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Abstract: We propose to re-express Nernst law in terms of a suitable information measure (IM)
parameter. This is achieved by dwelling on the idea of adapting the notion of purity in the case of a
thermal Gibbs environment, yielding what we might call the “purity” indicator (which we denote by
the symbol D in the text). We find it interesting to define an extension of this D− IM indicator in a
classical context. This generalization turns out to have useful conceptual consequences when used in
conjunction with the classical Shannon entropy S. Implications for the Nernst law are discussed.
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1. Introduction

In quantum mechanics, purity measures how similar a given quantum state is to a pure
one. In other words, it provides insights into the degree to which a quantum state is pure or
mixed, and hence the amount of information that can be extracted from it. Mathematically,
the purity D of a quantum state is given by the trace of the square of its density operator ρ,
i.e., Tr(ρ2). For a pure state, the purity is 1, indicating that the state is entirely non-mixed.
On the other hand, for a maximally mixed state (also known as a completely mixed state),
the purity is 1/M, where M is the dimensionality of the Hilbert space of the system. In a
mixed state, the purity lies between these two extremes.

Both the purity and degree of mixture 1− D provide measures of the information
content present in a quantum state. Pure states, with a purity of 1, typically exhibit a
coherent superposition and can be entangled. Mixed states, on the other hand, have reduced
purity and contain a mixture of quantum states with varying probabilities. The degree
of mixture quantifies the extent of the mixture and reflects the amount of information
and entanglement present in the state. These information measures are widely used
in quantum information theory, quantum state estimation, and the characterization of
quantum systems, as they provide valuable insights into the purity and degree of mixture
of quantum states [1–6].

Our Goals and Organization

The third law of thermodynamics (Nernst law) implies that it is impossible to reach
absolute zero temperature (AZT) by any finite number of steps, and that at AZT the entropy
of a perfectly ordered crystalline substance vanishes. In other words, a perfectly ordered
crystal at absolute zero temperature would have no disorder or randomness, and would be
in a state of minimum energy [7].

This law has important implications for the behavior of matter at low temperatures
and is essential for understanding the behavior of condensed matter physics, including
the properties of solids, liquids, and superfluids. The third law is also used in the design
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and optimization of refrigeration and cooling systems, as well as in the study of chemical
reactions and the behavior of materials under extreme conditions [7].

Here, instead, we discuss an alternative viewpoint. We will try to embark on a
discussion of information theory in which the protagonist is the notion of purity D, regarded
as an information measure (IM) .

We will focus our attention on the harmonic oscillator (HO) and on the ideal gas to
provide an understandable and clear picture of the situation. The simplicity of the systems
enables one to more easily visualize what the alternative use of the parameter D allows to
be uncovered in an actual physical situation.

Thus, we will try to link the third law of thermodynamics to the notion of purity
within the framework of (1) the harmonic oscillator and (2) the ideal gas. More details on
this are as follows:

• In Section 2, we consider the purity notion first in a quantum thermal scenario and
then in a classical environment.

• In Section 3, we obtain a useful expression for the purity quantifier D that relates
it to the Helmholtz free energy. This relation serves to considerably simplify our
D manipulations later.

• In Section 4, we consider the quantum harmonic oscillator (HO) and devise a spatial
method for expressing its Shannon entropy S solely in D terms, which illuminates
some aspects of Nernst law.

• In Section 5, the nucleus of this effort, we consider the classical HO and comment on
some interesting traits.

• Section 6 is devoted to the ideal gas. Some new insight is gained.
• Section 7 is devoted to conclusions.

