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Abstract: Over the past few years, chaotic image encryption has gained extensive attention. Never-
theless, the current studies on chaotic image encryption still possess certain constraints. To break
these constraints, we initially created a two-dimensional enhanced logistic modular map (2D-ELMM)
and subsequently devised a chaotic image encryption scheme based on vector-level operations and
2D-ELMM (CIES-DVEM). In contrast to some recent schemes, CIES-DVEM features remarkable
advantages in several aspects. Firstly, 2D-ELMM is not only simpler in structure, but its chaotic
performance is also significantly better than that of some newly reported chaotic maps. Secondly, the
key stream generation process of CIES-DVEM is more practical, and there is no need to replace the
secret key or recreate the chaotic sequence when handling different images. Thirdly, the encryption
process of CIES-DVEM is dynamic and closely related to plaintext images, enabling it to withstand
various attacks more effectively. Finally, CIES-DVEM incorporates lots of vector-level operations,
resulting in a highly efficient encryption process. Numerous experiments and analyses indicate that
CIES-DVEM not only boasts highly significant advantages in terms of encryption efficiency, but it
also surpasses many recent encryption schemes in practicality and security.

Keywords: chaotic system; image encryption; hyperchaotic map; dynamic vector-level operations;
chaotic performance evaluation; security analysis

1. Introduction

In the current era of massive multimedia information, enormous volumes of multi-
media data are constantly being produced and then circulated through various channels,
such as the Internet and the Internet of Things (IoT). Among various forms of multimedia
data, digital images are the most frequently employed because they possess the capability
to intuitively and efficiently communicate information [1]. Significantly, in the present
open network environment, it is urgent to protect these rapidly spreading images more
efficiently and securely. Otherwise, catastrophic consequences, such as privacy leakages,
may occur [2]. As commonly acknowledged, data encryption is a relatively direct and ef-
fective way of safeguarding data. However, because images possess some inherent features
different from text, such as strongly correlated pixels, traditional encryption algorithms are
not well-suited for encrypting image data [3]. Consequently, image encryption research
utilizing new technologies and methods has been increasingly attracting attention from
researchers due to various reasons, such as privacy protection, commercial security, and
military security [4]. In the past few years, to offer more efficient and secure protection for
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image data, lots of new image encryption algorithms or schemes have been continuously
suggested [5–10]. For these newly proposed image encryption algorithms or schemes, this
paper will collectively refer to them as encryption schemes hereafter.

Due to their intrinsic characteristics, such as parameter sensitivity and ergodicity,
which coincidentally meet the construction requirements of cryptosystems, chaotic sys-
tems are utilized in almost one-third of non-traditional encryption schemes for image
security [11,12]. Here, we can list some examples of recently proposed representative
schemes. In [13], Pourasad et al. developed a chaos-based encryption scheme with wavelet
transforms. By employing chaotic sequences, they diffused the input image first and then
performed wavelet transformation and confusion operations on the diffused image. Fi-
nally, they obtained the ciphertext image through inverse wavelet transformations. In [14],
Xian et al. constructed a logistic map-based encryption scheme exploiting fractal sorting
matrices. Their scheme directly adopted the hash output of the input image to create key
components and then employed two consecutive rounds of scrambling and one round
of XOR diffusion to complete image encryption. In [15], a chaos-based scheme based on
image splitting was suggested by Kamal et al. This scheme first divided the input image
into blocks and then introduced zigzag scan, rotation and block permutation to achieve
the pixel scrambling. After being XORed with a chaotic matrix, the final ciphertext image
was generated to prevent possible unauthorized access. By employing a two-dimensional
(2D) logistic-sine map (2D-LSM), Hua et al. [16] designed an image encryption scheme
based on Latin squares. Their scheme incorporates point-to-point pixel scrambling and
cross-plane diffusion to complete image encryption. In [17], Li et al. suggested an image
encryption scheme based on DNA operations, which exploits non-adjacent blocks and
permutation blocks to scramble the input image and then employs dynamic bidirectional
diffusion to obtain the final ciphertext image. Similarly, considering the substitution effect
of dynamic DNA encoding, two image encryption schemes using scrambling and diffusion
architectures were proposed successively [18,19]. In [20], Feng et al. also developed an
image encryption scheme based on image filtering and discrete logarithm, in which image
filtering can diffuse a large number of pixels at the same time, and discrete logarithm
transformation exerts the encryption effect of pixel substitution. With the aid of the superb
randomness provided by chaotic sequences, the previously mentioned schemes, along with
other recently proposed ones, have exhibited rather effective encryption outcomes and
have successfully passed various common security tests [21,22].

Given the limitations of classical chaotic systems, there are also many researchers
dedicated to creating novel chaotic systems that can better fulfill the requirements of image
encryption [16,21,23–29]. In [23], Hua et al. suggested a two-dimensional (2D) modular
chaotification system (2D-MCS) to enhance the chaotic performance of existing maps. By
introducing two coupling parameters and the modulo one transformation, Ablay [24]
proposed a novel LE-enhanced chaotification model. This model can convert any two one-
dimensional (1D) chaotic maps into 2D chaotic maps with uniform trajectory distributions
and better chaotic performance. Similarly, by introducing a so-called buffeting parameter,
Zhang et al. [25] suggested a buffeting chaotification model (BCM). In [26], based on the
classic Hénon map, a 2D parametric polynomial chaotic system (2D-PPCS) was constructed.
The simulation experiments show that the chaotic performance of 2D-PPCS is better than
that of the Hénon map. By coupling the logistic map and cubic map, Nan et al. [28]
developed a logistic coupling cubic chaotic map (2D-LCCCM). Significantly, although
2D-LCCCM achieves better chaotic performance than two seed maps, its structure is very
complex, which is not conducive to engineering applications including image encryption.

