
Citation: Peng, K.; Shen, X.; Gao, L.;

Wang, B.; Lu, Y. Communication-

Efficient and Privacy-Preserving

Verifiable Aggregation for Federated

Learning. Entropy 2023, 25, 1125.

https://doi.org/10.3390/e25081125

Academic Editors: Eirik Rosnes and

Hsuan-Yin Lin

Received: 16 May 2023

Revised: 21 July 2023

Accepted: 24 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Communication-Efficient and Privacy-Preserving Verifiable
Aggregation for Federated Learning
Kaixin Peng 1, Xiaoying Shen 2,3,*, Le Gao 1,* , Baocang Wang 2 and Yichao Lu 1

1 The Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China;
kxinpeng@outlook.com (K.P.); lkiolyc@outlook.com (Y.L.)

2 The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China;
bcwang@xidian.edu.cn

3 The Key Laboratory of Cryptography of Zhejiang Province, Hangzhou Normal University,
Hangzhou 311121, China

* Correspondence: shenxiaoying@xidian.edu.cn (X.S.); le.gao@nscc-gz.cn (L.G.)

Abstract: Federated learning is a distributed machine learning framework, which allows users to
save data locally for training without sharing data. Users send the trained local model to the server
for aggregation. However, untrusted servers may infer users’ private information from the provided
data and mistakenly execute aggregation protocols to forge aggregation results. In order to ensure
the reliability of the federated learning scheme, we must protect the privacy of users’ information and
ensure the integrity of the aggregation results. This paper proposes an effective secure aggregation
verifiable federated learning scheme, which has both high communication efficiency and privacy
protection function. The scheme encrypts the gradients with a single mask technology to securely
aggregate gradients, thus ensuring that malicious servers cannot deduce users’ private information
from the provided data. Then the masked gradients are hashed to verify the aggregation results.
The experimental results show that our protocol is more suited for bandwidth-constraint and offline-
users scenarios.

Keywords: federated learning; privacy protection; verifiability; homomorphic hash function

1. Introduction

Federated learning (FL) [1–3] is a distributed machine learning framework proposed
by Google for privacy protection. In this framework, the involved users can conduct
independent training and collaborate with the central server to obtain a high-performance
shared global model. Unlike traditional distributed machine learning [4,5], users train their
models locally instead of directly sharing private data. The server aggregates users’ trained
local parameters or gradients rather than training on their data. Therefore, FL addresses
concerns related to data privacy, data ownership, and data silos [6–8].

However, in the federated learning framework, the central server is generally con-
sidered untrusted and may infer the private data of users. Recent research [9–11] shows
that adversaries can directly reconstruct users’ original data from the shared gradients.
This means that an unreliable server can easily extract users’ private information from
the transmitted gradients. Additionally, a malicious central server driven by self-interest
may return incorrect results to users to conserve computing resources [12,13], leading to
increased training iterations and a low-precision global model. Hence, protecting user
privacy and ensuring data integrity are critical concerns within federated learning training
protocols.

To address the above issues, Xu et al. [14] proposed a privacy-preserving and verifiable
federated learning approach using secret sharing and homomorphic signatures. However,
as the dimension of the vector increases, this method will greatly increase communication

Entropy 2023, 25, 1125. https://doi.org/10.3390/e25081125 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25081125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3410-2307
https://doi.org/10.3390/e25081125
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25081125?type=check_update&version=1

Entropy 2023, 25, 1125 2 of 19

costs. The method proposed in reference [15] can efficiently validate results using commit-
ment techniques and linear homomorphic hashing. However, it requires users to share hash
and commitment values, resulting in additional communication overhead. Furthermore,
ref. [16] introduced a model recovery attack on shared gradients hashes and suggested
using shared vectors for verification. Nonetheless, the direct sharing of a verification vector
can impose a significant communication burden on resource-constrained devices such as
edge devices and sensors.

In this paper, we propose a communication-efficient and privacy-preserving verifiable
aggregation federated learning protocol to facilitate training on limited bandwidth devices.
Specifically, we utilize a single mask mechanism [17] to encrypt the gradients, ensuring
privacy-preserving gradients aggregation. Additionally, we design a verification method
to authenticate the integrity of the aggregated results against malicious server attacks. Our
contributions can be summarized as follows:

• We propose a communication-efficient and privacy-preserving aggregation framework
for the federated training process. By employing the additive homomorphism property
of secret sharing, we protect the privacy of user information, while a homomorphic
hash function enables verification.

• We devise a novel strategy to counter model recovery attacks. By employing homo-
morphic hashing on the masked gradients rather than directly hashing the gradients,
we effectively protect users’ privacy against model recovery attacks on gradients
hashes.

• We give a comprehensive security analysis to prove the high security of our scheme.
Besides, extensive experiments demonstrate that our scheme has high communication
efficiency with a moderate increase in computational costs.

The rest of the paper is organized as follows: we provide related work in Section 2,
introduce preliminaries in Section 3, and describe the system model of our scheme in
Section 4. After that, we discuss the construction of our scheme in detail in Section 5. The
security analysis is provided in Section 6. Experiment evaluation of the proposed scheme
is presented in Section 7. Finally, we conclude our paper in Section 8. Additionally, the
abbreviations are used in the paper as follows.

2. Related Work
2.1. Privacy-Preserving FL

There have been many studies on federated learning about privacy protection. These
studies primarily adopt the following three techniques: differential privacy (DP) [8,18–20],
homomorphic encryption (HE) [9,21,22] and secure multiparty computing (SMC) [23–28].

In DP, Abadi et al. [18] proposed a training algorithm for differential privacy protec-
tion, which can obtain a more rigorous estimate of total privacy loss through quantitative
analysis of privacy. Zhou et al. [19] proposed a differential privacy federated learning ap-
proach for detecting and filtering anomalous parameters uploaded from malicious terminal
devices through edge node validation. However, methods based on differential privacy
can cause a loss of global model accuracy owing to the introduction of random noise. In
HE, Phong et al. [9] proposed a privacy-preserving deep learning model based on additive
HE, which can realize high-precision model training in asynchronous federated learning.
Park et al. [21] proposed a distributed homomorphic cryptosystem for implementing a
privacy-preserving federated learning scheme. However, in the HE methods, the use of the
same key pair by all users can lead to severe information leakage if users collude with the
server. Additionally, the computation and transmission costs of ciphertexts are significant
and may not be suitable for scenarios with resource-constrained devices that may dropout.

