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Abstract: Because of the influence of harsh and variable working environments, the vibration
signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-
stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling
bearings is a challenging subject. In this paper, a novel fault diagnosis method based on composite-
scale-variable dispersion entropy (CSvDE) and self-optimization variational mode decomposition
(SoVMD) is proposed, systematically combining the nonstationary signal analysis approach and
machine learning technology. Firstly, an improved SoVMD algorithm is developed to realize adaptive
parameter optimization and to further extract multiscale frequency components from original signals.
Subsequently, a CSvDE-based feature learning model is established to generate the multiscale fault
feature space (MsFFS) of frequency components for the improvement of fault feature learning ability.
Finally, the generated MsFFS can serve as the inputs of the Softmax classifier for fault category
identification. Extensive experiments on the vibration datasets collected from rolling bearings of
combine harvesters are conducted, and the experimental results demonstrate the more superior and
robust fault diagnosis performance of the proposed method compared to other existing approaches.

Keywords: fault diagnosis; dispersion entropy; VMD; rolling bearing; combine harvester

1. Introduction

As a widely used agricultural machinery, the combine harvester plays an essential
role in the automatic process of crop harvesting [1]. The rolling bearing is a fundamental
and an important load-carrying component in the combine harvester and has a significant
influence on the stable and reliable operation of equipment [2]. Considering the harsh and
variable operating environment, several different types of faults will gradually occur in key
parts of the bearing and may lead to serious security incidents if they cannot be treated in a
timely manner [3,4]. Therefore, accurate bearing fault diagnosis is of great importance to
ensure a continuous and healthy operation state of a combine harvester and has gained
much more attention for its significant value of research.

Recently, with the development of machine learning technology, various fault detection
and diagnosis approaches have been proposed and have achieved successful applications in
engineering practice. In Reference [5], a decentralized SVDD-based fault diagnosis method
was presented and the experimental results demonstrated the feasibility of the method. To
facilitate the detection of incipient faults, Zhao designed an auxiliary input signal for active
fault diagnosis [6]. Generally, the vibration signals of the rolling bearing contain a large
amount of information that reflects the actual health states and usually serve as the data
inputs of the fault diagnosis model [7]. However, because of the influence of complex work-
ing conditions and the system dynamic response, the collected vibration signals present
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significant characteristics of strong non-stationarity and nonlinearity in most cases [8]. For
this reason, various advanced time–frequency signal analysis methods have been applied
successfully for signal processing to reduce the complexity of the original signal and further
learn useful state information for diagnosis [9]. On this foundation, the redundant informa-
tion contained in raw signals can be effectively filtered and the corresponding results of
signal analysis provide solid support for subsequent feature extraction. The most frequently
used time–frequency analysis approaches include the wavelet transform (WT), empirical
mode decomposition (EMD), and a set of related improved methods, such as the empirical
wavelet transform (EWT) and ensemble EMD (EEMD) [10–13]. Liang used a WT-based
method to extract the fault features and realize the fault diagnosis of a bearing [10]. In
Reference [11], an improved EWT approach was presented for bearing diagnosis. Although
WT and its improved methods have been widely applied in the fields of diagnosis, the prob-
lems of insufficient adaptability and wavelet-based selection still cause some restrictions in
practical application. Unlike WT, EMD and its optimized methods have been developed
and have effectively achieved adaptive performance [12,13]. Nevertheless, a problem not to
be ignored is that the mode mixing phenomenon that exists in the results of signal analysis
may cause an obvious decrease in final diagnosis accuracy. Fortunately, as an adaptive algo-
rithm, VMD helps to extract a series of frequency components from the original signal and,
at the same time, avoid the influence of mode mixing [14]. The algorithm can determine
the relevant bands adaptively and perfectly balance errors between different frequency
components to obtain the separation of components from original signals. Zhou proposed
a VMD-based method for bearing fault diagnosis and achieved better performance than
existing diagnosis technology [15]. In addition, the effectiveness of VMD has also been
strongly validated and many successful applications in practical problems can be seen in
References [16,17]. Nevertheless, it is worth noting that two important parameters of the
VMD algorithm including the number of components and the penalty factor are usually set
randomly, which will have a significant influence on the final decomposition results [18].
For this reason, adaptively optimizing these parameters of VMD has become a hot topic in
the fields of non-stationary signal processing and fault diagnosis.