2. A Generalization of the Purity Notion to a Finite Temperature Scenario

The density operator that describes the statistical ensemble of quantum states in a
system at finite temperature incorporates the probabilities associated with different energy
eigenstates of the system. In the case of a discrete set of energy eigenstates, the density
operator can be expressed as

ρ = ∑
i

Pi |i〉〈i|, (1)

where Pi represents the probability associated with the i-th energy eigenstate. It is deter-
mined by the thermal equilibrium, a canonical distribution of Gibbs’ that uses the so-called
exponential Boltzmann factors [7]

Pi = (1/Z) exp (−βEi), (2)

so that our principal system input is the set of level energies Ei. We denote β = 1/kT (k is
the Boltzmann constant). This entails a set of canonical probabilities Pi = exp (−βEi)/Z, Z
being the partition function. Several quantifiers like the entropy S or the free energy F are
built up with the Pi [7]. By summing over all possible energy eigenstates and incorporating
the corresponding probabilities, the appropriate density operator captures the ensemble
average behavior of the system at finite temperature. The diagonal elements of the density
operator provide the populations of the energy eigenstates, while the off-diagonal elements
capture the coherence and quantum correlations between different eigenstates. The density
operator at finite temperature provides a powerful tool for analyzing and characterizing
the behavior of quantum systems under thermal equilibrium conditions [7], accounting
for the probabilities associated with different energy eigenstates and their corresponding
energies. The purity, D, is obviously

D = Trρ2 = ∑
i

P2
i . (3)
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Notice that small D might be said to entail a kind of disorder, as we have only very low
probability elements, Pi, that can not differ too much from one another—that is, we are very
close to a uniform distribution representing maximum randomness. On the other hand,
large D might be said to imply order as one must encounter some (relatively) very large
Pis, indicating preferred microstates and thus some kind of structure. Thus, D might be
regarded as an order–disorder indicator. The classical counterpart of D, to be discussed
below, is known to be an indicator of such kind.

Generalization of the Purity Notion to a Classical Scenario

A pertinent point can be made in terms of a statistical concept developed around
25 years ago, called the disequilibrium, an order–disorder quantifier [8]. Low disequilib-
rium entails disorder and large disequilibrium entails order.

The central idea is that, statistically, maximum disorder is represented by a uniform
distribution (UF) [8]. As a consequence, the more different our current probability distribu-
tion (CPD) is from the UF, the more order this CPD represents [8]. The associated Euclidean
distance in the probability space between the CPD and the UF is the disequilibrium [8]
Q = ∑i P2

i , which defines a quantity Q that is identical to the one called D above for a
different purpose. The product of Q with the Shannon entropy

S = −Trρ ln ρ (4)

is of course the thermodynamic entropy [7].

C = Q S = D S, (5)

is called the statistical complexity. This expression of C is in many instances the standard
complexity form employed in several current publications. For a small sample, see, for
instance, Refs. [9–16]. Why is repeating the symbol D for naming two different notions
adequate? Because, formally, both equal the sum of the squares of probability elements
Pi. At a finite temperature and within Gibbs’ canonical ensemble, two pertinent types of
probability coincide.

3. Relation between D and the Helhmoltz Free Energy F

Given the partition function Z, we have the sequence [7]

Z(T) = ∑
i

exp (−βEi), (6)

F(T) = −kT ln (Z(T)), (7)

F(T/2) = −k(T/2) ln (Z(T/2)), (8)

2β[F(T)− F(T/2)] = 2βkT[(1/2) ln (Z(T/2))− ln (Z(T))], (9)

2β[F(T)− F(T/2)] = ln
[

Z(T/2)
Z(T)2

]
, (10)

exp (2β[F(T)− F(T/2)]) =
Z(T/2)
Z(T)2 , (11)

Z(T/2)
Z(T)2 =

[
∑

i
exp (−βEi)/Z

]2

= ∑
i

P2
i = D, (12)

so that we finally arrive at our desired relation that connects D with F:

D = exp [2β(F(T)− F(T/2))]. (13)

We will use this important expression in the following sections.
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4. Purity and the Quantum Harmonic Oscillator

Consider three-dimensional harmonic oscillators of frequency ω in equilibrium at
temperature T, whose energies are quantified according to εn = h̄ω(n + 3/2), with
n = 0, 1, 2, . . . The canonical partition function for a single oscillator is [7]