To address the privacy and dropout concerns on resource-constrained devices, some
federated learning approaches have been proposed. Zhao et al. [29] characterized the
optimal communication cost for the information-theoretic secure aggregation problem.
Bonawitz et al. [23] designed a double-mask mechanism using SMC techniques for imple-
menting privacy-preserving federated learning. To mitigate the supplementary overhead

Entropy 2023, 25, 1125 3 of 19

introduced by handling dropped users’ seeds in [23], So et al. [27] employed a one-
shot aggregate-mask reconstruction approach to achieve secure aggregation in federated
learning. Jahani-Nezhad et al. [30] proposed a secure aggregation protocol for federated
learning systems that reduces communication overhead without compromising security.
Schlegel et al. [28] proposed two privacy-preserving federated learning schemes to mitigate
the impact of user dropout. Du et al. [22] proposed a threshold multi-key homomorphic
encryption scheme to achieve secure, robust, and efficient federated learning training.
Lu et al. [24] designed a secure aggregation protocol called Top-k SparseSecAgg to reduce
communication cost and training time.

2.2. FL with Verifiable Computation

Many works have been proposed in verifiable federated learning. Xu et al. [14] proposed
a privacy-preserving and verifiable federated learning scheme named VerifyNet. They used
bilinear pairing and hash functions to achieve results verifiability, and used shamir secret
sharing to achieve secure aggregation of gradients. However, the protocol requires users to use
zero-knowledge proofs, and its communication cost increases linearly with the number of gra-
dients. Furthermore, as mentioned in the attacks discussed in [16], the hashes allow malicious
servers to infer users’ private data. Guo et al. [15] proposed VerifL, a communication-efficient
and fast verifiable aggregation federated learning scheme, which achieved the verification
communication independent of vector dimension. They utilized linearly homomorphic hash
and commitment techniques to verify the aggregation results. However, it is vulnerable to
the same attacks as mentioned in [16]. Zhang et al. [31] proposed a privacy-preserving and
verifiable federated learning scheme that used Paillier encryption for gradients protection
and bilinear aggregation signature for verification of the aggregation results. However, since
users use the same encryption and decryption key, user privacy may be leaked if a malicious
user colludes with the server. In the bilinear aggregation signature verification scheme, users
generate signatures of gradients and send them to the server for aggregation. Users then
verify whether the aggregated signature is equal to their own signature. However, a lazy
server can aggregate only partial user gradients and signatures and send them to users for
verification, which can pass the verification process. Additionally, the bilinear aggregation
signature has a high verification cost.

Based on this, this paper aims to propose an aggregation verifiable federated learning
method with efficient communication and privacy protection. Firstly, our approach can
protect users’ private data against attacks from malicious servers and colluding users. On
the other hand, in scenarios where bandwidth is extremely limited, our approach has a
small communication overhead. Specifically, we compare the features of our approach with
other existing solutions in Table 1.

Table 1. Functionality comparison.

Scheme Privacy-
Preserving Verifiable Drop-Tolerant Resist Model

Recovery Attacks
Communication-

Efficient

PPML [23] 3 - 3 - 5

PPDL [9] 3 - 5 - 5

VerifyNet [14] 3 3 3 5 5

VeriFL [15] 3 3 3 5 3

Versa [16] 3 3 3 3 5

Ours 3 3 3 3 3

3. Preliminaries
3.1. Federated Learning

Federated learning is a distributed machine learning framework. A server and multiple
users work together to train a model. Suppose there are n users and a server in federated
learning, and each user locally saves the dataset Di =

{(
dij, oij

)
, j = 1, 2, . . . , J

}
.

Entropy 2023, 25, 1125 4 of 19

Each user downloads the latest global model wt−1 from the server during an iteration.
The loss function Li

f (Di, w) = 1
|Di | ∑(dij ,oij)∈Di

l
(
oij; f

(
dij, w

))
is calculated by using the

local dataset. |Di| represents the size of Di. f (dij, w) denotes the predicted result and w
denotes model parameters. l(oij; f (dij, w)) represents the loss result obtained by predicting
the sample (dij, oij) on the given model parameters. To expedite model training, stochastic

gradient descent (SGD) is utilized for computing the gradients xi = ∇Li
f

(
Dk

i , w
)

. ∇Li
f

represents the derivative of the loss function and Dk
i represents a subset of the dataset Di.

Each user sends the calculated gradients xi to the server. The server calculates an updated
global model, i.e., wt ← wt−1 − α ∑n

i=1
|Di |
|D| xi, where |D| = ∑n

i=1 |Di|. The server then
broadcasts the aggregated global model wt again, repeating the process until the global
model converges or a certain number of iterations is reached.

3.2. Secret Sharing

Shamir secret sharing [32] divides a secret s into n secret shares, and only when the
secret shares are greater than or equal to t can the secret s be reconstructed. For a Shamir
(t, n) threshold scheme, let U = {u1, u2, . . . , un} be a set of shared key users. In our scheme,
ui represents the index number uniquely identifying the user. User us represents a secret
holder. The scheme is as follows:

• SS.Share (s, t, U): For the secret s ∈ GF(q), q > n, the user us selects any t− 1 positive
integers to construct a polynomial f (x) = s + a1x + a2x2 + . . . + at−1xt−1(mod q).
The user then calculates f (u1), f (u2), . . . , f (un), and sends {ui, f (ui)} to user ui.

• SS.Recon({ui, f (ui)}ui∈U , t): Given any t of {ui, f (ui)}, the secret holder can calculate
the coefficients s, a1, . . . , at−1 of the polynomial f (x) using Lagrange interpolation
and obtain the secret s. To reduce the computation, we adopt a simpler method of
calculating the secret sum: s = ∑t

j=0 f (uj)∏t
p=0,p 6=j

up
up−uj

.

Shamir secret sharing satisfies additive homomorphism [33]. For example, suppose
two users, u1 and u2, possess secrets s1 and s2, respectively. To secretly share the secret s1
among n users in U, user u1 employs the function SS.Share (s1, t, U) to select a polynomial
f (x) = s1 + a1x + a2x2 + . . . + at−1xt−1(mod q) and calculates n shares of s1, denoted as
{ui, f (ui)}, which are sent to the corresponding users ui. Similarly, user u2 uses the function
SS.Share (s2, t, U) to select a polynomial g(x) = s2 + b1x + b2x2 + . . . + bt−1xt−1(mod q),
and distributes shares {ui, g(ui)} to the users ui. Consequently, each user ui can locally
compute {ui, (f (ui) + g(ui))}. Then, in collaboration with other users where the number
of users involved is greater than t, the secret s1 + s2 can be reconstructed using the function
SS.Recon ({ui, (f (ui) + g(ui))}ui∈U , t). Similarly, it can implement shared refactoring of
any number of secrets.