Based on the preliminary results of signal analysis, the state features of the bearing can
be further captured for diagnosis [19–22]. Zhao proposed a bearing multi-fault diagnosis
method guided by the instantaneous fault characteristic frequency extraction and enhanced
instantaneous rotational frequency matching, and the related experiment results validated
the effectiveness of the method [19]. Wang developed a bilayer convolutional transfer
learning neural network with better generalization performance to effectively extract
the fault features [20]. In Reference [21], the bearing fault type was determined directly
using the fault characteristic frequency and rotational frequency harmonics. Recently,
due to the development of artificial intelligence technology and system dynamics theory,
entropy-based feature extraction approaches have become a hot topic to be explored
gradually [23,24]. As a transcendental and important statistical concept in many disciplines,
entropy can effectively measure the dynamic changes of vibration signal when a fault
occurs without the linear hypothesis. Because of the significant advantages, different types
of entropies have been developed to automatically capture the effective features from raw
signals for fault diagnosis [25,26]. For instance, approximate entropy (AE) was proposed to
describe the underlying deterministic changes and further measure the dynamic changes
in original signals [27]. Based on this, an AE-based model was proposed to identify the
spall-like fault [28]. Limited by the theoretical basis of AE, the quality of the obtained
features can be easily affected by the signal length and more similarity would be generated
so that the diagnosis cannot give satisfactory results [25]. As the improvements of AE,
sample entropy (SE) [29] and permutation entropy (PE) [30] were developed and effectively
overcame the limitations of AE. Gao proposed an SE-based method to complete the task
of early fault diagnosis of bearings [31]. In Reference [32], a bearing fault feature space
was constructed using PE theory. However, some inherent defects for these entropies,
such as the problems of boundary discontinuity and amplitude information loss, would
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also have a significant impact on the final diagnosis results [33,34]. Unlike the above-
mentioned entropies, dispersion entropy (DE) has an excellent ability for measuring the
irregularity of signals and solves the problems existing in these entropies [35]. Due to the
ideal robustness and computation efficiency, DE has been widely applied in the fields of
fault diagnosis [36–38]. But it should be noted that these different types of entropies are all
single-scale analysis methods, without taking the dynamic characteristics in multiple scales
into consideration [39]. Specifically, some essential state information may be contained in
these features. Considering the advantages of DE, it is a valuable subject where a novel
multi-scale feature extraction method integrated with DE should be provided to achieve
the goal of accurate fault diagnosis.

The main contribution of this work is the development of a novel rolling bearing fault
diagnosis method for a combine harvester based on composite-scale-variable dispersion
entropy (CSvDE) and self-optimization VMD (SoVMD) algorithms, systematically blending
the nonstationary signal analysis technique and machine learning technology. The block
diagram of the proposed method is depicted in Figure 1. In general, the implementation of
the proposed method can be divided into three stages, including the first-stage multiscale
frequency component extraction, the second-stage MsFFS construction, and the third-stage
fault state identification. And on the subject of detail, to eliminate the influence of the strong
non-stationarity and nonlinearity of original signals on the diagnosis results, an improved
SoVMD algorithm is developed to decompose the original vibration signal into several
multiscale frequency components first. It can be seen as a remarkable improvement on the
basis of the traditional VMD described in References [14–16] so that the parameters of VMD
can be adaptively optimized by the SoVMD method. Subsequently, a new CSvDE-based
model is designed to construct the multiscale fault feature space (MsFFS) of frequency
components. Compared with other entropy-based feature extraction approaches introduced
in References [33–35], the constructed MsFFS effectively integrates the advantage of variable
scales of CSvDE and has great potential to reveal essential information of different fault
states. Finally, based on the MsFFS, the softmax classifier is used to identify the fault states
of bearings. Overall, the multiscale frequency component extraction can be regarded as
the preprocessing stage of the subsequent MsFFS construction, and the acquired MsFFS of
bearings should serve as the inputs of the softmax model. Extensive experiments on the
vibration datasets collected from rolling bearings of the combine harvester are implemented
and the experimental results demonstrate the more superior and robust fault diagnosis
performance of the proposed method compared to other existing approaches.
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Figure 1. The block diagram of the proposed fault diagnosis method.