Z1 =
e−3βh̄ω/2

(1− e−βh̄ω)3
, (14)

while the Shannon entropy reads [7]

S = 3k

[
βh̄ω e−βh̄ω

1− e−βh̄ω
− ln

(
1− e−βh̄ω

)]
, (15)

which is definite positive for all temperatures T. Also, the Helmholtz free energy is

F =
3
2

h̄ω + 3kT ln
(

1− e−βh̄ω
)

. (16)

Now, we follow the indications given in Ref. [9] in order to obtain the purity D that,
as we just saw above, is a simple function of the canonical Helmholtz free energy F. In
Equation (13), for the purity, we had

D = exp [2β(F(T)− F(T/2))]. (17)

Therefore, considering that F is given by Equation (16), then one finds that the purity is
given by

D =

(
1− e−βh̄ω

1 + e−βh̄ω

)3

= tanh3
(

βh̄ω

2

)
. (18)

Note that when T = 0, then D = 1, and for T tending towards infinity, we have D = 0.
Therefore, the purity is of course bounded, i.e.,

0 ≤ D ≤ 1. (19)

The above relation (18) shows that for small β the hyperbolic tangent above approaches
βh̄ω/2. From Equation (18), we can isolate the variable βh̄ω in the fashion

βh̄ω = − ln

(
1− D1/3

1 + D1/3

)
= 2 arctanh

(
D1/3

)
. (20)

Now, introducing Equation (20) into Equation (15), we find the entropy S can be cast as a
function of just D [17]. Thus, we reach the wished-for possibility of expressing the entropy
solely in terms of the purity

S = −3k

[(
1− D1/3

2D1/3

)
ln

(
1− D1/3

1 + D1/3

)
+ ln

(
2D1/3

1 + D1/3

)]
. (21)

We clearly see that maximum D yields zero entropy, and the third law of thermodynamics
can be applied in terms of purity. Let us insist on this point: When we express S in terms of
D, we realize that, at maximum purity, the entropy vanishes. This may seem rather obvious, but it
opens the door for us to ask: what happens classically when we express the classical S in terms of
the classical D? Could it be that some similar S-D connection might emerge? We will see
below that the answer is a positive one.



Entropy 2023, 25, 1113 5 of 9

5. Classical Harmonic Oscillator and Classically Generalized D

We saw above that the classically generalized D is called disequilibrium, a notion
developed some 25 years ago, independently of the purity idea [8]. The connection
between purity and disequilibrium is being made in this article. Let us then consider the
three-dimensional harmonic oscillators of frequency ω in a Gibbs canonical ensemble at the
temperature T, whose respective Hamiltonian is H = ∑3N

i=1 p2
i /(2m) + mω2x2

i /2 [7]. We
wish to ascertain what happens when we attempt to express S in terms of D.

The partition function of each oscillator is

Z =

(
kT
h̄ω

)3
, (22)

and contains all the statistical HO information necessary for our ends. The entropy is [7]

S = 3k
[

1− ln
(

h̄ω

kT

)]
, (23)

which is positive definite whenever

T ≥ h̄ω/(ek). (24)

This yields the condition to avoid negative entropies.
Remember that we saw above that D is a simple function of F, of a form given by

Equation (17) [9]. Then, considering that F = −kT ln Z, one finds

D =

(
h̄ω

2kT

)3
. (25)

and also
Z =

1
2D

, (26)

which assures us that the whole classical HO statistical mechanics is governed by D.
Remark that, as in the quantum instance, both the partition function and S are simple

functions of D and, importantly enough (see Equations (24) and (25)),

0 ≤ D ≤ Dmax. (27)

In addition, the classical statistical complexity is of the form

C = D(S/k) = 3
(

h̄ω

2kT

)3[
1− ln

(
h̄ω

kT

)]
. (28)