3.3. Homomorphic Hash Function

A homomorphic hash function [34] includes three algorithms: HHF.Gen, HHF.Hash
and HHF.Eval.

• HHF.Gen (1k, 1d): This algorithm initializes the system parameters by entering a
random parameter k and a dimension d. The algorithm outputs common parameters
pp, including the elliptic curve group G of order q, its generator g and d distinct
elements g1, g2, . . . , gm ∈ G.

• HHF.Hash (x): Input a m dimension vector x, the algorithm will output the hash value

of x : h← ∏m
i=1 gx[i]

i ∈ G.
• HHF.Eval (h1, h2, . . . , hk): Input k hash values, this algorithm calculates the combina-

tion of hashes h← ∏k
i=1 hi. It satisfies the equation h = HHF.Hash(x1 + x2 + . . .+ xk).

Collision-resistant: HHF is said to be collision-resistant if there is no adversary A
that can satisfy the following experiment with non-negligible advantage.

Entropy 2023, 25, 1125 5 of 19

Advcoll
A,HHF(k) := Pr

[
pp← HHF.Gen

(
1k, 1d

)
HHF.Hash(x) = HHF.Hash(x′) : (x, x′)← A(pp)

]
.

One-way: HHF is said to be one-way, if for any PPT adversary A that can satisfy the
following experiment with non-negligible advantage for the security parameter k and the
vector dimension m.

Advone
A,HHF(k) := Pr

 pp← HHF.Gen
(

1k, 1d
)

x = x′ : h← HHF.Hash(x)
x′ ← A(pp, h)

.

3.4. Key Agreement

In our scheme, Diffie-Hellman (DH) [35] key agreement protocols allow any two users
to negotiate a key. This protocol consists of three algorithms: KA.Setup, KA.Gen and
KA.Agree.

• KA.Setup (1d): The algorithm inputs a security parameter k and outputs a public
parameter pp.

• KA.Gen (pp): The algorithm will output a key pair (pki, ski) for user ui as input pp.
• KA.Agree (ski, pk j): This algorithm inputs the private key ski of user ui and the public

key pk j of user uj, and output an agreed key sij.

3.5. Authenticated Encryption

Authenticated encryption [36] includes three algorithms:

• AE.Gen (pp): The algorithm inputs a security parameter pp and outputs the secret
symmetric key k.

• AE.Enc (k, m): The algorithm inputs a symmetric key k and a message m, outputs
ciphertext c.

• AE.Dec (k, c): The algorithm inputs a symmetric key k and a ciphertext c, outputs
plaintext m of c.

4. System Model

In this section, we first describe our system framework and communication model,
introduce the threat model of our scheme, and define the design goals.

4.1. System Framework and Communication Model

We focus on how multiple users collaborate with the server to train a model with
good performance. Each user is a mobile device that stores a dataset and can connect to the
server. Our model consists of three entities: a trusted third party, a central server and users,
as shown in Figure 1.

Figure 1. The system model of our scheme.

Entropy 2023, 25, 1125 6 of 19

Trusted third party (TA): TA is mainly responsible for parameter initialization. It
generates public and private key pairs and system parameters for each user participating
in the training. Then it distributes these key pairs to the corresponding users and forward
the general parameters.

User: Each user who stores the dataset locally can voluntarily choose whether to
connect to the server and participate in model training. However, they may be due to
network delay, system disconnection, system timeout, or active exit at any time [17]. In
each iteration, users train with their local datasets to obtain the gradients and send the
encrypted gradients and verification label to the server. After the completion of server-
side aggregation, users are provided with the aggregated results and the corresponding
verification proofs. Then, users verify the correctness of the aggregated results.

Central server: A server with sufficient computing resources which does not have a
training dataset, and needs to collaborate with users to train a global model. The central
server is responsible for aggregating gradients of encryption to update the worldwide
model. It sends the aggregated results and verification proofs back to each user.

The protocol of our scheme is mainly divided into five rounds. Each interaction
between the server and users is recorded as a round. If any round finds that the online
users are less than t, the protocol stops immediately. The detailed content is as follows:

• Initialization: TA distributes system parameters to users and the public key of user
will be shared.

• Round 1: User shares a secret with other online users, which will be encrypted using
the public key.

• Round 2: User sends the encrypted model and the verification label to the server.
• Round 3: User produces a share which will be used for refactoring the secrets and

sends it to the server. The server calculates aggregated results and aggregate verifiable
labels.

• Round 4: User verifies the integrity of the aggregated results using verification proofs.

4.2. Threat Model

We adopted a threat model similar to reference [16], in which TA is a fully trusted entity
that does not engage in any collusion. In this model, the server is considered malicious
and attempts to deduce users’ training data. In addition, the server may manipulate
the aggregation results to deceive users for unlawful purposes. We assume that users
are honest-but-curious entities who correctly perform the training process and upload
the masked gradients and verification label. However, users may try to deduce other
users’ private data from the server’s returned results. Moreover, we consider the potential
collusion between users and the server in practical federated learning scenarios, and the
number of colluding users does not exceed the threshold value t in the context of secret-
sharing. We exclude the scenario where users and the server collude to pass the verification
process in our work. This is because multi-client verifiable computations fail to attain
verifiability when the user colludes with the server, as demonstrated in [37].

4.3. Design Goals

In the system model, our work needs to meet the following two design objectives:

• Privacy-preserving: Privacy preservation is an essential part of federated learning.
Therefore, our scheme must ensure that users’ private data can resist the adversaries’
attacks.

• Integrity verification: In federated learning, each user’s data are stored locally and
trained locally. They can get a high-quality model by receiving the aggregated results
returned by the server. If the server manipulates the aggregation results to deceive
users, it could significantly impact their training. Therefore, our scheme ensures
that the server cannot forge the aggregation results to deceive users into passing the
verification process.

Entropy 2023, 25, 1125 7 of 19

5. The Proposed Scheme
5.1. Overview

In this section, we provide a detailed description of the structure of our proposed
solution. We will focus on addressing two issues: (1) how to securely aggregate without
disclosing users’ sensitive information, (2) how to perform aggregation results’ integrity
verification more efficiently in the context of limited bandwidth.