As revealed by the latest cryptanalysis research results on chaotic image encryption,
some encryption schemes still possess the following problems [30–34]. First, the chaotic
performance of the exploited system is poor. For example, the chaotic range of the system
is discontinuous, and the trajectory distribution is not uniform. Second, the composition of
the secret key is unreasonable and poses practical problems. For instance, exploiting a hash
value directly as a key component brings key management difficulties. Third, the design
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of the encryption process is not rigorous, resulting in security flaws or low encryption
efficiency. Accordingly, to address the aforementioned shortcomings, we first constructed a
two-dimensional enhanced logistic modular map (2D-ELMM) and then developed a chaotic
image encryption scheme based on vector-level operations and 2D-ELMM (CIES-DVEM).
In brief, our study brings the following contributions and novelties:

(1) A robust 2D hyperchaotic map called 2D-ELMM is constructed, and its superiority is
confirmed through reliable chaos performance metrics such as sample entropy (SE)
and Kolmogorov entropy (KE).

(2) Based on the newly constructed 2D-ELMM, a novel image encryption scheme called
CIES-DVEM is developed, which incorporates dynamic vector-level operations that
help improve encryption efficiency and enhance security.

(3) Numerous simulation experiments and corresponding analyses demonstrate that
our newly developed CIES-DVEM not only boasts remarkably high security but also
exhibits a considerable advantage in terms of efficiency.

Our study is structured as follows for the remaining sections: In Section 2, 2D-ELMM
is introduced in detail, and its performance is evaluated and compared by exploiting several
chaos performance metrics. In Section 3, both the overall structure of CIES-DVEM and its
individual encryption steps are elaborately described. In Section 4, numerous simulation
experiments and corresponding analyses are presented to verify and highlight the security
and efficiency superiorities of CIES-DVEM; and Section 5 concludes our study.

2. Proposed 2D-ELMM

This section gives the definition of 2D-ELMM and utilizes common chaos metrics such
as Lyapunov exponent (LE), SE, and KE to evaluate its chaotic performance. Meanwhile,
in order to demonstrate the superiorities of 2D-ELMM, its experimental results are also
compared with five recently reported 2D chaotic maps.

2.1. Construction of 2D-ELMM

Classic chaotic maps like the logistic map and tent map have weaknesses such as
uneven trajectory distributions and discontinuous chaotic intervals, which cannot suf-
ficiently meet the needs of many applications, including image encryption. Moreover,
compared with 1D chaotic maps, high-dimensional hyperchaotic maps usually have more
complex chaotic behaviors. It should be pointed out that if a chaotic system has too many
dimensions, such as three or four, it may cause efficiency problems that are unacceptable
for many applications [4,35,36]. In recent times, an elevated number of researchers have
developed 2D chaotic maps by exploiting a variety of methods, such as coupling, cascading,
and combining, as illustrated in Table 1 [16,21,23,26,28,29].

Table 1. Five recently proposed leading 2D chaotic maps.

Reference Name Year Definition Ctrl. Parms.

[28] 2D-LCCCM 2022
{

xi+1 = cos(π2(4µxi(1− xi) + pyi(1− y2
i )) + π/2)

yi+1 = cos(π2(4µyi(1− yi) + pxi(1− x2
i+1)) + π/2)

µ, p

[29] 2D-SCMCI 2021
{

xi+1 = r sin(π((yi + h)k sin(aπ/xi)))
yi+1 = r sin(kxi+1 + h) sin(aπ/xi)))

r, h, k, a

[21] 2D-FOCM 2022
{

xi+1 = xi + (hv/(Γ(1 + v))) cos(2πxi/(2µx4
i − 1)− yi)

yi+1 = yi + (hv/(Γ(1 + v))) cos(µπxi+1 + yi)
h, v, µ

[16] 2D-LSM 2021
{

xi+1 = cos(4axi(1− xi) + b sin(πyi) + 1)
yi+1 = cos(4ayi(1− yi) + b sin(πxi) + 1)

a, b

[23] 2D-MCS 2020
{

xi+1 = −axi/(1 + y2
i ) mod N

yi+1 = (xi + byi) mod N
a, b, N

However, there is another issue with these newly reported maps: namely, their struc-
tures are still too complex for certain engineering implementations. Considering this, we
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built a novel hyperchaotic map called 2D-ELMM on the basis of existing maps, which is
presented below. {

xk = eaxk−1(ebyk−1 − 1) mod 1,

yk = ebyk−1(eaxk−1 − 1) mod 1,
(1)

where xk and yk represent the two outputs produced during the k-th iteration of 2D-ELMM,
while xk−1 and yk−1 indicate the corresponding two inputs. a and b are two control pa-
rameters adopted in 2D-ELMM. We designed these two parameters in an exponential
form, so that the trajectory of 2D-ELMM can rapidly diverge, resulting in a more excellent
chaotic performance. The purpose of modular operation is to confine the trajectory within
a predetermined scope. A straightforward structure similar to the logistic map can be ob-
served in 2D-ELMM, which is advantageous for engineering implementation and efficiency
enhancement. In fact, the 2D-ELMM not only has a simpler structure but also exhibits
outstanding chaotic performance, surpassing several newly reported leading chaotic maps.

2.2. Lyapunov Exponent

The indicator LE is extensively employed. By ascertaining if a system has an LE
above 0, one can infer whether the system is in a state of chaos [37]. Figure 1 provides
two 3D representations of LEs for 2D-ELMM. When a > 1 and b > 1, both LE values
are greater than 0, which means that 2D-ELMM is hyperchaotic. In addition, these two
values climb rapidly as a and b increase, and when (a, b) = (10, 10), the values reach as
high as 19.8770 and 10.0109, respectively. Consequently, when it comes to LE, 2D-ELMM
exhibits outstanding hyperchaotic dynamics, which is exactly what numerous engineering
applications, such as image encryption, demand.

(a) (b)

Figure 1. LE presentations for 2D-ELMM: (a) LE1; (b) LE2.

Additionally, comparative experiments were also conducted. The suggested values
from relevant literature were employed to configure the parameters in other maps during
these experiments [16,21,28,29]. In 2D-ELMM, b is set to 10. The experimental outputs in
Figure 2 show that 2D-ELMM has a continuous chaotic range, and both its LE values are
noticeably higher than those of other maps. In other words, 2D-ELMM is superior to these
most recent maps in regard to LE.
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(a)

(b)

Figure 2. LE comparison for 2D-ELMM and five other newly proposed 2D maps: (a) LE1; (b) LE2.

