the three estimators, CFD, CRP, and CRN.
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Table 11. Genetic toggle switch model: the list of reactions and their propensity functions.

Reaction Channel Propensity Function

R1: ∅−→U a1 =
α1

1 + Xβ
V

R2: U−→∅ a2 = XU

R3: ∅−→V a3 =
α2

1 + Xγ
U

R4: V−→∅ a4 = XV

The reaction rate equation model cannot capture the stochastic transitions between
the states, and thus the deterministic tools for analyzing this system are not applicable. We
perform an estimability analysis of the Chemical Master Equation model for the genetic
toggle switch, on the interval [0, 50]. To assess how variations in the parameter values
affect the dynamics of the system, we approximate the local sensitivities with respect to the
parameters whose values are given by (20). We simulate 10,000 coupled sample paths with
the CFD, and the CRP methods. The finite-difference sensitivity estimators are applied
with a perturbation θ = 10−4 for each parameter value. The sensitivity measures are
provided in Table 12 and those calculated using the CFD method show that all parameters
have δmsqr > 0.2, being thus important enough, while the RRE sensitivity measures indicate
that the parameters β and γ are insignificant.

Table 12. Genetic toggle switch model: comparison of δmsqr.

Parameter
δmsqr

of CFD Sensitivity
δmsqr

of RRE Sensitivity

α1 2.22 0.89

β 0.6762 0

α2 4.21 0.31

γ 4.3 0

Employing the local sensitivity approximations, we compute the collinearity indices
for all the subsets of the parameter set {α1, α2, β, γ}. Tables 13–15 record the collinearity
indices for the pair, triple and quadruple subsets, respectively. No subset of parameters
exhibits collinearity based on the CFD, the CRP, and the CRN sensitivity estimations. We
conclude that all four parameters are identifiable for the stochastic discrete model. These
results are confirmed by the singular values computed with the CFD sensitivity estimator,
which are [32.21; 29; 12.18; 4]. Different values of the parameters for this model may yield
different results for estimability in the stochastic genetic toggle-switch system.

Table 13. Genetic toggle switch model: collinearity indices for pair subsets.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

α1 α2 1 1.01 1.72 2.22

γ α2 1.32 1.08 1.12 *

γ α1 1.27 1.17 1.07 *
β α2 1.01 1.1 1.56 *
β α1 1.00 1.35 2.13 *
β γ 1.19 1.25 1.1 *

The CME sensitivities with respect to parameters are estimated over 10,000 with the CFD and CRP methods and
perturbation θ = 10−4. *: Collinearity index does not exist.
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Table 14. Genetic toggle switch model: collinearity indices for triple subsets.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

β γ α1 1.38 1.37 2.46 *

β γ α2 1.42 1.25 1.80 *

β α1 α2 1.01 1.38 2.18 *

γ α1 α2 1.52 1.19 1.73 *
The CME sensitivities with respect to parameters are estimated over 10,000 with the CFD and CRP methods and
perturbation θ = 10−4. *: Collinearity index does not exist.

Table 15. Genetic toggle switch model: collinearity indices for the quadruple subset.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

β γ α1 α2 1.64 1.39 2.45 *
The CME sensitivities with respect to parameters are estimated over 10,000 with the CFD and CRP methods and
perturbation θ = 10−4. *: Collinearity index does not exist.

4. Discussion

Stochastic models of well-stirred biochemical processes provide a valuable frame-
work for capturing inherent variability at the cellular level when some molecular species
have low amounts. Chemical Master Equation is a frequently adopted stochastic discrete
model for such processes. By contrast, deterministic approaches are often not suitable
for modeling cellular systems as they fail to capture the intrinsic randomness observed
experimentally. Many models of realistic biochemical processes depend on a fairly large
number of parameters. The values of some of these parameters may be unknown and have
to be estimated. Parameter estimation is a critical step in modeling biochemical systems.
However, determining appropriate parameter values for stochastic discrete models of bio-
chemical networks poses many challenges. It is essential to determine the key parameters
which are identifiable from the experimental data, as well as those that cannot be reliably
estimated. For a subset of parameters to be practically identifiable, each parameter of
the subset should have a significant contribution to the system dynamics as well as the
parameters of the subset should not be correlated.

In this work, we propose a method for detecting collinearity in subsets of parameters
for the stochastic discrete model of the Chemical Master Equation, with the goal of finding
the parameter sets that exert the greatest influence on the biochemical system state. In ad-
dition, we introduce a technique for determining the highest parameter identifiable sets
for stochastic biochemical systems, by extending methods from deterministic models to
stochastic models. Our analysis is based on estimating the local sensitivities of the system
state with respect to the model’s parameters. This is achieved by utilizing finite-difference
approximations of the parameter sensitivities, specifically the Coupled Finite Difference,
the Common Reaction Path, and the Common Random Number schemes. Furthermore, we
examine the role of the singular value decomposition of the sensitivity matrix in identifying
parameters that are not collinear in stochastic models of biochemical systems. On one hand,
we showed that our practical identifiability method is accurate, by comparing the results
obtained in the deterministic and stochastic scenarios, on two biochemical systems of
practical importance, for which the deterministic model accurately describes the evolution
of the expected value of the stochastic system state. Excellent agreement among the various
approaches was obtained for these biochemical networks. On the other hand, we wish
to emphasize that, in general, a stochastic strategy for selecting identifiable parameter
sets should be considered, as it relies on more accurate and reliable estimations of the
parametric sensitivities for the widely applicable model of the Chemical Master Equation,
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compared to the deterministic reaction rate equations. The advantages of our approach over
the deterministic one were illustrated by the tests performed on a third model, a genetic
toggle switch system exhibiting an interesting multistable behavior. For this model, our
stochastic identifiability strategies display excellent performance, while the deterministic
techniques show their limitations, by not being able to assess the estimability of the model
parameters.

We expect the method to perform best on stochastic biochemical models with a mod-
erate number of reaction rate parameters. Specifying identifiable parameter subsets with
the tools provided above may be used to refine models, improve predictions, and study the
underlying biological processes under consideration.
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Appendix A

Table A1. Michaelis–Menten model: comparison of δmsqr for a 5% perturbation.

Parameter δmsqr

of CFD Sensitivity
δmsqr

of CRP Sensitivity
δmsqr

of CRN Sensitivity
δmsqr

of RRE Sensitivity

c1 1.03 1.04 1.04 1.07

c2 0.002 0.005 0.003 0.002

c3 1.22 1.23 1.23 1.29

Table A2. Michaelis-Menten model: collinearity indices for pair subsets. The CME sensitivities are
estimated over 10,000 trajectories with the CFD, CRN and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 3.43 2.18 2.59 4.85

c1 c3 2.21 2.13 2.13 2.17

c2 c3 1.67 1.48 1.49 1.87

Table A3. Michaelis–Menten model: collinearity indices for the triple subset. The CME sensitivities
are estimated over 10,000 trajectories with the CFD, CRN and CRP algorithms and a 5% perturbation.

Parameter Subset Collinearity Index
of CFD Sensitivity

Collinearity Index
of CRP Sensitivity

Collinearity Index
of CRN Sensitivity

Collinearity Index
of RRE Sensitivity

c1 c2 c3 4.08 2.78 3.4 5.3
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