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Abstract: Increasing wealth inequality is a significant global issue that demands attention. While the
distribution of wealth varies across countries based on their economic stages, there is a universal
trend observed in the distribution function. Typically, regions with lower wealth values exhibit
an exponential distribution, while regions with higher wealth values demonstrate a power-law
distribution. In this review, we introduce measures that effectively capture wealth inequality and
examine wealth distribution functions within the wealth exchange model. Drawing inspiration from
the field of econophysics, wealth exchange resulting from economic activities is likened to a kinetic
model, where molecules collide and exchange energy. Within this framework, two agents exchange a
specific amount of wealth. As we delve into the analysis, we investigate the impact of various factors
such as tax collection, debt allowance, and savings on the wealth distribution function when wealth
is exchanged. These factors play a crucial role in shaping the dynamics of wealth distribution.

Keywords: wealth inequality; poverty; income distribution; power-law; scaling; saving; debt; tax

1. Introduction

The distribution of wealth or income has become a prominent subject in economics
and econophysics, drawing increased attention to the global income inequality issue and
potential policy solutions. According to Pareto’s law, approximately 20% of the population
possesses about 80% of the total societal wealth. Pareto also observed that the distribution
function of individual income in Italy conforms well to the power law (Pareto, 1897) [1].
Gibrat, on the other hand, proposed that income follows a lognormal distribution, assum-
ing multiplicative stochastic processes for income changes (Gibrat, 1931) [2]. Mandelbrot
introduced the Pareto–Levy law of income distribution, noting that the Pareto–Levy Marko-
vian process can be approximated by a random walk of the logarithm of income for higher
income ranges [3]. Recent research by Piketty and Saez reveals that wealth inequality has
been progressively widening in the United States and Europe since 1950 [4].

Angle (1986) investigated the distribution function of individual wealth [5]. It was
found that size distributions of wealth across societies with varying levels of technology
can be effectively represented by a family of gamma distributions [6]. Lux introduced
Angle’s pioneering work in the field of econophysics [7]. However, the analysis of wealth
distribution poses challenges due to the scarcity of personal wealth data. Although the
available wealth data exhibit qualitative similarities to income data, they demonstrate a
lower exponent in the tail distribution, indicating higher levels of inequality [8]. In a study
by Souma, the Japanese personal income distribution was analyzed for 112 years in the
high-income range and 44 years in the middle-income range [9]. The findings revealed
that the income distribution followed a log-normal distribution with a power-law tail, but
it exhibited variations from year to year. Aoyama et al. examined income and income
tax distribution data for individuals in Japan during the fiscal year 1998, as well as the
distribution of debts owed by bankrupt companies from 1997 to March 2000. Their analysis
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indicated that both datasets follow a power law, with a Pareto exponent close to −2 based
on rank-size plots [10].

Dragulescu and Yakovenko examined wealth and income distribution data obtained
from the Bureau of Census in the United Kingdom and the International Revenue Service in
the United States. Their findings revealed that most of the population could be characterized
by an exponential distribution, while the upper tail of the distribution followed a power
law pattern [11,12]. Similarly, Banerjee et al. (2006) conducted an analysis of personal
income distribution data obtained from the Australian Bureau of Statistics. They concluded
that an exponential function provides a suitable description for approximately 98% of the
population in the lower segment of the distribution [13].

The analogy between the exchange of money in economic activity and the exchange
of energy in the physical impact of gas molecules has been explored by some statistical
physicists. The field of econophysics suggests that the distribution of wealth is influenced
by the exchange of wealth or income between economic agents, much like the exchange
of energy between gas molecules during collisions in the kinetic theory of gases. Just as
the collision of gas molecules leads to an equilibrium state, the exchange of money in an
economic system contributes to the distribution of income.

Recently, several models have been proposed that focus on pairwise transactions
resulting in money transfers between individuals. These models operate under the as-
sumption that the total amount of money in the economy remains constant, similar to
the role of energy conservation in statistical mechanics. However, these kinetic exchange
models have faced criticism from economists. They argue that the models oversimplify the
real-world scenario, as money is not conserved and the dynamics of economic systems are
more complex than what these models account for [14–18].