2.3. Bifurcation and Trajectory Diagrams

As a prominent graphical tool commonly employed to depict chaotic systems, bifurca-
tion diagrams can visually show whether the system is in a chaotic state. When drawing
bifurcation diagrams, researchers usually set different control parameters to track the state
evolution of chaotic systems within a certain range of parameters [38]. Figure 3 presents the
six bifurcation diagrams that we drew to confirm the trajectory distribution of 2D-ELMM.
As we can see, regardless of how a and b are changed, 2D-ELMM produces results that are
evenly spread across the entire value range. From the viewpoint of bifurcation diagrams, it
can be concluded that 2D-ELMM exhibits remarkable chaotic behavior.

(a) (b) (c)

(d) (e) (f)

Figure 3. Bifurcation diagrams of 2D-ELMM: (a) 2D diagram for xi when b = 10; (b) 2D diagram for
yi when b = 10; (c) 3D diagram for xi; (d) 2D diagram for xi when a = 10; (e) 2D diagram for yi when
a = 10; (f) 3D diagram for yi.
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Like the bifurcation diagram, the trajectory diagram is also often employed by scholars
to visually analyze the dynamics of a chaotic system. The output of a chaotic system is
hoped to be evenly distributed throughout the overall output space for various purposes,
such as image encryption. The six trajectory diagrams of 2D-ELMM can be found in
Figure 4. Obviously, we obtained similar experimental results: that is, the trajectory of
2D-ELMM is extremely evenly distributed throughout the output space.

(a) (b) (c)

Figure 4. Trajectory diagrams of 2D-ELMM: (a) (a, b) = (10, 10); (b) b = 10; (c) a = 10.

2.4. Sample Entropy

The self-similarity of time-series can be determined by sample entropy (SE). If the SE
value of the chaotic sequence generated by a chaotic system is relatively high, then this
system exhibits greater chaotic complexity [39]. Mathematically, we can calculate the SE
value of a chaotic sequence Q by exploiting the following equation.

SE(N, λ, d) = − ln(U(λ)/V(λ)), (2)

where N is the length of Q, d represents the dimension, λ denotes the threshold for similarity
comparison, and U and V are the numbers of the vectors that satisfy certain conditions.
Through Equation (2), we assessed the SE performance of 2D-ELMM together with five
other maps. Figure 5 illustrates the relevant experimental results. One can observe that
2D-ELMM’s SE values are significantly higher than those of other maps throughout the
entire parameter range. This suggests that 2D-ELMM’s SE performance is considerably
better in comparison to the other maps.

Figure 5. SE comparison for 2D-ELMM and five other newly proposed 2D maps.
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2.5. Kolmogorov Entropy

Kolmogorov entropy (KE) is an entropy capable of depicting the progression of a
dynamical system. A dynamical system is chaotic, and its trajectory becomes unpredictable
when it has a non-zero KE value. Furthermore, greater unpredictability and improved
chaotic complexity are indicated by a relatively larger KE value. For a phase space with d
dimensions, it is possible to divide it into a sequence of boxes (a0, a1, . . . , ad) measuring ε
in size and establish the definition of KE in the following way:

KE = − lim
t→0

lim
ε→0

lim
d→0

d−1t−1 ∑a0,a1 ...,ad
P(a0, a1, . . . , ad) ln P(a0, a1, . . . , ad). (3)

In Equation (3), t represents the delay, and P(a0, a1, . . . , ad) denotes the probability. In
order to verify the KE performance of 2D-ELMM, we carried out experiments on 2D-
ELMM and five other maps by leveraging the methodology presented in [40]. The relevant
experimental results are depicted in Figure 6. It is easy to observe that similar to SE, the KE
values of 2D-ELMM are considerably greater than those of the other five maps throughout
the entire parameter range. Moreover, 2D-ELMM exhibits the highest level of stability in
terms of KE.

Figure 6. KE comparison for 2D-ELMM and five other newly proposed 2D maps.

3. CIES-DVEM

To provide more confirmation and demonstration of 2D-ELMM’s exceptional perfor-
mance, a new image encryption scheme called CIES-DVEM was developed by exploiting
2D-ELMM. Figure 7 shows the encryption flowchart for CIES-DVEM. As depicted in
Figure 7, CIES-DVEM consists of eight encryption steps, which are referred to as the gen-
eration of key streams, hash value stacking, dynamic binary diffusion (row diffusion),
dynamic binary scrambling (column scrambling), dynamic binary scrambling (row scram-
bling), and dynamic binary diffusion (column diffusion). In subsequent subsections, we
will describe these encryption steps in detail.
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Figure 7. Encryption flowchart for CIES-DVEM.

3.1. Generation of Key Streams

In our CIES-DVEM, a raw sequence Q(0) is first created by applying the secret key
K = {x0, y0, a, b}. To put it differently, the initial step is to utilize K for iterating 2D-ELMM,
thereby producing Q(0) of length

L = M + N + 2× α. (4)

In Equation (4), M and N represent the number of rows and columns of the image that is to
be encrypted, and α = M× N. Note that Q(0) is formed by interleaving the state values
obtained by each iteration of 2D-ELMM; that is, Q(0) = (x1, y1, x2, y2, x3, y3, . . . ).

Then, Q(0) is converted into the key streams Q(1), Q(2), Q(3), Q(4), Q(5), and Q(6),
which are required for each encryption step. Specifically, the conversion process for CIES-
DVEM’s key streams is as follows.