Present Results for the HO

Let us first (a) insist that the generalized D is a measure of order, and (b) repeat
Equation (25) (

h̄ω

2kT

)3
= D, (29)

to emphasize that the generalized purity, here called disequilibrium, is the ratio between
the HO’s vibrational and kinetic energies. Replacing this into Equation (28), we are led,
for the single HO, to the desideratum of the expression of the Shannon entropy entirely in
terms of D, i.e.,

S = 3k[1− ln(2D1/3)]. (30)
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It is clear that the entropy will vanish for a special D value. We need to ascertain the
meaning of such special value. Now, for the statistical complexity, we find

C = 3D
[
1− ln(2D1/3)

]
. (31)

It is important now to note that, given that the C measure must be a positive quantity,
as stipulated in Ref. [18], then the maximum classical value for D can not be infinite. It
must at most adopt that value which makes ln(2D1/3) = 1, entailing, as we saw above and
repeat here because of its relevance,

0 ≤ D ≤ Dmax, (32)

with
Dmax = (e/2)3 ∼ 2.50. (33)

This provides us with a maximal classical degree of order. Also, it results in several
interesting and hopefully new classical features. The C-positivity argument also applies to
the entropy, of course, with identical results.

Additionally, for such a Dmax—disequilibrium value—the entropy vanishes according to
Equation (30). Thus, maximum order implies zero entropy as in the quantum instance above, which
can be rephrased as an order-based third law. The special quantum connection S-D of the
preceding section has indeed a classical counterpart. We can thus loosely speak of a kind of
classical Nernst law of vanishing entropy at the situation of maximum order (as measured
by D).

Let us here insist again on a previous assertion by reiterating that from Equation (25)
we saw that

h̄ω

2kD1/3 = T, (34)

The temperature grows as the degree of disorder increases, as is intuitively obvious. But,
by now using Equation (33), we see that this last assertion implies that as the order, which
grows with D, has a maximum, the classical temperature has a frequency-dependent (non
zero!) minimum (see Equation (36) below). For

D > (e/2)3 , one finds S < 0. (35)

Negative entropy entails using an incorrect value for D or, in the same way, a too-low
energy, according to the prescription u < uminimum with

uminimum =
h̄ω

e
. (36)

Moreover, we realize that

β =
2D1/3

h̄ω
, (37)

so the Gibbs canonical probability P for an HO HamiltonianH and a partition function Z
reads

P =
exp (− 2D1/3

h̄ω H)

Z
, (38)

which tells us that the HO physics is fully determined by the ratio D1/3/ω. We duly note
that D has a maximum possible value. Given Equations (33) and (34), we discover that, for
a fixed frequency (neither too high nor too low) the permissible minimum temperature is
of the order of 10−10 Kelvin. As an additional comment, we revisit the mean energy of the
harmonic oscillator [7]

u = 3kT. (39)
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Thus, in view of Equation (29), for the single HO, we have, for N HOs, a mean energy U

u =
3h̄ω/2
D1/3 , (40)

The above classical (and of statistical origin) minimum energy has a value slightly smaller
that the well-known quantum one.

We see that the HO energy can be thought of as being purely originating from disorder.
If the order degree indicator D is large enough, the system will be encountered at a very
low energy, but not arbitrarily low. This is indeed a new result. The classical HO seems to
have a minimum energy, a minimum temperature, and a maximal order degree at which
S = 0, if we respect the condition that the statistical complexity cannot be negative.

6. The Ideal Gas

The system consists of N mono-atomic identical particles contained in a volume
V. They are in thermal equilibrium at temperature T. The pertinent Hamiltonian reads
H = ∑N

i=1 p2
i /2m, where m is the mass of the particles and pi the concomitant momenta,

with i = 1, . . . , N [7,19]. The associated canonical partition function takes the form [7,19]

ZN =
1

N!