In a study by Ispolatov et al., the asset exchange model was introduced, resulting
in a power-law distribution of wealth in the greedy multiplicative exchange model [19].
Bouchaud and Mezard introduced a model that encompasses both the exchange of wealth
between individuals and random speculative trading [20]. Their observations indicated
that the distribution of wealth followed Pareto behavior. Dragulescu and Yakovenko
introduced a straightforward model for money transfers between two agents [21]. In their
study, they observed that the distribution of money in the stationary state followed the
Boltzmann–Gibbs distribution. Additionally, they investigated a kinetic money exchange
model that incorporates debt, and they found that the distribution of money still adhered
to the Boltzmann–Gibbs distribution. Chakraborti and Chakrabarti presented a simple
kinetic model for money exchange that includes a saving mechanism [22]. In their model,
the total amount of money is conserved, and the number of agents remains constant. When
the agents do not have any savings, the stationary distribution of money aligns with Gibbs’
distribution.

In the simple kinetic money exchange model, the distribution function of money can
be described by an exponential function. When incorporating debt into the model, the
distribution function remains largely unchanged. However, in the model where agents
save a portion of their money and exchange the rest, the tail of the money distribution
function follows a power-law distribution. The introduction of wealth distribution and the
kinetic exchange model of money has sparked significant attention in the field of econo-
physics [12–43]. In this review, we aim to provide an overview of the current developments
in kinetic exchange models and the distribution of income and wealth.

2. Wealth and Income Distribution

With the accumulation of data on income and national wealth, there has been an
increase in research and interest in wealth distribution. Alfred Pareto published a study
revealing that 20% of the population owned 80% of the land in Italy, now referred to
as the Pareto Principle or 80–20 Rule [44]. The Pareto law is observed when the wealth
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distribution function follows the power law with respect to the size of wealth, determining
the distribution of people who own wealth [1,45],

p(w) ∼ w−(1+α). (1)

where the Pareto index α, which characterizes the wealth distribution, is not universal and
exhibits different values across countries. According to Newman, when α is equal to 2.1, the
top 20% of the population possesses 86% of the total wealth [45]. This phenomenon is often
referred to as the Matthew effect, as described by Gladwell [46]. The distribution of wealth,
following a power law similar to the Pareto distribution, leads to a slow decrease in the
distribution function, determined by the exponent α. Consequently, there is a substantial
accumulation of wealth at the tail end of the distribution function, known as the long-tail
or heavy-tail distribution.

Gibrat’s research revealed that the Pareto law is applicable primarily in the high-
income range, while the distribution of income in the middle-income range follows a
log-normal distribution function [2]. Furthermore, Dragulescu and Yakovenko found that
the distribution function of individual income in the United States adheres to an exponential
distribution [11,12]. Depending on the income range, a wide range of income data can
exhibit either an exponential or power law distribution [11,12,47–53].

Income and wealth are distinct concepts in economics. Income refers to the amount
of money a person earns during a specific period, such as their early income. On the
other hand, wealth represents the total value of assets a person owns, including money,
assets, and property. When examining the dynamics of money distribution, we involve
the distribution function related to income amounts. However, when analyzing wealth
distribution, the distribution function pertains to the total wealth of an individual.

The study of wealth distribution in the field of econophysics originated in the late
1990s with the analysis conducted by Levy and Solomon on the income distribution of
the top 400 richest Americans, which was published in Forbes in 1996 [49]. Their report
revealed that the distribution of wealth among the wealthy follows a power law with
an exponent of α = 1.36. This distribution with a fat tail was remarkably similar to the
power law distribution observed in stock price fluctuations in the stock market, as observed
by Mantegna and Stanley in 1995 [50]. Theoretical derivation of the wealth distribution
function in the asset exchange model was performed by Ispolatov et al., demonstrating that
the distribution of wealth in the greedy multiplicative exchange follows a power function
distribution [19].