The rest of the work can be briefly introduced as follows. Section 2 describes the
research methodology and the general procedure of the proposed method. In Section 3, the
experimental results and the corresponding discussion are presented in detail. At the end
of the paper, the conclusions are given in Section 4.
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2. Research Methodology
2.1. Self-Optimization VMD Algorithm
2.1.1. VMD Algorithm

VMD is an adaptive non-stationary signal processing method [14]. The k-th mode
component using VMD can be defined as

ck(t) = Ak(t) cos(θk(t)), k = 1, 2, · · · , K (1)

where Ak(t) and θk(t) are the instantaneous amplitude and phase, respectively, and K
represents the number of mode components. In order to estimate the optimal bandwidth of
mode ck(t), a constrained variational model can be established as [14]

min
{ck ,φk}

{
K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ ck(t)

]
e−jφkt

∥∥∥∥2

2

}
, s.t.

K

∑
k=1

ck(t) = s(t) (2)

where φk is the center frequency, ∂t is the gradient operation, δ(t) is the Dirac function,
∗ represents the convolution operator, j is the imaginary unit, and s(t) is the raw signal.

To obtain the solution of Equation (2), a penalty factor α and Lagrangian multiplier λ
should be introduced as

L({ck}, {φk}, λ) = α
K

∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ ck(t)

]
e−jφkt

∥∥∥∥2

2
+

∥∥∥∥∥s(t)−
K

∑
k=1

ck(t)

∥∥∥∥∥
2

2

+

〈
λ, s(t)−

K

∑
k=1

ck(t)

〉
(3)

Then, the alternate direction multiplier algorithm is considered to solve Equation (3)
and the mode ck(t) can be acquired as

ĉn+1
k =

ŝ(φ)− ∑
i 6=k

ĉi(φ)+
λ̂(φ)

2

1 + 2α(φ− φk)
2 (4)

φn+1
k =

∫ ∞
0 φ

∣∣∣ĉn+1
k (φ)

∣∣∣2dφ∫ ∞
0

∣∣∣ĉn+1
k (φ)

∣∣∣2dφ

(5)

where n is the number of iterations, and ĉn+1
k , ŝ(φ), ĉi(φ), and λ̂(φ) are the Fourier trans-

forms of cn+1
k (t), s(t), ci(t), and λ(t), respectively.

2.1.2. The Developed SoVMD Algorithm

In order to eliminate the influence of strong vibration signal nonlinearity on the di-
agnosis result, a self-optimization VMD (SoVMD) algorithm is designed to extract the
multiscale frequency components from the original signal without the problem of mode
mixing and further contributes to learning the inherent characteristics of bearing fault
patterns from different scales. More specifically, from the perspective of parameter opti-
mization, the developed SoVMD adopts a hierarchical search structure with adjustable step
sizes and effectively achieves the goal of adaptive parameter search (including the number
of components K and the penalty factor α), which is a significant improvement compared to
the traditional VMD method. The detailed steps of SoVMD can be summarized as follows.

Step 1: Initialize the parameters of the VMD method, including the frequency compo-
nent

{
c1}, the center frequency

{
φ1}, and the Lagrangian multiplier

{
λ1}, and the search

intervals of K and α should be pre-determined.
Step 2: Initialize the parameters related to the searching process, i.e., the maximum

number of iterations M, the population size of searching particles P, the initial step size
SS0, and the initial searching location (X0, Y0).
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Step 3: The location
(
Xj, Yj

)
of the j-th particle can be adjusted with a random

direction as
Xj = X0 + SSi, Yj = Y0 + SSi (6)

with

SSi = SS0

(
1

100

) i−1
M

(7)

where i represents the current iteration number, 1 ≤ i ≤ M, and SSi represents the step size
of the i-th iteration. The construction of Equation (7) realizes the dynamic optimization of
search step size and further improves the efficiency and accuracy of parameter searching.

Step 4: The distance between the particle location and the coordinate origin (0, 0) can
be obtained as

Hj =
(

X2
j + Y2

j

) 1
2 (8)

Step 5: Calculate the concentration value of each particle Cvj using the concentration
judgment function, i.e., the fitness function, as

Cvj = f f itness

(
1

Hj

)
(9)

f f itness =
1
R

(10)

where R represents the root-mean-square error of the training samples.
Step 6: Based on the search process among the whole population, the optimal concen-

tration value Cvop and the optimal particle location
(
Xop, Yop

)
are acquired and updated as

Cv = Cvop
X0 = Xop
Y0 = Yop

(11)

Step 7: Steps 2–7 should be repeated with i = i + 1 until the decision condition i = M
is met.