Before the system iteration training begins, the server will select a certain proportion of
users to participate. The chosen users engage in five rounds of interactions with the server,
as depicted in Figure 2. During these five rounds of interactions, users may exit the training
protocol at any time due to network latency or other issues. We establish in Theorem 2 that
even if some users prematurely terminate the training protocol, our proposed approach can
still proceed without disruption. Each selected user possesses a unique and valid identity
ID, denoted as i or j. Each user gets its local gradients after each round of training. Then
each user adopts the single mask mechanism to encrypt gradients to obtain [[xi]] and hash
function to calculate the verification label Ti at the same time. Each user will upload [[xi]]
and Ti to the central server. After receiving the data uploaded by users, the central server
aggregates the encrypted gradients and verification labels. Then it returns the aggregated
results and verification proofs to users. Finally, each user will verify the correctness of the
aggregation results. If the verification passes, the aggregation results will be used for the
next round of local training. Otherwise, users will exit the training protocol.

5.2. Initialization

The initialization phase of the system is mainly guided by TA, which generates system
parameters and public private key pairs for each user before training the model. First, TA
generates public/secret keys (upk

i , usk
i) for each user and distributes them. In addition, a

random seed s and hash parameters g1, g2, . . . , gm are also generated and forwarded to
all users. Before users start training, the server randomly generates the learning rate α
and initializes the model parameter w and sends them to users. Upon receiving these
parameters, each user shares its public key with other users through the server to establish
a shared encryption key for exchanging secrets.

5.3. Secure Aggregation

This section aims to protect users’ training model information from leakage. We use
a single mask protocol to encrypt the gradients of users. Single mask mainly utilizes the
homomorphism of secret sharing to achieve secure aggregation. The single mask method
has stronger user dropout robustness than the double mask method.

We simply use a single mask to encrypt the gradients. Each user generates a mask
ri and calculates yi = xi + ri. The server calculates z = ∑ui∈U yi = ∑ui∈U xi + ∑ui∈U ri.
If the server wants to get the aggregated results ∑ui∈U xi, it must know the aggregated
mask R = ∑ui∈U ri. However, the server cannot ask users to send ri, as this would directly
disclose the values xi. A way of the server refactoring R is to utilize the homomorphism
of secret sharing R = Share∑ ri = ∑ Shareri , so the server only needs to get all the shares
of ri to reconstruct R. User i generates n secret shares of ri before sending the encrypted
gradients. One share of ri is represented by rj

i , which represents the share of the secret ri
sent by user i to user j. Thus, each user can obtain ri

j from other users. The ri
j is only part of

the information held by the user i about rj. The server will ask the online users i to send
Ri = ∑uj∈U ri

j, then the server calculates ∑uj∈U Ri = R. Since user i only knows ri
j but not

rj, and the server only knows Ri but not ri, they cannot learn anything about xi. This single
mask mechanism is much more robust against user dropout. If some users drop out of
the protocol during the aggregation phase, then the server does not receive any model
information for these users. The server only needs to send the set of online users during
the aggregation phase to each user. Each user will then aggregate the ri

j value of the online

Entropy 2023, 25, 1125 8 of 19

users set. So long as the number of users online exceeds the threshold value t, the server
can reconstruct R. So, the aggregation results can be calculated correctly.

Figure 2. Our protocol in detail.

Entropy 2023, 25, 1125 9 of 19

As mentioned above, we have designed a simple protocol for secure summation on the
server side. However, the effectiveness of our approach is wider than summation alone; it
can also support weighted average aggregation. As shown in [38], a method is proposed to
enhance models’ convergence speed and accuracy in a federated learning setting with non-
i.i.d. data distribution by employing unbiased gradients aggregation. In this context, the
server needs to aggregate ∑n

i=1
|Di |
|D| xi, where |D| = ∑n

i=1 |Di|. To accommodate weighted
average aggregation in this manner, we utilize two masks, ri and r′i , to encrypt the users’
weighted gradients and data size. r′i is shared among users in the same way as ri. The
encrypted data are represented as yi = |Di|xi + ri and ci = |Di|+ r′i . Afterwards, these
encrypted data are sent to the server. The server can decode to obtain the sum without
knowing the individual values of |Di|xi and |Di|, thus achieving effective and secure
weighted aggregation.

5.4. Verification Phase

In this section, we will describe the verifiability of the protocol for the aggregated
results. It is mentioned in [16] that if the value of the gradients hash is sent to the server
as a verification label, the gradient entries generated by SGD rules form a bell-shaped
distribution around zero because the values of the model parameters (gradients) are highly
partial. In addition, since all users share the same private key, this is susceptible to brute-
force attacks by malicious users in collusion with the server, so that the encoded gradients
can be recovered in a brute-force attack on the victim’s homomorphic hash output in a
relatively short time.

First, TA will send system parameters to users, including homomorphic hash parame-
ters and a random number. The function of the random number s is to mask the gradients
of the previous section twice, to prevent the server from forging the aggregation results
and then taking the hash of the aggregation results as proof to deceive the user into passing
the verification. User i encrypts the gradients as follows:

[[xi]] = xi + ri + PRG(s), (1)

where PRG is the pseudorandom generator. The user then utilizes the homomorphic hash
function to generate a verification label:

Ti = HHF.Hash(xi + ri). (2)

The user uploads [[xi]], Ti to the server.
Once the server receives encrypted gradients and verification labels, it performs two

aggregations. The first aggregation is to calculate the aggregation results:

X = ∑
ui∈U

[[xi]]− R = ∑
ui∈U

xi + nPRG(s). (3)

And the second aggregation is to calculate verification labels to generate the aggregation
results’ proof as follows:

T = ∏
ui∈U

Ti = HHF.Hash(∑
ui∈U

(xi + ri)). (4)

Then the server returns the aggregation results X and the verification proofs T, R.
After receiving the aggregation results and verification proofs from the server, the user

checks the following:
HHF.Hash(X− nPRG(s) + R) = T. (5)

If the equation is true, it represents that the server returns the correct aggregation results,
and the user will use the aggregation results for the next round of training. Otherwise, the
verification fails, and the user exits the protocol.

Entropy 2023, 25, 1125 10 of 19

5.5. Correctness of the Scheme

In order to verify the correctness of our scheme, we prove the following theorems.

Theorem 1. If all users and the central server honestly execute our proposed protocol, the users
can obtain the correct aggregation results, and the central server can pass the verification.