The cumulative distribution function of wealth, denoted as P(w), can be defined as the
integral from w to infinity of the probability density function as P(w) =

∫ ∞
w p(w)dw. The

complementary cumulative wealth distribution follows a power-law behavior, P(w) ∼ w−α

where α is the exponent of power law. When examining income distribution of a country,
different functional structures are observed. For instance, in Japan, the income distribution
function for individuals exhibits a power-law tail [9,10]. This power-law distribution has
also been observed in various countries, including the United States, the United Kingdom,
Italy, Austria, and Brazil [11,13,14]. However, the middle-income class does not follow
a power-law distribution. Gibrat proposed that the income distribution function for the
middle class follows a lognormal distribution, described by a specific formula [2].

p(w) =
1

w
√

2πσ2
exp
[
− ln2(w/w)

2σ2

]
, (2)

where w is the mean and σ2 is the variance. The Gibrat index is β = 1/
√

2σ2, and the
smaller this value, the greater the inequality in the income distribution.

Montroll and Shlesinger conducted an analysis of the income distribution in the United
States from 1935 to 1936, revealing that the majority of income ranges followed a lognor-
mal distribution, while the top 1% of the highest income bracket exhibited a Pareto tail
distribution [51,52]. In a study examining individual incomes in both the United States and
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the United Kingdom, Dragulescu and Yakovenko discovered that the income distribution
function within the lower-income range followed an exponential function instead of a
lognormal distribution. However, the high-income range demonstrated a power-law distri-
bution [11,12,21,53–57]. More specifically, if an individual’s income falls below w < wc, the
income distribution function can be described using the following formula:

p(w) ∼ e−
w

Tw , (3)

where Tw is the effective wealth temperature.
In general, the income distribution function is expressed by the double distribution

function of the exponential distribution and the power law as

p(w) ∼ w−(1+α)e−
w

Tw . (4)

Figure 1 illustrates a typical income distribution function, where the cumulative in-
come distribution is represented on the vertical axis. In this distribution, approximately 90%
or less of the population follows an exponential distribution, while the top earners exhibit a
power-law pattern. The specific value of the transition income, wc, which distinguishes the
exponential function from the power law, varies among different countries. Additionally,
the values of the Pareto index α, effective wealth temperature Tw, and transition income wc
are not universal, as they vary across countries and years.
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Figure 1. The income distribution function exhibits a typical pattern across different income levels.
While most incomes follow an exponential distribution, the high-income class follows Pareto’s law,
characterized by a fat-tail distribution.

3. Measures of Wealth Inequality

There are multiple methods available to evaluate income inequality. One commonly
used approach involves sorting a country’s income in ascending order and dividing it
into intervals. The ratio between the upper and lower intervals serves as an indicator of
income inequality. Representative indicators include the decile distribution ratio, quintile
scale, and percentile ratio, which all utilize distribution ratios to measure income inequality.
Additionally, various indices such as the Gini coefficient, Hoover index, Kolkata index,
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Theil index, Atkinson index, and Pietra index are employed to assess income inequality.
Let us explore some of these inequality indices [58–63].

The decile distribution ratio (DDR) is an index used to quantify the income distribution
ratio within a country [58,63]. It involves sorting the income of all households in ascending
order and dividing them equally into ten groups. The decile distribution ratio, denoted as
R10, is defined as follows:

R10 = Income share of the bottom 40%/Income share of the top 20%. (5)

Regarding the decile distribution ratio (DDR), as the lower income levels rise, the DDR
also increases. Consequently, a higher DDR value suggests a more equitable distribution of
income, whereas a lower DDR indicates a higher degree of income inequality.

0 (unequal) ≤ R10 ≤ 2 (equal). (6)

If the DDR value is 0.45 or higher, it signifies a favorable distribution state. A DDR
value ranging between 0.35 and 0.45 suggests a state of normal distribution. Conversely, a
DDR value below 0.35 indicates an unfavorable and unequal income distribution.

The quintile scale, denoted as R5, represents the ratio between the average income
of individuals in the highest quintile and the average income of individuals in the lowest
quintile. This ratio is calculated when the total population is divided into five groups based
on equalized individual income [58,63]. The quintile scale illustrates the extent to which
income in the fifth quintile surpasses the income in the first quintile. For instance, a fifth
quintile multiplier of 5.85 indicates that the income in the fifth quintile is 5.85 times higher
than the income in the 1st quintile.