Q(1) =
⌊

Q(0)(1 : M)× 1015
⌋

mod 256, (5)

Q(2) =
⌊

Q(0)(M + 1 : M + N)× 1015
⌋

mod 256, (6)

Q(3) =
⌊

Q(0)(M + N + 1 : M + N + α)× 1015
⌋

mod 256, (7)
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Q(4) =
⌊

Q(0)(M + N + α + 1 : M + N + 2× α)× 1015
⌋

mod 256, (8)

Q(5) = Q(0)(M + N + 1 : 3×M + 3× N), (9)

Q(6) = Q(0)(M + N + α + 1 : 3×M + 3× N + α), (10)

where bxc returns the largest integer less than x.

3.2. Hash Value Stacking

Previous studies have shown that the inability to resist plaintext attacks, especially
chosen-plaintext attacks, is the most significant reason why many image encryption
schemes are vulnerable to being cracked [30–33]. Accordingly, in order to increase CIES-
DVEM’s plaintext sensitivity and enhance its ability to resist plaintext attacks, we perform
an operation called hash value stacking on the plaintext image prior to executing scram-
bling and diffusion operations. Algorithm 1 gives the pseudocode for hash value stacking.
In Algorithm 1, utilizing the 32 bytes of hash value V(0), we first determine the modular
sum v(s) and byte-by-byte bitwise XOR result v(x) of these bytes. Next, two matrices U(s)

and U(x) related to V(0) are constructed based on the key streams Q(1) and Q(2). Finally,
the output C(1) of this encryption step is obtained by stacking U(s) and U(x) onto P in a
modular addition manner.

Algorithm 1 Hash value stacking algorithm

Input: The plaintext image P and its SHA-256 hash value V(0) of length 32 bytes, and the

key streams Q(1) and Q(2).

1: Set both v(s) and v(x) to 0;

2: for i = 1 to 32 do

3: v(s) = (v(s) + V(0)(i)) mod 256;

4: v(x) = v(x) ⊕V(0)(i);

5: end for

6: Set U(x) = transpose(Q(1))×Q(2);

7: Set U(s) = v(s) ×U(x);

8: U(x) = v(x) ×U(x);

9: Set C(1) = (P + U(s) + U(x)) mod 256

Output: The intermediate ciphertext image C(1).

3.3. Dynamic Binary Diffusion

Diffusion is a fundamental design principle that designers must adhere to when
developing robust cryptosystems [41,42]. Notably, many new image encryption schemes
have been broken due to weak diffusion processes. Actually, the fixed and single diffusion
methods employed by these schemes are a significant factor contributing to this situation.
In light of this, an encryption step called dynamic binary diffusion is devised in CIES-
DVEM to overcome these shortcomings. A straightforward instance of dynamic binary
diffusion is illustrated in Figure 8.

From this example, it can be seen that the input image is first logically and dynamically
divided into two partitions. Then, these two partitions are diffused in two different ways.
The left partition is diffused at the row level by employing modular addition, while the
right partition is diffused in the form of bitwise XOR. Algorithm 2 gives the pseudocode for
dynamic binary diffusion. In Algorithm 2, +̇ represents modular addition with a modulus
of 256, while ⊗ stands for the Hadamard product. The boundary of partitioning the input
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image C(1) is dynamically determined by r(p), which in turn depends on v(x) and Q(3).
Since v(x) is a plaintext-related parameter obtained in hash value stacking, the dynamic
binary partition helps to enhance plaintext relevance. Additionally, the two partitions are
diffused in different ways, which further enhances the security of CIES-DVEM. Note that
what we describe here is the row diffusion version of dynamic binary diffusion. Since the
column diffusion version is highly similar, it is omitted here for brevity.

Input image C
 (1)

Dynamic

binary partition

Row-level 

addition diffusion

80 32 ... ... 89

98 132 ... ... 91

... ... ... ... ...

... ... ... ... ...

4 152 ... ... 92

80 32 ... ... 89

98 132 ... ... 91

... ... ... ... ...

... ... ... ... ...

4 152 ... ... 92

80 32 ... ... 89

98 132 ... ... 91

... ... ... ... ...

... ... ... ... ...

4 152 ... ... 92

80 32 ... ... 89

98 132 ... ... 91

... ... ... ... ...

... ... ... ... ...

4 152 ... ... 92

Row-level 

XOR diffusion

136 30 ... ... 89

251 72 ... ... 91

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 92

Partitioned C
 (1)

 Left partition diffused  

Output image C
 (2)

 

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12

Figure 8. Flowchat of dynamic binary diffusion.

Algorithm 2 Dynamic binary diffusion algorithm

Input: The input image C(1), v(x) and U(x) obtained in hash value stacking, and the key

streams Q(3).

1: Get the height M and width N of C(1);

2: Reshape Q(3) into a matrix of size M× N;

3: Set r(p) = ((v(x) + Q(3)(1, 1)) mod bN/8c) + bN/2c;
4: Set R(t) = 1 : r(p);

5: Set C(2) ∈ NM×N ;

6: C(2)(1, R(t))=C(1)(1, R(t))+̇Q(3)(1, R(t))⊗U(x)(1, R(t))+̇Q(3)(M, R(t))⊗U(x)(2, R(t));

7: C(2)(2, R(t))=C(1)(2, R(t))+̇Q(3)(2, R(t))⊗C(2)(1, R(t))+̇Q(3)(1, R(t))⊗U(x)(3, R(t));

8: for i = 3 to M do

9: C(2)(i, R(t))=C(1)(i, R(t))+̇Q(3)(i, R(t))⊗C(2)(i−1, R(t))+̇Q(3)(i−1, R(t))⊗C(2)(i−2, R(t));

10: end for

11: R(t) = (r(p) + 1) : N;

12: C(2)(1, R(t)) = C(1)(1, R(t))⊕Q(3)(1, R(t))⊕ C(1)(M, R(t));

13: for i = 2 to M do

14: C(2)(i, R(t)) = C(1)(i, R(t))⊕Q(3)(i, R(t))⊕ C(2)(i− 1, R(t));

15: end for

Output: The intermediate ciphertext image C(2).
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3.4. Dynamic Binary Scrambling

Similar to dynamic binary diffusion, dynamic binary scrambling enhances the plaintext
relevance of CIES-DVEM by incorporating a dynamic nature, thereby overcoming the
weaknesses in some existing schemes. As we have already described the row diffusion
version of dynamic binary diffusion in the previous subsection, we will introduce the
column scrambling version of dynamic binary scrambling here and omit the highly similar
row scrambling version. Figure 9 provides a concise example of dynamic binary scrambling.