Proof. The central server aggregates all the encryption gradients as follows:

∑
ui∈U

[[xi]] = ∑
ui∈U

(xi + ri + PRG(s)) = ∑
ui∈U

xi + ∑
ui∈U

ri + nPRG(s). (6)

Next, the server calculates the aggregation results:

X = ∑
ui∈U

[[xi]]− R = ∑
ui∈U

xi + nPRG(s). (7)

After receiving the aggregate results, the user calculates as follows:

X− nPRG(s) = ∑
ui∈U

xi. (8)

So, the user obtains the correct aggregation results and then performs the following hash
calculation:

H = HHF.Hash(∑
ui∈U

xi + R). (9)

If the server executes the protocol correctly, the aggregated hash is:

T = ∏
ui∈U

Ti = HHF.Hash(∑
ui∈U

yi) = HHF.Hash(∑
ui∈U

(xi + ri))

= HHF.Hash(∑
ui∈U

xi + ∑
ui∈U

ri) = HHF.Hash(∑
ui∈U

xi + R).
(10)

So, the server will pass the verification if Equation (9) equals Equation (10).

Theorem 2. Although some users may drop out of the training protocol, our proposed approach can still
be effectively executed as long as the number of dropouts remains below the predefined threshold t.

Proof. (Outline) In our proposed scheme, the impact of user dropout is limited to rounds
2 or 3. Let U2 be the set of online users in round 2, from whom the server receives only
the encryption gradients and verification labels. The server then performs an aggregation
operation to eliminate ∑ui∈U2

ri, and sends U2 to the users in round 3. Users in round 3,
who have saved the secret shares of U2, send the sum of these user shares to the server. If
the number of users in round 3 is greater than or equal to t (i.e., the server has received
at least t shares of R), the server can reconstruct R = ∑ui∈U2

ri. The verification process
follows a similar approach as the aggregation process.

Theorem 3. The homomorphic hash function used in our approach can effectively verify the result
of gradients aggregation.

Proof. Each user computes a verification label, the hash of masked gradients Ti = ∏m
k=1 gyi [k]

k ,
where m is the gradients’ size. The server aggregates the verification labels as follows:

n

∏
i=1

Ti =
n

∏
i=1

m

∏
k=1

gyi [k]
k =

m

∏
k=1

g∑n
i=1(xi+ri)[k]

k =
m

∏
k=1

g(X+R)[k]
k . (11)

Entropy 2023, 25, 1125 11 of 19

Based on homomorphic properties, we can derive the following:

n

∏
i=1

Ti =
n

∏
i=1

HHF.Hash(yi) = HHF.Hash(y1 + y2 + ... + yn) = HHF.Hash(X + R). (12)

From this, we can conclude that the server can perform another form of aggregation on the
yi without knowing its specific value, thus achieving effective verification of the system.

6. Security Analysis

In this section, we demonstrate the security of our scheme in terms of users’ data
privacy and integrity verification.

6.1. User Privacy

This section provides a demonstration that user privacy is protected. We use a similar
proof method as that in [17]. We use Lemma 1 to prove that the encryption gradients of
user uploads are secure.

Theorem 4. Fix n, s, U, ri with |U| = n and {xi}ui∈U , where ∀ui ∈ U, xi ∈ Zm
R , there is :

{ ri ∈ Zm
R : xi + ri + PRG(s)(mod B)ui∈U ≡ Ii ∈ Zm

R : Ii(mod B)ui∈U}, (13)

where “≡” means having the same distribution, we have omitted this proof as it is simple.

We use Theorem 4 to prove the privacy of the encrypted gradients uploaded by
users. The encrypted gradients consist of xi, ri and PRG(s). According to Theorem 4,
the distribution of [[xi]] is the same as Ii. If an adversary possesses the sum of ri and
PRG(s), he/she can obtain xi from [[xi]] due to the random distribution of Ii. However,
the adversary must acquire at least t shares to reconstruct ri and obtain the sum of ri and
PRG(s). Thus, the adversary cannot obtain any information about xi, indicating that our
scheme maintains the security of the encrypted gradients during transmission, thereby
ensuring user privacy. Since the encrypted gradients are not highly partial for the hash
value uploaded by users, the encrypted gradients are hashed and then uploaded to the
server. So, a malicious server cannot infer users’ private data according to the uploaded
results, and it will not lead to the model recovery attacks like the one mentioned in [16].

6.2. Integrity Verification

Theorem 5. According to the collision resistance and one way of HHF, a server cannot forge the
aggregation results to pass the verification. The server returns the aggregation results X and the
verification proofs T, R. Assume V = X + R; the result returned by the server is represented by
V, T. We assume that the server is the adversary. There are only two ways for the server to falsify
results, and we will show that falsifying proofs in either of these ways will not pass verification.

(1) The server tries to forge V or T to pass the verification: In this case, the server
forges V or T in round 3. We denote the forged results as Vf , Tf and the correct ones as
V, T. Assume that the server only forges V to pass the verification, so V 6= Vf and T = Tf .
Let H denote the correct hash value computed by the user and H f represent the falsified
hash value. We can obtain that from the third section:

H = T, H f = Tf . (14)

Since T = Tf , we can get H = H f according to Equation (14). However,

H = HHF.Hash(V − nPRG(s))

H f = HHF.Hash(Vf − nPRG(s)).
(15)

Entropy 2023, 25, 1125 12 of 19

According to the collision resistance of HHF, we can conclude that H 6= H f , since V 6= Vf .
This contradicts our previous assumption. The same argument holds true if the server
forges T instead. Therefore, the server cannot pass the verification by forging V or T.

(2) The server tries to forge V and T to pass the verification: In this case, since the
server can pass the verification, the following equation that users calculate holds:

H f = HHF.Hash(Vf − nPRG(s)) = Tf . (16)

The adversary did not know s and V 6= Vf because the adversary did not execute the
aggregation protocol correctly. So,

Tf = HHF.Hash(s′), (17)

where s′ ∈ Z∗q is a random vector guessed by the adversary. According to the one way of
HHF, the probability of making Equation (16) valid is negligible. Therefore, the probability
that the server wants to falsify the proofs to pass the verification is also negligible.

7. Model Analysis
7.1. Experimental Setup

We executed our experiment on a workstation with Java1.8 running Windows 11,
equipped with an IntelCore i7-11700K 3.6GHz CPU and 16.0GB of RAM. We used el-
liptic curve Diffie-Hellman, standard Shamir’s t-out-of-N secret sharing and advanced
encryption standard galois to implement KA, SS and AE, respectively.