R5 = Income share of the top 20%/Income share of the bottom 20%. (7)

The decile scale measures the ratio of the average income between individuals in the
10th decile and the 1st decile. To achieve equalization, individual incomes are sorted in
ascending order and divided into equal parts, known as quantiles. Each quantile has an
upper limit denoted as POO [58,63]. The ratio of these upper limits, POO, serves as the
indicator for percentile rates. For example, the percentile rate P90/P10 represents the ratio
of the upper ninth percentile to the upper first percentile. P40 represents the upper limit of
the 4th quartile based on the 10th quartile, while P20 represents the upper limit of the 2nd
quartile based on the 5th quartile. When evaluating income inequality using percentiles,
the ratios P50/P10 or P90/P50 are commonly employed. In this context, P50 refers to
the median income of the entire population. Therefore, P50/P10 signifies the ratio of the
median income to the upper limit of the first decile, whereas P90/P50 represents the ratio
of the upper limit of the ninth decile to the median income.

Ratios serve as straightforward and informative indicators of inequality, offering
advantages such as easy computation and intuitive understanding. Among these mea-
sures, decile dispersion ratios, including the 20:20 ratio and the Palma ratio, are widely
utilized [58,63]. The 20:20 ratio compares the wealth of the top 20% of individuals in a
population with the wealth of the bottom 20% of individuals. It provides a clear representa-
tion of the wealth disparity between the richest and the poorest, measuring the multiple
by which the rich exceed the poor in terms of wealth. On the other hand, the Palma ratio
compares the share of wealth held by the top 10% of individuals with the share of wealth
held by the bottom 40% of individuals. This ratio, introduced by Palma, is based on the
empirical observation that the combined share of these two groups roughly equals the
share of the remaining group, often referred to as the middle class.

The Gini coefficient is widely employed as a metric for assessing income, consumption,
and wealth inequality [58,63]. It can be computed using the Lorentz curve, which is
constructed by arranging the entire population in ascending order of income and setting
the total population to 100. In Figure 2, the horizontal axis represents the cumulative
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population ratio, while the vertical axis represents the cumulative income ratio, with
100 representing the total cumulative income of the population. The Lorenz curve is
defined as the line connecting these two ratios and provides a precise visual depiction of
income distribution and inequality. To calculate the Gini coefficient, the area between the
Lorenz curve and the line of perfect equality is divided by the area of the triangle below
the line of equality. This coefficient ranges from 0 to 1, where 0 indicates perfect equality
and 1 represents perfect inequality.
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Figure 2 depicts the distribution of accumulated wealth across the population under the
assumption that all individuals possess an equal amount of wealth (i.e., p(w) = δ(w− wo)).
In such a scenario, the distribution takes the shape of a straight line, often known as the
equality line. On the other hand, the Gini coefficient can be calculated using the following
formula when a variable yi (i = 1, · · · , N) representing economic indicators like personal
income or GDP is arranged in ascending order:

The Gini index is defined as [58,63]

Gini =
2

N − 1 ∑N−1
i=1 |Fi −Qi|, (8)

where
Fi =

i
N

, (9)

Qi =
∑i

j=1 yi

∑n
j=1 yi

. (10)

The Hoover index can be computed by subtracting the percentage of people receiving
less than their equal share (i.e., less than the national mean income) from their percentage
of the national income. The Hoover index is defined as [59,62].
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h =
1
2

∑i|yi − y|
∑i yi

. (11)

The Hoover index represents the percentage of total wealth necessary to achieve
perfect equality. In Figure 2, the Hoover index is determined by the length of the vertical
line drawn between the equality line and the Lorenz curve. This vertical line has the
greatest length among all possible vertical lines. The Hoover index is calculated as the
ratio of total wealth to above-average wealth. A Hoover index between 0 and 1 indicates
a perfectly equal income distribution, where h = 0 represents perfect equality and h = 1
signifies perfect inequality.

Ghosh et al. proposed a new wealth inequality index known as the κ-index or Kolkata
index [59]. The κ-index is computed from the intersection (k, 1 − k) of the reverse diagonal
with the Lorenz curve. The κ-index represents the fraction (1 − k) of people who earn more
than the fraction k of people in the country or society.

4. Models of Income and Wealth Distribution

Kinetic exchange models for money or wealth have been introduced and simulated
using agent-based models in various situations. The fundamental model involves the
random exchange of money between two agents selected randomly. Since the initial
introduction of the kinetic exchange model, researchers have developed modified versions
that incorporate features such as debts, taxation, and saving propensity [5–43]. Now, let us
delve into the topic of kinetic exchange models for money or wealth.