(
V
λ3

)N
. (41)

λ = h/
√

2πmkT stands for the particles’ mean thermal wavelength [7]. The Helmholtz free
energy F can be cast as [7]

F = NkT
[
ln
(

n λ3
)
− 1
]
, (42)

with n = N/V and v = V/N being the molar density and volume per particle [7].
The classical entropy is provided by the well known Sackur–Tetrode equation that

reads [7]

S = Nk ln
[

e5/2
(

n λ3
)−1

]
, (43)

which is positive definite if we fulfill the requirement n λ3 � e5/2.

The S-D Connection

According to Ref. [19], one has for D and the complexity C per particle

D = n λ3 e−1 2−3/2, (44)

and then

C = n λ3 e−1 2−3/2 ln
[

e5/2
(

n λ3
)−1

]
. (45)

Remark that λ is the thermal de Broglie wavelength, that is, roughly, the mean de Broglie
wavelength of the gas molecules at the temperature T. The mean inter-particle spacing dT
is, approximately, v1/3. Whenever λ is much smaller than this dT , the gas can be regarded
as classical. Contrarily, when λ is of the order of or larger than dT , quantum effects should
dominate and the gas ought to be treated as quantal.

Notice that, on the basis of the above relations, both S and C become negative for
nλ3 > e5/2, which involves D > (e/2)3/2 ∼ 1.59. If we wish to avoid this negativity, then
there is a maximum degree of order D = 1.59, an important result. Clearly, for D = 1.59 the
complexity C = 0. A simple manipulation yields the mean energy u = U/N for D = 1.59
as

uminimum =
6πh̄2

mv2/3e5/3 , (46)

a very small but non-zero quantity. Thus, in these circumstances, we can speak of a
maximum degree of order for which the entropy vanishes—an order-related Nernst law.
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7. Conclusions

What this paper offers is a choice regarding the nature of the classical entropy S. We
can either accept the possibility of having S < 0, as most people seem to do, or reject
it. If we reject it, then the degree of order exhibits, at its maximum, at which S = 0, an
order-based Nernst law.

Based on statistical mechanics considerations on the notion of purity and its quantum
counterpart (both symbolized by the same letter D), we have developed some interesting,
and hopefully new, classical traits of the harmonic oscillator and of the ideal gas. They
derive from the fact that a complexity measure cannot be a negative quantity [18]. This
perhaps also be said of S. In our discussion, the key role is played by the notion of purity
disequilibrium D.

On such a basis, in both the classical HO and ideal gas statistics, the traits described
below became apparent.

• Quantum purity is an indicator of how different a quantum state is from the totally
mixed one. Its classical counterpart is called disequilibrium and is an indicator of
how different the classical probability distribution is from the uniform one. We are
talking of the same idea as expressed in two quite distinct scenarios. Notably, the
same mathematical expression, which we call D, can be used in the two contexts.

• D has a maximum possible value. In the quantum case, this maximum value is unity.
Classically, we saw in two examples that there is a maximum value Dmax = (e/2)3 for
the HO and Dmax = (e/2)3/2 for the ideal gas.

• We conjecture that, classically, the maximum value of D, which can be thought to
represent maximum order, is equal to (e/2) f /2, with f being the number of degrees of
freedom of the system. For a three-dimensional HO f = 6, and for the ideal gas f = 3.

• For such maximum order values, the classical HO entropy and the ideal gas one vanish
at a temperature of T0 (with T0 6= 0), a kind of order0based third law that applies not
at zero temperature but at a finite one.

• There exist minimum possible classical mean energy (HO and ideal gas) values. This
seems to be a new and surprising result.

• Either the classical HO or the ideal gas entropies are negative for a D > Dmaximum
situation. Since we do not want a negative Shannon entropy, then D cannot exceed
D(maximum).

• If we declare that there are only positive entropy values, this fact by itself prevents the
classical temperature from reaching the zero value, as we have already established by
appealing to conventional treatments.

• We remark that our approach does not seem to require the concept of negentropy
advocated by the Prigogine school [20].
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