Input image C
 (2)

Dynamic binary partition

Partitioned C
 (2)

 

Top partition scrambled 

Exchange

Column scrambling

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12

... ... ... ... ...

168 193 ... ... 12

136 30 ... ... 109

251 72 ... ... 140

... ... ... ... ...

... ... ... ... ...

168 193 ... ... 12
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Exchanged C
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108 20 ... ... 192

... ... ... ... ...

... ... ... ... ...
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... ... ... ... ...

... ... ... ... ...

23 152 ... ... 40
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251 72 ... ... 140

... ... ... ... ...

Column

scrambling

Output image C
 (3)

Figure 9. Flowchat of dynamic binary scrambling.

As can be observed, the first step is to dynamically divide the input image into
two partitions. Next, the two partitions are exchanged. Finally, column scrambling is
performed on the top and bottom partitions, respectively, so as to obtain the output image
of this encryption step. The pseudocode for dynamic binary scrambling is presented in
Algorithm 3.

Note that our proposed CIES-DVEM is structurally symmetric. Thus, the decryption
process of CIES-DVEM is the inverse of its encryption one. To maintain conciseness, a
repetitive description of this inverse process is omitted here.



Entropy 2023, 25, 1147 12 of 23

Algorithm 3 Dynamic binary scrambling algorithm

Input: The input image C(2), v(x) obtained in hash value stacking, and the key streams

Q(3)(1, 3) and Q(5)(1 : 2× N).

1: Get the height M and width N of C(2);

2: Set r(p) = ((v(x) + Q(3)(1, 2)) mod bM/8c) + bM/2c;
3: Set C(3) ∈ NM×N ;

4: C(3)(1 : r(p), :) = C(2)(M− r(p) + 1 : M, :)

5: C(3)(r(p) + 1 : M, :) = C(2)(1 : M− r(p), :)

6: Set C(t) = C(3)(1 : r(p), :);

7: Sort Q(5)(1 : N) to get the index vector R(x).

8: for i = 1 to N do

9: C(3)(1 : r(p), R(x)(i)) = C(t)(:, i);

10: end for

11: Set C(t) = C(3)(r(p) + 1 : M, :);

12: Sort Q(5)(N + 1 : 2× N) to get the index vector R(x).

13: for i = 1 to N do

14: C(3)(r(p) + 1 : M, R(x)(i)) = C(t)(:, i);

15: end for

Output: The output image C(3).

4. Simulation Experiments

To confirm and emphasize the advantages of CIES-DVEM over some recent advanced
encryption schemes, we conducted numerous simulation experiments across eight cate-
gories. These experiments include visual effect experiments, key analysis experiments,
plaintext sensitivity analysis experiments, and other simulation experiments aimed at
evaluating security and efficiency. During the completion of these experiments, we utilized
the experimental platform MATLAB R2017a along with hardware components such as
the Xeon processor E3-1231 v3 and 8 GB of memory. Moreover, the experimental images
utilized were chosen from The USC-SIPI Image Database.

4.1. Visual Effect

To be considered a viable image encryption scheme, it is imperative that the scheme has
the capability to convert natural images with diverse styles into unidentifiable images that
resemble random noise. This means that no useful information can be extracted from the
encrypted image without the correct key. To exhibit the encryption and decryption effects
of CIES-DVEM, four grayscale and color images with various styles were chosen. Figure 10
depicts the outcomes of our experiments. As one can see, the discernible patterns in
natural images are entirely eradicated after CIES-DVEM conducts its encryption processing.
However, as long as the correct key is provided, CIES-DVEM is able to convert these
unidentifiable encrypted images back to their original plaintext forms with all visual details
intact. Accordingly, from a visual perception perspective, CIES-DVEM can effectively
protect plaintext images.
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(a) (b) (c)

Figure 10. Encryption and decryption effects of CIES-DVEM: (a) plaintext images; (b) encrypted
images; (c) decrypted images.

4.2. Key Space Analysis

Cryptosystems can be subjected to diverse forms of attack; however, the most prevalent
type of attack is brute-force attack. Possessing a key space that is sufficiently large, typically
no smaller than 2128, is a crucial feature for competent cryptosystems to effectively counter
brute-force attacks [43,44]. In our proposed CIES-DVEM, the secret key comprises four
components, which are x0, y0, a, and b, as explained in Section 1. Assuming that the
computer’s effective representation precision is 10−15, then the size of CIES-DVEM’s key
space is

S(k) = S(x0) × S(y0) × S(a) × S(b) = 8.1× 1061 ≈ 2205. (11)

Obviously, S(k) is far greater than 2128. Hence, CIES-DVEM’s key space is large enough to
effectively resist brute-force attacks.

4.3. Key Sensitivity Analysis

As per Shannon’s suggestion, the correlation between the secret key and the cipher-
text should be highly intricate in terms of statistics [43,44]. Accordingly, any encryption
scheme that is competent should feature an exceedingly high level of sensitivity to its
secret key. This means that even if the secret key undergoes minimal changes, the re-
sulting ciphertext image should also vary significantly as a result. To examine the key
sensitivity of CIES-DVEM, we first generated a random secret key K̂ = {x̂0, ŷ0, â, b̂} =
{0.367112131687560, 0.175914170315092, 0.409479374333251, 0.912336229763019}. Then,
each component of this secret key was minimally modified. Ultimately, these modified
secret keys were employed to encrypt the same experimental image, and the difference
between each encrypted image and the original one was calculated. The final experimental
results can be found in Figure 11. As one can see, a minor alteration in any of the key
components results in a completely distinct encrypted image. This indicates that our pro-
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posed CIES-DVEM features extremely high key sensitivity and can satisfy the confusion
requirement for robust cryptosystems proposed by Shannon.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Key sensitivity experimental results: (a) 5.1.14; (b) ciphertext obtained by x̂0 = x̂0 + 10−15;
(c) ŷ0 = ŷ0 + 10−15; (d) â = â + 10−15; (e) b̂ = b̂ + 10−15; (f) ciphertext of (a); (g) difference between
(f) and (b); (h) difference between (f) and (c); (i) difference between (f) and (d); (j) difference between
(f) and (e).