Step 8: Through the steps above mentioned, the optimal values of K and α can
be obtained. Similar to the implementation process of the VMD method depicted in
Reference [14], the raw signal s(t) can be decomposed into K components with different
frequency scales:

s(t) =
K

∑
i=1

ci(t) (12)

It is worth noting that the whole process of parameter optimization in the proposed
SoVMD method can be primarily divided into two stages, i.e., the initial stage with the
larger search step sizes and the latter stage with the smaller sizes. Specifically, the large
size contributes to accelerate the convergence and strength of the global optimization
performance, and the small size can be considered for the purpose of accurate local search.
Consequently, because of the dynamic adjustable step size adopting in SoVMD approach,
the divergence between the global and local optimization can be effectively balanced and
the efficiency and accuracy of parameter optimization can be significantly improved. The
flowchart of the proposed SoVMD algorithm can be depicted in Figure 2.
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2.2. Composite-Scale-Variable Dispersion Entropy
2.2.1. Dispersion Entropy

As a non-linear characteristic indicator, dispersion entropy (DE) can be used to evalu-
ate the irregularity and uncertainty of the signal sequence quantitatively [35]. Based on
the advantages of low computation consumption and taking the amplitude’s order and
relationship with the theoretical system into consideration, DE helps to obtain more reliable
and robust diagnosis results. Given a signal sequence X(t) = {x(1), x(2), · · · , x(N)}
(N is the length of the sequence), the DE of this sequence can be calculated by the
following steps.

(1) For the original sequence X(t), a corresponding mapped sequence
U(t) = {u(1), u(2), · · · , u(j), · · · , u(N)} can be constructed based on the following formula:

u(j) =
1√
2πσ

∫ x(j)

−∞
e
−(τ−µ)2

2σ2 dτ (13)

where µ is the expectation and σ is the standard deviation. Specifically, the value of u(j) is
between 0 and 1.

(2) Then, for the element u(j), an integer vm(j) between 1 and m can be obtained by a
linear model:

vm(j) = round(m.u(j) + 0.5) (14)

where m represents the number of categories and round(·) represents the integer function.
(3) Based on the above equation, an embedding sequence vγ,m(j) can be defined

as follows:
vγ,m(j) = (vm(j), vm(j + ξ), · · · , vm(j + (γ− 1)ξ)) (15)

where γ is the embedding dimension and ξ is the time delay. Especially, each element of
vγ,m(j) can be mapped into a dispersion mode Πϕ0 ϕ1···ϕγ−1 , in which

vm(j) = ϕ0, vm(j + ξ) = ϕ1, · · · , vm(j + (γ− 1)ξ) = ϕγ−1 (16)
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(4) Calculate the relative frequency of each mode by the following formula:

f
(

Πϕ0 ϕ1···ϕγ−1

)
=

Number
{

j
∣∣∣j ≤ N − (γ− 1)ξ, vγ,m(j) has type Πϕ0 ϕ1···ϕγ−1

}
N − (γ− 1)ξ

(17)

(5) Based on the definition of Shannon entropy, the DE of sequence X(t) can be
calculated as

DE(X(t), γ, m, ξ) = −
mγ

∑
Π=1

f
(

Πϕ0 ϕ1···ϕγ−1

)
ln
(

f
(

Πϕ0 ϕ1···ϕγ−1

))
(18)

2.2.2. The Proposed CSvDE Theory

Based on the extracted multiscale frequency components, the valuable and inherent
features should be learned from these components for accurate fault diagnosis. Considering
the complexity of failure causes and the diversity of frequency scales, a composite-scale-
variable dispersion entropy (CSvDE) theory is developed and further serves as the effective
features for bearing fault diagnosis. Compared with the classical DE approach, the pro-
posed CSvDE method contributes to revealing sensitive characteristics of components from
different scales and, at the same time, retains all important information that is essential
for accurate diagnosis. The computation principle of CSvDE can be illustrated in detail
as follows.

Suppose ci(t) = {ci(1), ci(2), · · · , ci(N)} represents the obtained i-th frequency com-
ponent and N represents the length of a component. Some coarse graining sequences can
be generated as follows:

cζ
w,i =

1
ζ

w+ζi−1

∑
w+(i−1)ζ

cj, 1 ≤ i ≤ N
ζ

, 1 ≤ w ≤ ζ (19)

where ζ is the scale factor and w is the order number of coarse graining sequences. To sum
up, the CSvDE of component ci(t) can be finally calculated by the following formula:

CSvDE(ci(t), γ, m, ξ, ζ) = −
mγ

∑
Π=1

f
(

Πϕ0 ϕ1···ϕγ−1

)
ln
(

f
(

Πϕ0 ϕ1···ϕγ−1

))
(20)

where f
(

Πϕ0 ϕ1···ϕγ−1

)
= 1

ζ

ζ

∑
w=1

f (ζ)w is the average relative frequency of mode Π in the

sequence c(ζ)w .