4.1. Stochastic Multiplicative Process

Bouchaud and Mezard introduced a simple model for wealth evolution that demon-
strates the phenomenon of wealth condensation [20]. The model considers an agent with
wealth wi(t) at time t and introduces a stochastic dynamical equation to describe the
evolution of wealth:

dwi
dt

= ∑
j 6=i

Jijwj −∑
j 6=i

Jjiwi + wiηi(t), (12)

where ηi(t) is a Gaussian random noise with a mean m and the variance 2σ2. The equation
of wealth evolution introduced by Bouchaud and Mezard takes into account the effect of
noise on the variation of wealth for each agent. The interaction strength Jij determines
the amount of wealth transferred from agent j to agent i through economic activities. To
simplify the model, the authors assume a constant interaction strength Jij = J/N for all
i 6= j where N is the total number of agents.

dwi
dt

=
(

ηi(t)−m− σ2
)

wi + J(1− wi), (13)

where ηi(t) represents Gaussian random noise with a mean m and variance 2σ2. The
equation captures the effect of noise on the wealth variation of each agent. The interaction
strength Jij determines the amount of wealth transferred from agent j to agent i through
economic activities.

By further simplifying the model, the authors derive the wealth distribution as:

p(w) = C
e−(µ−1)/w

wµ+1 , (14)

where µ = 1 + J/σ2, and the normalization constant is given as C = (µ− 1)µ/Γ(µ). In the
high wealth range, the wealth distribution follows a power law of the form p(w) ∼ w−(µ+1),
where the Pareto exponent µ = 1 + J/σ2, which depends on the interaction strength and
the variance of the random noise.
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4.2. Boltzmann Distribution of Wealth

The distribution of wealth is influenced by the economic activities of individuals
engaging in money or asset exchanges. In real-world economic transactions, wealth is
transferred through the trading of goods or the purchase of services, rather than direct
money exchange. When the total amount of money is conserved within a closed system, the
distribution of money resulting from random money exchanges follows the Boltzmann dis-
tribution. In an actual economic system where the total amount of money is not conserved
and economic activity is ongoing, the distribution of money does not reach equilibrium.
However, if the total amount of money in the market remains relatively constant over a
period and economic activity is active, the distribution of money will eventually reach a
steady state [64,65].

To address the issue of money conservation, Dragulescu and Yakovenko proposed
a money exchange model in which the total amount of money is conserved [21]. In this
model, two agents, denoted as i and j, each possessing money (mi and mj, respectively),
exchange a portion of their money with each other, akin to gas molecules exchanging
energy during collisions. The rules governing this money exchange process are as follows:

m′i = mi + ∆m (15)

m′j = mj − ∆m, (16)

where ∆m > 0 and the amount of money owned by each agent, mi and mj, is non-
negative. The conservation condition of money before and after a transaction is expressed
as m′i + m′j = mi + mj. As the system reaches a steady state, the distribution function of
money can be derived using the Boltzmann kinetic equation. The evolution equation for
the money distribution function, P(m), is given as [12].

dP(m)
dt =

s
[T(m− ∆m, m′ + ∆m → m, m′)P(m− ∆m)P(m′ + ∆m)

−T(m, m′ → m− ∆m, m′ + ∆m)P(m)P(m′)]dm′d∆m,
(17)

where T(m, m′ → m− ∆m, m′ + ∆m) represents the probability of money transition. Money
∆m per unit time is transferred from the agent with money m to the agent with money
m′. In Equation (5), the first term is (m′ − ∆m, m′ + ∆m→ m, m′), indicating an increase
in the probability P(m) due to the transfer of money. On the other hand, the second term
(m, m′ → m− ∆m, m′ + ∆m) results in a decrease in probability P(m) due to the transfer
of money. When the exchange of money reaches a steady state, dP(m)/dt = 0. In an
equilibrium state where the economic system exchanging money satisfies the detailed
balance condition, the transition probability can be expressed as follows.

T
(
m− ∆m, m′ + ∆m → m, m′

)
= T

(
m, m′ → m− ∆m, m′ + ∆m

)
. (18)

Therefore, the equilibrium condition is given as

P(m)P
(
m′
)
= P(m− ∆m)P

(
m′ + ∆m

)
. (19)

The solution of this equation is given as

P(m) = Cexp(−βm), (20)

where C is the normalization constant and β corresponds to the temperature variable in
the money exchange market. The distribution of money in the equilibrium follows the
exponential function.