4.4. Plaintext Sensitivity Analysis

Among various types of attacks, differential attacks are widely considered to be the
most threatening. When carrying out differential attacks, attackers often analyze the
mathematical relationship between plaintext variations and their corresponding ciphertext
variations and then try to break the cryptosystem. Accordingly, a reliable image encryption
scheme should exhibit a high level of sensitivity to minor modifications in the plaintext
image. To assess the sensitivity of CIES-DVEM when there is a single minimal change in
a plaintext image, we modified two pixel bits in 5.1.09. In the first round of modification,
the lowest bit of the pixel located in (1, 1) was modified. Similarly, in the second round of
modification, the lowest bit of the pixel located in (256, 256) was modified. The relevant
experimental findings are shown in Figure 12. As can be observed, the two difference
images between two modified images and 5.1.09 are almost all-zero images, since they
differ from 5.1.09 by just one pixel bit each. Notably, even though each modified image
only differs by one pixel bit, the encrypted images that correspond to the modified image
present fairly significant variations, and the difference images obtained are exceedingly
similar to noise images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Plaintext sensitivity experimental results: (a) 5.1.09; (b) one pixel bit modified at (1, 1);
(c) one pixel bit modified at (256, 256); (d) difference between (a) and (b); (e) difference between
(a) and (c); (f) ciphertext of (a); (g) ciphertext of (b); (h) ciphertext of (c); (i) difference between
(f) and (g); (j) difference between (f) and (h).
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Moreover, we also conducted quantitative analyses of CIES-DVEM’s plaintext sen-
sitivity to enable a more objective and accurate assessment of its performance. In our
experiments, two popular indicators were introduced to measure the variations in images.
One of these indicators is the number of pixels change rate (NPCR), which can reflect
the change rate of pixels in the form of a percentage. The following is the mathematical
definition of NPCR between the images M1 and M2:

NPCR(M1, M2) =
H

∑
a=1

W

∑
b=1

D(a, b)/(H ×W)× 100%, (12)

where H represents the height of these images, W denotes the width of these images, and
D(a, b) is the difference between M1(a, b) and M2(a, b). If M1(a, b) = M2(a, b), D(a, b) = 0;
otherwise, D(a, b) = 1. Another indicator that we adopted is the unified average changing
intensity (UACI). Similar to NPCR, UACI provides the average intensity of pixel changes
as a percentage, which can be calculated as follows:

UACI(M1, M2) =
H

∑
a=1

W

∑
b=1

|M1(a, b)−M2(a, b)|
255× H ×W

× 100%. (13)

We employed 10 experimental images to quantitatively analyze the plaintext sensitivity of
CIES-DVEM. The experimental results obtained are listed in Tables 2 and 3. As one can see,
in all six encryption schemes, the two average values (99.6095 and 33.4633) obtained by
CIES-DVEM are the closest to the ideal values (99.6094 and 33.4635) and also exhibit the
highest level of stability (0.0087 and 0.0406). Hence, CIES-DVEM does possess outstanding
plaintext sensitivity and can effectively withstand different types of differential attacks.

Table 2. NPCR results of CIES-DVEM and other scheme (%).

Size Filename CIES-
DVEM [17] [18] [20] [16] [19]

256× 256 5.1.10 99.6124 99.5743 99.5850 99.6094 99.6002 99.6201
5.1.11 99.5956 99.6323 99.5956 99.6189 99.6023 99.5926
5.1.12 99.6108 99.6424 99.5758 99.6178 99.5809 99.5941
5.1.13 99.6109 99.5972 99.6048 99.5956 99.5926 99.5987
5.1.14 99.6078 99.6429 99.6124 99.6075 99.6165 99.5895

512× 512 5.2.09 99.6170 99.5941 99.5956 99.5850 99.5928 99.6124
7.1.01 99.6048 99.6353 99.5953 99.6006 99.6181 99.6067
7.1.02 99.6246 99.6002 99.6002 99.6170 99.6040 99.6007
7.1.03 99.5972 99.6025 99.6220 99.6281 99.6054 99.6021

Boat.512 99.6140 99.6128 99.6197 99.6178 99.6152 99.6133
Average 99.6095 99.6134 99.6006 99.6098 99.6028 99.6030
Std. Dev. 0.0087 0.0236 0.0146 0.0129 0.0119 0.0100

Table 3. UACI results of CIES-DVEM and other scheme (%).

Size Filename CIES-
DVEM [17] [18] [20] [16] [19]

256× 256 5.1.10 33.4835 33.4260 33.4917 33.4801 33.3818 33.4701
5.1.11 33.3793 33.4607 33.3859 33.5077 33.4919 33.4787
5.1.12 33.4883 33.4216 33.3798 33.4835 33.4507 33.4670
5.1.13 33.4421 33.4792 33.5620 33.5054 33.3901 33.4727
5.1.14 33.4086 33.4775 33.6904 33.4667 33.4541 33.5750
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Table 3. Cont.