7.2. Comparison with the Other Two Experiments Verifl [15] and Versa [16]
7.2.1. Computation Overhead

In our scheme and the other two schemes, we compared the computational costs at
different stages, as shown in Table 2. We omitted the comparison of the server overhead
because the server is typically a powerful entity with negligible aggregation costs. Additionally,
we omitted the consideration of round 0 as it does not incur any computation overhead. The
underlined figures represent the verification costs. We fix the gradients’ size to 10,000.

Table 2. Comparison of computation overhead with Versa and Verifl.

Ours Versa Verifl

n = 500 n = 1000 n = 500 n = 1000 n = 500 n = 1000

Aggregation phase

1 2038 ms 4103 ms 2262 ms 4601 ms 781 + 7034 ms 1572 + 14,252 ms

2 204 + 37,900 ms 210 + 37,903 ms 6123 + 6385 ms 6098 + 6465 ms 6236 ms 6248 ms

3 2030 ms 4010 ms 2130 ms 4012 ms 2725 ms 5821 ms

Verification phase 4 37,913 ms 37,962 ms 120 ms 125 ms 2330 ms 4805 ms

The table shows that our aggregation cost is slightly lower than the other two ap-
proaches, while the verification cost is significantly higher. Our approach’s lower aggrega-
tion cost is attributed to the fact that we only use a single mask for aggregation. In contrast,
the other two approaches employ double-mask encrypted gradients, requiring each user to
compute the shared value ciphertext of two masks. The higher verification cost is due to
adopting a more secure hash value to counter model recovery attacks from the adversary.
In Versa, shared vector computation is used for verification labels. In VeriFL, each user
employs linear homomorphic hashing and commitment for generating verification labels,
which can lead to model recovery attacks, posing a significant privacy risk to users.

In the federated learning of privacy protection, user privacy, communication costs
and the verifiability of the aggregated results are key issues during training, considering
that modern edge mobile devices are typically equipped with high-performance processors
but limited network bandwidth. Research [7,39] optimize the performance and efficiency

Entropy 2023, 25, 1125 13 of 19

of federated learning systems by increasing local computations and minimizing commu-
nication volumes. Furthermore, when it comes to transmitting sensitive data, a more
cautious approach is required. It is essential to leverage local computational resources to
minimize the transmission of private data. As seen in Section 7.2.2, the communication cost
of our verification transmission is minimal, indicating that our approach is meant to reduce
communication costs by increasing local computation overhead on edge mobile devices.

7.2.2. Communication Overhead

We also compared the other two schemes in terms of the communication overhead for
aggregation and verification.

Figure 3 depicts the aggregated communication cost between each user and the server.
It demonstrates that our proposed approach, and the other two methods, increase linearly
with the gradients’ size and the number of users in outgoing communication costs. More-
over, our protocol exhibits lower costs than the other two approaches. This discrepancy
arises from using a single masking technique for aggregation in our scheme, whereas the
other two employ double masking techniques. In the double-mask scheme, users must
share two mask values to ensure the security of the aggregation.

(a) (b)

(c) (d)

Figure 3. Comparison of outgoing communication overhead of our scheme with Versa and Verifl
for aggregation. (a) Outgoing communication overhead of the server as the gradients’ size increases
for aggregation. (b) Outgoing communication overhead per user as the gradients’ size increases for
aggregation. (c) Outgoing communication overhead of the server compared to the different number
of users for aggregation. (d) Outgoing communication overhead per user compared to the different
number of users for aggregation.

Entropy 2023, 25, 1125 14 of 19

Figure 4 illustrates the outgoing communication costs for verification between each
user and the server. It shows that our proposed verification approach exhibits the low-
est outgoing communication costs for both the user and the server, independent of the
gradients’s size or the number of users. This advantage stems from transmitting only a
single hash value for verification. However, in VeriFL, these two metrics are independent
of the gradients’ size and increase linearly with the number of users. This is due to the
necessity of users sharing their hash and commitment values. In contrast, these two metrics
are independent of the number of users in Versa and increase linearly with the gradients’
size. In their approach, users must send a verification vector of the same dimensions as
the gradients. Therefore, our verification method is particularly suitable for scenarios with
multiple participating users and high-dimensional gradients.

(a) (b)

(c) (d)

Figure 4. Comparison of outgoing communication overhead of our scheme with Versa and Verifl
for verification. (a) Outgoing communication overhead of the server as the gradients’ size increases
for verification. (b) Outgoing communication overhead per user as the gradients’ size increases for
verification. (c) Outgoing communication overhead of the server compared to the different number
of users for verification. (d) Outgoing communication overhead per user compared to the different
number of users for verification.

Entropy 2023, 25, 1125 15 of 19

7.3. Other Experiments of Our Scheme

This section analyzes our scheme’s computational and communication costs under
different user dropout rates. In our experiment, we set the number of users n = 500, and
the gradients’ size m = 10, 000.

7.3.1. Computation Overhead

From Figure 5a,c, it can be seen that the running time of the server decreases as the
user dropout rate increases. The main reason is that the server only needs to aggregate
gradients and tags and recover shares of online users. As shown in Figure 5b, the dropout
rate does not affect the computational cost, as most of the time is spent on computing
hashes, while the decryption time of ciphertext for online users can be ignored. Figure 5d
indicates that the user’s computational cost of dropout is lower than that without dropout.
This is because, in round 3, the user decrypts the online users’ ciphertext. Based on the
experimental results, our scheme exhibits stronger user dropout robustness, as evidenced
by a decrease in its running time with an increase in the dropout rate.

(a) (b)

(c) (d)

Figure 5. Thetotal computational overhead of the server and each user (a) computational overhead of
the server versus different gradients’ size and dropout rates (b) computational overhead of each user
versus different gradients’ size and dropout rates (c) computational overhead of the server versus
different user numbers and dropout rates (d) computational overhead of each user versus different
user numbers and dropout rates.

Entropy 2023, 25, 1125 16 of 19

7.3.2. Communication Overhead

Figure 6 shows the comparison of communication overhead and dropout rate between
the server and each user. Specifically, Figure 6a and Figure 6c respectively demonstrate
that the server’s communication overhead increases linearly with the number of users and
gradients’ size and is independent of the dropout rates since the data sent by the server
to each user remain constant regardless of the dropout rate. Additionally, Figure 6b,d
show that the communication overhead per user under different dropout rates is uniform.
Table 3 presents the outgoing communication overhead between the server and per user
during different phases of our protocol. The underlined figures highlight the additional
communication overhead associated with verification. Based on the table, we infer that the
additional communication overhead caused by our verification process is minimal. This
further confirms that our scheme is suitable for limited communication bandwidth settings.