4.3. Kinetic Exchange Models of Wealth

Since 2000, research has been conducted on the distribution of wealth in the money
exchange model. Dragulescu and Yakovenko discovered that the distribution of wealth in
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the model described by Equations (3) and (4) follows an exponential distribution [21]. In this
model, two agents exchange a specific amount of money, ∆m. If we set ∆m = r

(
mi + mj

)
,

where r is a random number uniformly distributed between 0 and 1, the distribution
of money in the steady state follows an exponential distribution [15,21]. This model is
represented as

m′i = εij(mi + mj), (21)

m′j =
(
1− εij)(mi + mj

)
, (22)

where εij is a random variable uniformly distributed between zero and one. We represent
the exchange dynamics in Figure 3.
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The money exchange model can accommodate the inclusion of debt, which means
that an agent’s money can take on negative values [21,66]. To address this, Dragulescu
and Yakovenko proposed a model that introduces a lower bound on an agent’s debt,
ensuring that the total amount of money remains conserved as the debt is borrowed from a
reservoir. This lower bound constraint ensures that all agents’ money satisfies the condition
mi > −md. Models that incorporate debt exhibit an exponential distribution function,
encompassing the range of negative wealth. However, Xi et al. made a notable discovery
that in cases where there is no limit on individual debt but a limit on system-wide debt, the
distribution of money follows an asymmetric Laplace distribution [66].

4.4. Money Exchange Models with Saving

When individuals engage in economic activities, they typically allocate a portion of
their money for savings instead of spending it all at once. To accommodate this behavior, a
modification can be made to the money exchange model to incorporate savings. Ispolatov
et al. introduced a multiplicative asset exchange model where a fraction of an agent’s
money is exchanged, denoted as ∆mi = γmi. The total amount of money in the system
remains conserved, and the distribution function of money in this model follows a gamma
distribution function, given by p(m) = cmβe−m/Tm . The exponent of the power law, β,
is determined by β = −1− ln2/ ln(1− γ), and Tm represents the money temperature.
Additionally, Chakraborti and Chakrabarti developed a model in which agents exchange a
certain percentage of their own money. Specifically, agent i, with money mi, sets aside a per-
centage λmi of their money and exchanges the remaining λ(1−mi) in the money exchange
process [21]. The money exchange model proposed by Chakraborti and Chakrabarti is
as follows:

m′i = λmi + (1− λ)ε
(
mi + mj

)
, (23)

m′j = λmj + (1− λ)(1− ε)
(
mi + mj

)
. (24)

The saving propensity is represented by λ, and the asymmetric money distribu-
tion ratio is denoted by ε, which is a random number between 0 and 1. In their model,
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the distribution function of money follows a gamma distribution with an exponent of
β = 3λ/(1− λ) [17,39,40,67,68].

m′i = λimi + ε(1− λi)
(
mi + mj

)
, (25)

m′j = λjmj + (1− ε)
(
1− λj

)(
mi + mj

)
. (26)

Chatterjee et al. discovered that when the saving propensity is randomly assigned,
the distribution of money follows a power law [37].

m′i = λimi + ε
[
(1− λi)mi +

(
1− λj

)
mj
]
, (27)

m′j = λjmj + (1− ε)
[
(1− λi)mi +

(
1− λj

)
mj
]
. (28)

They randomly assigned a saving propensity λi to each agent, using a uniform dis-
tribution between 0 and 1. In the steady state, the distribution function of money was
observed to follow a power law, characterized by p(m) ∼ m−(1+ν). Through Monte Carlo
simulations, they determined that the power function exponent was ν = 1.02. Additionally,
Patriaca et al. discovered that the power function was predominantly influenced by agents
with saving propensities λ close to 1 [33,41,69].