Size Filename CIES-
DVEM [17] [18] [20] [16] [19]

512× 512 5.2.09 33.4727 33.4426 33.4174 33.4687 33.5047 33.4473
7.1.01 33.5037 33.4934 33.4885 33.4514 33.4971 33.5300
7.1.02 33.4961 33.3665 33.4248 33.4628 33.5180 33.3661
7.1.03 33.4773 33.5255 33.4990 33.5650 33.4791 33.5262

Boat.512 33.4814 33.4722 33.5334 33.4590 33.4627 33.4727
Average 33.4633 33.4565 33.4873 33.4850 33.4630 33.4806
Std. Dev. 0.0406 0.0445 0.0941 0.0338 0.0461 0.0559

4.5. Histogram Analysis

Regarding pixel distribution, plaintext images typically exhibit notable features. Un-
doubtedly, to prevent information leakage, it is important for an encryption scheme to
maintain a uniform distribution of ciphertext pixels. In our experiments, histograms are
utilized to visually depict the distributions of pixels in images. The relevant histogram
analysis results are illustrated in Figure 13. Upon observation, it can be discerned that
the distributions of pixels in natural images are remarkably uneven, and the features
within them are highly distinct. However, following the encryption transformation of
CIES-DVEM, the pixel distributions become highly uniform, leaving no notable features.
Thus, CIES-DVEM has the capability to effectively defend against different attacks that rely
on pixel distribution.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 13. Histogram analysis results for CIES-DVEM: (a1) 5.1.12; (b1) histogram for (a1); (c1) ci-
phertext of (a1); (d1) histogram for (c1); (a2) 5.1.09; (b2) histogram for (a2); (c2) ciphertext of (a2);
(d2) histogram for (c2); (a3) boat.512; (b3) histogram for (a3); (c3) ciphertext of (a3); (d3) histogram
for (c3).
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4.6. Correlation Analysis

Adjacent pixels in plaintext images exhibit noteworthy correlations. Hence, a sug-
gested encryption scheme should entirely eradicate such correlations. The ability of CIES-
DVEM to eliminate the correlations is depicted in Figure 14. By observing Figure 14, it can
be clearly seen that in three plaintext images, adjacent pixels in three (Horizontal, Vertical,
and Diagonal) directions have strong correlations close to 1. However, in the three cipher-
text images constructed by CIES-DVEM, such strong correlations no longer exist. The pixel
correlations in all directions are extremely close to 0. In other words, CIES-DVEM does
have exceptional performance in eliminating strong correlations between adjacent pixels.

(a) (b) (c) (d)

Figure 14. Visual representations of pixel correlations for plaintext and encrypted images: (a) three
plaintext images; (b) correlation representations of (a); (c) encrypted images of (a); (d) correlation
representations of (c).

To further assert the superiority of CIES-DVEM, we performed supplementary quan-
titative analyses by introducing the correlation coefficient (CC). Mathematically, one can
employ the following definition to calculate CC:

CC =
E((Va − E(Va))(Vb − E(Vb)))√

D(Va)D(Vb)
. (14)

In Equation (14), E(V) denotes the expectation of V, whereas D(V) stands for the variance
of V. In addition, Va and Vb represent the values of two adjacent pixels. After conducting
numerous experiments, we finally obtained the results that are listed in Table 4. Observing
the results, it can be inferred that the quantitative analysis results are entirely consistent
with the findings of the graphical analysis. All of the images exhibit extremely high
CC values prior to encryption. However, following encryption, the CC values across all
directions are significantly reduced to almost negligible levels close to 0.
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Table 4. Quantitative analysis results by employing CC.

Size Filename
Plaintext Ciphertext

H V D H V D

256× 256 5.1.10 0.8679 0.9095 0.8161 0.0008 0.0020 −0.0008

5.1.12 0.9709 0.9558 0.9397 −0.0024 0.0007 0.0018

5.1.14 0.9709 0.9558 0.9397 −0.0013 0.0003 0.0014

512× 512 5.2.09 0.8622 0.9037 0.8024 −0.0021 0.0003 −0.0010

7.1.01 0.9217 0.9640 0.9063 −0.0022 −0.0009 0.0013

boat.512 0.9679 0.9379 0.9268 0.0023 0.0019 −0.0024

1024× 1024 5.3.02 0.9003 0.9158 0.8476 0.0020 −0.0019 0.0017

7.2.01 0.9505 0.9630 0.9435 0.0015 0.0009 −0.0018

testpat.1k 0.8242 0.7458 0.7146 −0.0009 0.0009 −0.0012

4.7. Information Entropy Analysis

Information entropy can serve as a representation for the distribution and randomness
of signal sources, which in turn can assist in verifying the encryption schemes’ security. For
encrypted images with an 8-bit depth, having an entropy value of 8 would be the most
optimal. In mathematical terms, one can calculate information entropy through

I(ψ) = −
M

∑
k=1

ρ(ψk) log2 ρ(ψk). (15)

In Equation (15), the quantity of symbols ψ is M, while ρ(ψk) represents the probability
of ψk. As for an encrypted image, a higher entropy value indicates that the randomness
of its pixels is greater and the distribution of the pixels is more even. Table 5 lists the
entropy values of ten frequently utilized experimental images and their corresponding
encrypted counterparts. It can be observed that the entropy values of all plaintext images
are comparatively low. Nevertheless, the ciphertext images created by CIES-DVEM exhibit
entropy values that are in close proximity to the optimal value of 8. Hence, the cipher-
text images produced by CIES-DVEM are characterized by outstanding randomness and
uniform distribution.

Table 5. Information entropy experimental outcomes for CIES-DVEM.

Size Filename Plaintext Ciphertext

512× 512 5.2.08 7.2010 7.9994

5.2.10 5.7056 7.9992

7.1.02 4.0045 7.9994

7.1.04 6.1074 7.9994

7.1.06 6.6953 7.9993

7.1.08 5.0534 7.9994

ruler.512 0.5000 7.9993

1024× 1024 5.3.01 7.5237 7.9998

5.3.02 6.8303 7.9999

7.2.01 5.6415 7.9998



Entropy 2023, 25, 1147 19 of 23

Moreover, we also conducted comparative experiments. The pertinent findings from
our experiments are provided in Table 6. As we can see, each scheme has attained an
entropy value that is almost equal to 8. This suggests that these schemes demonstrate
strong performance regarding randomness and distribution uniformity. Significantly, CIES-
DVEM has achieved the highest entropy value, thereby further proving its superiority.

Table 6. Entropy values of different Lena ciphertext images.