(a) (b)

(c) (d)

Figure 6. Total communication overhead between the server and each user (a) The communication
overhead of the server versus different gradients’ size and dropout rates (b) the communication
overhead per user versus different gradients’ size and dropout rates (c) The communication overhead
of the server versus a different number of users and dropout rates (d) the communication overhead
per user versus a different number of users and dropout rates.

Entropy 2023, 25, 1125 17 of 19

Table 3. Outgoing communication overhead per user and server at different phases.

Num. User Dropout Entity
Aggregation Phase Verification

Phase

0 1 2 3 4

500

0.00%
user 0.06 (KB) 24.23 (KB) 78.12 + 0.06 (KB) 0.03 (KB) 0 (KB)

server 32.23 (KB) 24.23 (KB) 0.98 (KB) 78.12 + 0.07 (KB) 0 (KB)

10.00%
user 0.06 (KB) 24.23 (KB) 78.12 + 0.06 (KB) 0.03 (KB) 0 (KB)

server 32.23 (KB) 24.23 (KB) 0.88 (KB) 78.12 + 0.07 (KB) 0 (KB)

30.00%
user 0.06 (KB) 24.23 (KB) 78.12 + 0.06 (KB) 0.03 (KB) 0 (KB)

server 32.23 (KB) 24.23 (KB) 0.68 (KB) 78.12 + 0.07 (KB) 0 (KB)

8. Conclusions

This paper proposed a secure aggregation method that utilizes a single mask to
encrypt gradients, providing a high level of privacy protection for users’ local gradients and
allowing them to dropout. In addition, we devised a novel approach to verify the integrity
of the aggregation results by hashing the masked value, capable of resisting the adversary’s
attacks on the hash value in the federated learning framework. The experimental results
demonstrate the efficiency of our approach in terms of communication costs for aggregation
and verification. Therefore, our approach is effective in scenarios with limited bandwidth
resources, solid computational capabilities, and frequent dropout of mobile devices.

However, our method also has some limitations. Firstly, the computational overhead
of our scheme validation may be higher, which may not be suitable for devices with
lower computing power, such as IoT devices and edge computing nodes. Secondly, our
scheme requires five rounds of interaction to complete one iteration of training, leading to
significant communication latency that hampers model training. Thirdly, in the event of
incorrect results returned by the server, users cannot correct the aggregated results through
available means. Therefore, it is necessary to further study the methods of reducing
communication times and computing costs to achieve verifiable aggregation in federated
learning training protocols.

Author Contributions: Conceptualization, X.S. and Y.L.; Methodology, K.P.; Writing—original draft,
K.P.; Writing—review & editing, X.S.; Supervision, B.W.; Funding acquisition, L.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2022YFC3303200),
the National Natural Science Foundation of China (Grant Nos. 62272362, U19B2021), the Open Re-
search Fund of Key Laboratory of Cryptography of Zhejiang Province (ZCL21016), the Fundamental
Research Funds for the Central Universities (XJS220122), the Teaching Reform Project of Guangdong
Province (Grant Nos.GDJX2020009), and the Information Security Teaching Reform Project of Wuyi
University (Grant Nos.JX2020052).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

Entropy 2023, 25, 1125 18 of 19

Abbreviations

FL federated learning
SS secret sharing
HHF homomorphic hash function
KA key agreement
AE authenticated encryption
TA trusted third party
DP Differential privacy
HE homomorphic encryption
SMC secure multi-party computation
PPML privacy-preserving machine learning
PPDL privacy-preserving deep learning

References
1. Li, L.; Fan, Y.; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [CrossRef]
2. Konečnỳ, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, A.D. Federated learning: Strategies for improving

communication efficiency. arXiv 2016, arXiv:1610.05492.
3. Połap, D.; Srivastava, G.; Yu, K. Agent architecture of an intelligent medical system based on federated learning and blockchain

technology. J. Inf. Secur. Appl. 2021, 58, 102748. [CrossRef]
4. Xing, E.P.; Ho, Q.; Xie, P.; Wei, D. Strategies and principles of distributed machine learning on big data. Engineering 2016, 2, 179–195.

[CrossRef]
5. Antwi-Boasiako, E.; Zhou, S.; Liao, Y.; Liu, Q.; Wang, Y.; Owusu-Agyemang, K. Privacy preservation in distributed deep learning:

A survey on distributed deep learning, privacy preservation techniques used and interesting research directions. J. Inf. Secur.
Appl. 2021, 61, 102949. [CrossRef]

6. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan,
B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388.

7. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-efficient learning of deep networks from
decentralized data. In Artificial Intelligence and Statistics; PMLR: London, UK, 2017; pp. 1273–1282.

8. McMahan, H.B.; Ramage, D.; Talwar, K.; Zhang, L. Learning differentially private recurrent language models. arXiv 2017, arXiv:1710.06963.
9. Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans.

Inf. Forensics Secur. 2017, 13, 1333–1345.
10. Wang, Z.; Song, M.; Zhang, Z.; Song, Y.; Wang, Q.; Qi, H. Beyond inferring class representatives: User-level privacy leakage from

federated learning. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France,
29 April–2 May 2019; pp. 2512–2520.

11. Zhao, Q.; Zhao, C.; Cui, S.; Jing, S.; Chen, Z. Privatedl: Privacy-preserving collaborative deep learning against leakage from
gradient sharing. Int. J. Intell. Syst. 2020, 35, 1262–1279. [CrossRef]

12. Ghodsi, Z.; Gu, T.; Garg, S. Safetynets: Verifiable execution of deep neural networks on an untrusted cloud. Adv. Neural Inf.
Process. Syst. 2017, 30, 4672–4681.

13. Fu, A.; Zhu, Y.; Yang, G.; Yu, S.; Yu, Y. Secure outsourcing algorithms of modular exponentiations with optimal checkability based
on a single untrusted cloud server. Clust. Comput. 2018, 21, 1933–1947. [CrossRef]

14. Xu, G.; Li, H.; Liu, S.; Yang, K.; Lin, X. Verifynet: Secure and verifiable federated learning. IEEE Trans. Inf. Forensics Secur. 2019, 15, 911–926.
[CrossRef]

15. Guo, X.; Liu, Z.; Li, J.; Gao, J.; Hou, B.; Dong, C.; Baker, T. V eri fl: Communication-efficient and fast verifiable aggregation for
federated learning. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1736–1751. [CrossRef]

16. Hahn, C.; Kim, H.; Kim, M.; Hur, J. Versa: Verifiable secure aggregation for cross-device federated learning. IEEE Trans. Dependable
Secur. Comput. 2023, 20, 36–52. [CrossRef]

17. Song, J.; Wang, W.; Gadekallu, T.R.; Cao, J.; Liu, Y. Eppda: An efficient privacy-preserving data aggregation federated learning
scheme. IEEE Trans. Netw. Sci. Eng. 2022, early access. [CrossRef]

18. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 308–318.