4.5. Money Exchange Models with Tax

Taxes play a vital role in addressing wealth inequality by redistributing wealth across
society. Governments, whether national or local, collect taxes to fund various public ser-
vices and social infrastructure, and provide support to low-income households [70–77].
Dragulescu and Yakovenko proposed a model that incorporates a tax on money exchange,
which revealed that the imposition of taxes altered the wealth distribution function, deviat-
ing from the Boltzmann–Gibbs distribution and approximating the gamma distribution
function. Additionally, de Oliveira proposed an annual random wealth multiplicative
model for taxation, where the distribution of wealth depends on how taxes are imposed. If
the tax burden falls disproportionately on the poor, wealth tends to condense in one agent,
while taxing the rich more can lead to continued wealth evolution [12,21,72].

Fernandes and Tempere introduced a kinetic model in which agents on a two-dimensional
grid exchange wealth with neighboring agents. Their research highlighted that the most
effective mitigation of inequality occurred when the wealth tax rate was approximately
40% [73]. Furthermore, Banzhf developed an agent-based model to examine the implica-
tions of income tax and wealth tax. [74] In the case of a flat income tax, where individuals
are taxed at a constant rate from their income at regular intervals, two scenarios were
explored: one where all collected taxes are equally distributed among all individuals and
another where taxes are allocated to the lowest income earners. The income of an agent in
the tax-inclusive model is adjusted by the tax amount during each cycle, determined by the
tax collection rate (r) and tax cycle (T).

mi(t + 1) = mi(t)− r[mi(t)−mi(t− T)] if mod(t, T) = 0. (29)

The total amount of taxes collected from all individuals is represented as M(t). In
the flat income tax model, when the collected taxes are distributed equally among all
individuals, the income of each individual is adjusted according to the following equation:

mi(t + 1) = mi(t) +
M(t)

N
, (30)

where N denotes the total number of individuals. However, distributing taxes equally
among all individuals often leaves a significant number of them in poverty. Conversely,
redistributing the taxes to a specific quintile of earners helps reduce income inequality.
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4.6. Non-Conservative Kinetic Exchange Models of Wealth

In real economic systems, money and wealth are not conserved. Societies experience
dynamic changes in population, and prices and wages constantly fluctuate. Traditionally,
many money exchange models have assumed the conservation of the total amount of
money. However, economic systems do not adhere to the conservation of total money,
requiring the development of models that acknowledge the non-conservation of wealth
as well. While local or short-term conservation of money may occur, it is not sustained on
a broader or long-term scale. Recent research has been proposing non-conserved money
exchange models [78–92]. One such model, presented by Bouchaud and Mezerd, represents
the inflow of wealth as a stochastic multiplicative process, resulting in exponential growth
of average wealth [20]. Slanina also proposed a wealth exchange model for open economy
systems, where wealth grows and exchanges take place [87].

wi(t + 1) = (1 + ε− β)wi(t) + βwj(t), (31)

wj(t + 1) = βwi(t) + (1 + ε− β)wj(t). (32)

In this model, the parameter β represents wealth exchange, while ε > 0 denotes the
inflow of wealth from external sources. Consequently, the model considers the system as
open, leading to wealth growth. The distribution of wealth exhibits a power-law pattern in
its tail, with the exponents of the power-law determined by the parameters β and ε. Cordier
et al. introduced a wealth exchange model where wealth increases with multiplicative noise,
and individuals exchange a certain amount of wealth [88]. They derived the asymptotic
behavior of the Fokker–Planck equation for wealth distribution and observed that the long
tail of the distribution follows a power law, with the exponents depending on the strength
of wealth exchange and the variance of the random noise.

Quevedo and Quimbay proposed a non-conservative wealth exchange model that
incorporates the savings of production goods [80]. Their research revealed that the wealth
distribution function follows a gamma distribution, and when the variable determining
the saving rate is large, the Gini index exceeds 0.5. In the range of large negative values,
the power function exponent of the gamma distribution was determined by the agents’
exchange aversion variables.

4.7. Kinetic Exchange Models with Wealth Condensation

Wealth condensation has been observed in wealth exchange models with multiplicative
wealth growth [89–106]. Burda et al. conducted a study on a closed macroeconomic
system, where a substantial portion of the total wealth accumulates in the hands of a
single individual [94]. Pienegonda et al. introduced a model of wealth redistribution with
conservative exchanges, focusing on the dynamics occurring at the poorest agent to mimic
extreme wealth dynamics [95]. They observed a form of wealth condensation where only a
small number of rich agents remain stable over time [95].