Scheme Inf. Entropy

CIES-DVEM 7.9994

[17] 7.9993

[18] 7.9976

[20] 7.9993

[16] 7.9992

[19] 7.9992

4.8. Robustness Analysis

While transmitting ciphertext images, it is likely that some data may become lost or
corrupted, and if a malicious attack occurs, these ciphertext images may also undergo
similar damage [3]. Accordingly, for the purpose of investigating the robustness of CIES-
DVEM, we intentionally processed the encrypted image produced by CIES-DVEM. In
Figure 15, the experimental outcomes for four encrypted images losing approximately 14%
to 50% of their pixels are shown in the first two rows. Upon observation, we can discover
that the loss of a large amount of data makes the decrypted image blurry, but it does not
prevent us from perceiving the majority of visual information from it. Similarly, when we
intentionally add varying intensities of salt and pepper noise (0.03/0.06/0.09/0.12) to the
encrypted image, CIES-DVEM is also able to effectively reconstruct most of the patterns
contained in the plaintext image. Thus, one can derive the conclusion that CIES-DVEM
boasts excellent robustness and can efficiently withstand malicious attacks that result in
data loss or corruption.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 15. Cont.
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(a5) (a6) (a7) (a8)

(b5) (b6) (b7) (b8)

Figure 15. Robustness analysis results for CIES-DVEM: (a1)–(a4) are four encrypted images with
data missing from different locations; (b1)–(b4) are decrypted images for (a1)–(a4); (a5)–(a8) are
four encrypted images with salt and pepper noise intensities of 0.03/0.06/0.09/0.12, respectively;
(b5)–(b8) are decrypted images for (a5)–(a8).

4.9. Efficiency Analysis

Undoubtedly, a qualified encryption scheme must possess exceptionally high en-
cryption efficiency while ensuring security; otherwise, it would be unsuitable for today’s
high-throughput application environments. Accordingly, we implemented several targeted
measures in the design of CIES-DVEM to guarantee its encryption efficiency. Firstly, we
optimized the method of utilizing the hash value, allowing for the chaotic sequences to
be created beforehand and eliminating the need to constantly replace chaotic sequences.
Secondly, we boosted the efficiency of using chaotic sequences. To encrypt an image of
size M× N, CIES-DVEM only requires the employing of sequences with a total length of
M + N + 2×M× N, which is superior to many recent encryption schemes. Finally, we
introduced many vector-level operations in the encryption process instead of pixel-level or
bit-level operations commonly adopted in other encryption schemes, which further opti-
mizes the encryption efficiency significantly. Table 7 presents the times and throughputs
achieved by CIES-DVEM and five other recent schemes. As one can observe, for images of
each common size, CIES-DVEM requires the shortest average encryption time and attains
the highest average encryption speed.

Table 7. Times (throughputs) achieved by CIES-DVEM and five recent schemes.

Size 256 × 256 512 × 512 1024 × 1024 Average

CIES-DVEM
0.0203 s 0.0878 s 0.3755 s –

(24.6305 Mbps) (22.7790 Mbps) (21.3049 Mbps) (22.9048 Mbps)

[17]
0.0768 s 0.3213 s 1.3806 s –

(6.5104 Mbps) (6.2247 Mbps) (5.7946 Mbps) (6.1766 Mbps)

[18]
0.1524 s 0.6313 s 2.5712 s –

(3.2808 Mbps) (3.1681 Mbps) (3.1114 Mbps) (3.1868 Mbps)

[45]
0.0915 s 0.4088 s 2.0314 s –

(5.4645 Mbps) (4.8924 Mbps) (3.9382 Mbps) (4.7650 Mbps)

[19]
0.4341 s 1.7586 s 7.1223 s –

(1.1518 Mbps) (1.1373 Mbps) (1.1232 Mbps) (1.1374 Mbps)

[46]
0.0800 s 0.4842 s 2.2848 s –

(6.2500 Mbps) (4.1305 Mbps) (3.5014 Mbps) (4.6273 Mbps)
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5. Conclusions

In this study, to tackle the flaws found in certain advanced image encryption schemes,
we first established a strong 2D hyperchaotic map called 2D-ELMM. With the help of a
series of chaos evaluation metrics, including LE, SE, and KE, the superiority of 2D-ELMM
was confirmed. Related experiments and analyses indicate that 2D-ELMM possesses a
simple structure, a wide range of hyperchaos, a uniform trajectory distribution, a fast
trajectory divergence rate, and excellent chaotic performance. Consequently, it is highly
suitable for image encryption.

Moreover, by exploiting 2D-ELMM and dynamic vector-level operations, we further
devised a novel and efficient image encryption scheme named CIES-DVEM. This suggested
CIES-DVEM consists of eight encryption steps, which are the generation of key streams,
hash value stacking, two rounds of dynamic binary diffusion, and four rounds of dynamic
binary scrambling. In CIES-DVEM, the first encryption step generates a chaotic sequence
that corresponds to the secret key and converts it into the key streams needed for the
following encryption steps. Hash value stacking takes the hash value of the input image
and the key streams to generate two matrices. These matrices are then stacked onto
the input image. Dynamic binary diffusion and dynamic binary scrambling introduce
plaintext-related parameters to dynamically divide the intermediate ciphertext image into
two partitions and then diffuse and scramble them in different ways. Note that unlike some
existing algorithms, both the diffusion operations and the scrambling operations adopted in
CIES-DVEM are dynamic depending on the plaintext. Therefore, CIES-DVEM has excellent
plaintext sensitivity and can effectively resist various plaintext attacks. Moreover, all
encryption steps in CIES-DVEM are not pixel- or bit-level but vector-level, so CIES-DVEM
achieves superior encryption efficiency beyond most existing encryption schemes. As
demonstrated by numerous experiments and analyses carried out afterwards, CIES-DVEM
not only has great advantages in terms of encryption efficiency, but it also outperforms
many recent schemes in practicality and security.

In the future, we will continue to enhance and optimize the proposed CIES-DVEM. For
instance, a specific encryption step may be introduced to acquire plaintext features instead
of relying on the SHA-256 hash function. Furthermore, our future research will try to
introduce techniques such as compressed sensing, regions of interest, and neural networks.
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