19. Zhou, J.; Wu, N.; Wang, Y.; Gu, S.; Cao, Z.; Dong, X.; Choo, K.-K.R. A differentially private federated learning model against
poisoning attacks in edge computing. IEEE Trans. Dependable Secur. 2023, 20, 1941–1958. [CrossRef]

20. Xu, M.; Song, C.; Tian, Y.; Agrawal, N.; Granqvist, F.; van Dalen, R.; Zhang, X.; Argueta, A.; Han, S.; Deng, Y.; et al. Training
large-vocabulary neural language models by private federated learning for resource-constrained devices. In Proceedings of the
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece,
4–9 June 2023; pp. 1–5.

21. Park, J.; Lim, H. Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. 2022, 12, 734. [CrossRef]

http://doi.org/10.1016/j.cie.2020.106854
http://dx.doi.org/10.1016/j.jisa.2021.102748
http://dx.doi.org/10.1016/J.ENG.2016.02.008
http://dx.doi.org/10.1016/j.jisa.2021.102949
http://dx.doi.org/10.1002/int.22241
http://dx.doi.org/10.1007/s10586-018-2830-7
http://dx.doi.org/10.1109/TIFS.2019.2929409
http://dx.doi.org/10.1109/TIFS.2020.3043139
http://dx.doi.org/10.1109/TDSC.2021.3126323
http://dx.doi.org/10.1109/TNSE.2022.3153519
http://dx.doi.org/10.1109/TDSC.2022.3168556
http://dx.doi.org/10.3390/app12020734

Entropy 2023, 25, 1125 19 of 19

22. Du, W.; Li, M.; Wu, L.; Han, Y.; Zhou, T.; Yang, X. A efficient and robust privacy-preserving framework for cross-device federated
learning. Complex Intell. Syst. 2023. [CrossRef]

23. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

24. Lu, S.; Li, R.; Liu, W.; Guan, C.; Yang, X. Top-k sparsification with secure aggregation for privacy-preserving federated learning.
Comput. Secur. 2023, 124, 102993. [CrossRef]

25. So, J.; Güler, B.; Avestimehr, A.S. Turbo-aggregate: Breaking the quadratic aggregation barrier in secure federated learning. IEEE
J. Sel. Areas Inf. Theory 2021, 2, 479–489. [CrossRef]

26. Mohassel, P.; Zhang, Y. Secureml: A system for scalable privacy-preserving machine learning. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 19–38.

27. So, J.; He, C.; Yang, C.-S.; Li, S.; Yu, Q.; Ali, R.E.; Guler, B.; Avestimehr, S. Lightsecagg: A lightweight and versatile design for
secure aggregation in federated learning. Proc. Mach. Learn. Syst. 2022, 4, 694–720.

28. Schlegel, R.; Kumar, S.; Rosnes, E.; Amat, A.G.I. Codedpaddedfl and codedsecagg: Straggler mitigation and secure aggregation in
federated learning. IEEE Trans. Commun. 2023, 71, 2013–2027. [CrossRef]

29. Zhao, Y.; Sun, H. Information theoretic secure aggregation with user dropouts. IEEE Trans. Inf. Theory 2022, 68, 7471–7484.
[CrossRef]

30. Jahani-Nezhad, T.; Maddah-Ali, M.A.; Li, S.; Caire, G. Swiftagg+: Achieving asymptotically optimal communication loads in
secure aggregation for federated learning. IEEE J. Sel. Areas Commun. 2023, 41, 977–989. [CrossRef]

31. Zhang, X.; Fu, A.; Wang, H.; Zhou, C.; Chen, Z. A privacy-preserving and verifiable federated learning scheme. In Proceedings of
the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

32. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
33. Benaloh J.C. Secret sharing homomorphisms: Keeping shares of a secret secret. In Conference on the Theory and Application of

Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1986; pp. 251–260.
34. Krohn, M.N.; Freedman, M.J.; Mazieres, D. On-the-fly verification of rateless erasure codes for efficient content distribution. In

Proceedings of the IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 9–12 May 2004; pp. 226–240.
35. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
36. Rogaway, P. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, Kyoto, Japan, 4–6 June 2014; pp. 98–107.
37. Gordon, S.D.; Katz, J.; Liu, F.-H.; Shi, E.; Zhou, H.-S. Multi-client verifiable computation with stronger security guarantees. In

Proceedings of the 2th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, 23–25 March 2015; pp. 144–168.
38. Yao, X.; Huang, T.; Zhang, R.-X.; Li, R.; Sun, L. Federated learning with unbiased gradient aggregation and controllable meta

updating. arXiv 2019, arXiv:1910.08234.
39. Vepakomma, P.; Gupta, O.; Swedish, T.; Raskar, R. Split learning for health: Distributed deep learning without sharing raw

patient data. arXiv 2018, arXiv:1812.00564.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s40747-023-00978-9
http://dx.doi.org/10.1016/j.cose.2022.102993
http://dx.doi.org/10.1109/JSAIT.2021.3054610
http://dx.doi.org/10.1109/TCOMM.2023.3244243
http://dx.doi.org/10.1109/TIT.2022.3192874
http://dx.doi.org/10.1109/JSAC.2023.3242702
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/TIT.1976.1055638

	Introduction
	Related Work
	Privacy-Preserving FL
	FL with Verifiable Computation

	Preliminaries
	Federated Learning
	Secret Sharing
	Homomorphic Hash Function
	Key Agreement
	Authenticated Encryption

	System Model
	System Framework and Communication Model
	Threat Model
	Design Goals

	The Proposed Scheme
	Overview
	Initialization
	Secure Aggregation
	Verification Phase
	Correctness of the Scheme

	Security Analysis
	User Privacy
	Integrity Verification

	Model Analysis
	Experimental Setup
	Comparison with the Other Two Experiments Verifl guo2020v and Versa 9609695
	Computation Overhead
	Communication Overhead

	Other Experiments of Our Scheme
	Computation Overhead
	Communication Overhead

	Conclusions
	References