Moukarzel et al. proposed a random asset exchange model, where at each time step,
two agents bet for a fraction of the poorest agent’s wealth [88,99]. They obtained a phase
diagram illustrating the occurrence of wealth condensation when the poorest agent wins
the bet with a certain probability. Wealth condensation has been observed in various yard-
sale models of asset exchange [100–106]. Liu et al. developed an agent-based yard-sale
(YS) model that incorporates wealth inequality [84]. They observed the emergence of
wealth condensation when the transferred wealth allocation was biased towards agents
with higher wealth.

Saif and Gade proposed an asset exchange model that combines the yard-sale (YS)
model and the theft–fraud (TF) model, incorporating a mixed exchange [100,104]. In the YS
model, two agents exchange an amount of wealth ∆m = αmin

[
mi(t), mj(t)

]
according to

Equations (13) and (14). In the TF model, the money exchange is a fraction of the wealth of
the losing player, with ∆m = αmj(t) if j is the loser. The parameter α is a random number
within the interval [0, 1]. They observed wealth condensation in the YS model. In the pure
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TF model, the wealth distribution follows an exponential distribution. However, in the
mixed strategic model combining the YS and TF models, the wealth distribution follows a
power-law distribution.

Ichinomiya studied the modified Bouchaud–Mezard model in a random network and
observed wealth condensation, characterized by the divergence of wealth variance [98].
Cui et al. observed wealth condensation in the bequeathed model, where a fraction of the
wealth is transferred to a single heir or equally distributed among all heirs upon a person’s
death [104]. In the wealth transfer to a single heir, the wealth distribution exhibited wealth
condensation, where a single individual accumulates all the available wealth.

5. Discussion

Wealth inequality has become an increasingly critical issue in the economy, neces-
sitating a comprehensive exploration of various models concerning money and wealth
exchange. This review paper also introduces measures that effectively quantify wealth
inequality, including well-known indices such as the Gini coefficient, the Hoover index,
and the Kolkata index. Through an analysis of cumulative wealth distribution based on
income distribution across different countries, a dual distribution function is revealed,
encompassing both an exponential and power-law function.

To delve into the wealth distribution function, this paper examines studies on stochas-
tic wealth dynamics and wealth exchange models. Stochastic wealth dynamics express the
wealth distribution as a combination of a power distribution and an exponential function.
In the kinetic wealth exchange model, two agents engage in exchanging their wealth, either
in its entirety or partially. Multiple models have been proposed, incorporating various
strategies for wealth exchange, such as debt inclusion, saving propensity, and taxation.

In cases of random wealth exchange, the wealth distribution follows an exponential
function. However, when individuals save a portion of their wealth and exchange the
remaining, the distribution exhibits a power law. Furthermore, a model incorporating a
specific tax on wealth exchange has been proposed. Considering the non-conservation of
money and wealth in a market economy, models have also been presented where money is
not conserved. For instance, in the yard-sale model, wealth condensation occurs when a
poorer agent exchanges a portion of their wealth with a wealthier agent.

The kinetic exchange models ignore to consider fundamental features of the real world,
such as the absence of product exchange and a market for trading commercial products and
services. To develop a more comprehensive understanding of economic dynamics, it is cru-
cial to extend these models and integrate key concepts from real economics. Furthermore,
the role of capital is of paramount importance in shaping income inequality. Considering
the diverse and heterogeneous nature of the market and the broad spectrum of agents
involved will be vital in addressing these complexities. Given that wealth is transferred
through the exchange of products and services in real economic systems, it is imperative
to conduct further research on wealth exchange models that consider barter or exchange
in kind.

Another avenue for expanding the study of wealth dynamics involves utilizing Monte
Carlo simulations and agent-based models. These approaches offer valuable insights into
how wealth evolves over time. Within the heterogeneous agent-based model, we can
incorporate various types of agents, including people, products, labor, capital, and services.
This enriched model allows for a more comprehensive analysis of wealth dynamics. In
the Monte Carlo simulation of the kinetic exchange model, random pairs of agents engage
in money or wealth exchange, following predefined rules for transfer. This simulation
method provides a dynamic perspective on wealth dynamics. The combined use of Monte
Carlo simulations and agent-based models contributes to a deeper understanding of wealth
dynamics, shedding light on complex interactions and patterns within economic systems.
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