2.3. The Implementation of the Proposed Fault Diagnosis Method

In this paper, a novel fault diagnosis method is proposed for the rolling bearing of
a combine harvester. Based on some improved models, including SoVMD and CSvDE, a
multiscale fault feature space (MsFFS) can be constructed and the purpose of accurate fault
diagnosis can be further achieved. This section illustrates the strategy of MsFFS construction
and the detailed implementation procedure of the proposed fault diagnosis method.

2.3.1. The Construction of Multiscale Fault Features Space

Considering the high similarity and complexity between different types of bearing
fault signals, it is difficult to obtain accurate diagnosis results only depending on the
CsvDE values of raw signal with a single scale factor. For this, a high-dimensional feature
pool, written as the MsFFS, can be innovatively constructed to characterize the essential
information of fault categories from the perspective of various scales. To give more detail,
based on the obtained multiscale frequency components using the SoVMD algorithm, the
CSvDE features of these components under different scale factors need to be acquired so
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that the MsFFS of signal samples can be further established. The generated MsFFS can be
denoted as follows, which systematically couples different scales from the levels of the
frequency component and dispersion entropy:

MsFFS =


Sample1

(
CSvDE

(
ci, γ, m, ξ, ζ j

))
;

Sample2
(
CSvDE

(
ci, γ, m, ξ, ζ j

))
;

...
SampleS

(
CSvDE

(
ci, γ, m, ξ, ζ j

))
;

, 1 ≤ i ≤ K, 1 ≤ j ≤ L (21)

where S and K are the number of samples and frequency components, respectively, and
L is the maximum of factor ζ. It can be found from Equation (21) that the dimensionality of
the constructed MsFFS is S× (KL).

In addition, from Equation (21), it can be seen that there are four parameters that need
to be considered in CSvDE and MsFFS, including the embedding dimension γ, the number
of category m, the time delay ξ, and the scale factor ζ. Meanwhile, comparing Equations
(18) and (21), we can observe that there are three common parameters in DE and CSvDE,
i.e., γ, m, and ξ. Based on the principle of DE described in Reference [35], the appropriate
value of embedding dimension γ is of great significance to sensitively identify the dynamic
changes in the original signal. In other words, too small a γ increases the difficulties for the
identification of signal dynamic changes inevitably, while too large a γ easily results in a
sluggish response to minor changes. Moreover, the value of category number m should be
larger than 1 to guarantee enough dispersion modes in the MsFFS. When it is too small,
two amplitude values that are far from each other may be classified into a similar category.
But when it is too large, a very small difference may change their category, and the results of
MsFFS are easily affected by noise. Also, if γ or m is too large, the computation time is very
high. Thus, it is recommended to choose m from 4 to 9 [35,36]. It should be noted that the
number of potential dispersion modes mγ needs to satisfy the following condition: mγ ≤ N
(N is the length of frequency component ci) [35,36]. For the time delay ξ, it is suggested
that the corresponding value should be set as 1 [35]. If ξ > 1, some important frequency
information may be discarded. Consequently, referring to the literature [35,36], these three
parameters can be set in this study as γ = 4, m = 6, and ξ = 1. And for the important
parameter ζ in the theoretical framework of CSvDE, too small a value is not sufficient to
capture essential differences between different types of fault samples and too large a value
significantly increases the computation cost. A further analysis of the influence of scale
factor ζ on the diagnosis results is shown later in the next section.

2.3.2. The Procedure of the Proposed Method

The flowchart of the proposed fault diagnosis method for rolling bearings of combine
harvesters is presented in Figure 3. More specifically, due to the strong parameter self-
optimization ability and superior decomposition performance of the SoVMD described in
Section 2.1, it can be used to decompose the fault signals, and then the MsFFS of bearings is
constructed based on the developed CSvDE theory. The implementation procedure of the
proposed method is summarized as follows.

(1) The vibration signals of harvester rolling bearings are collected by relevant sensors
and the data acquisition system.

(2) The collected vibration signals need to be classified into two parts at random, includ-
ing the training set and testing set.

(3) Each signal sample in the training set should be decomposed into several multiscale
frequency components using the SoVMD algorithm.

(4) On the basis of the analysis of the pre-research experiment, the appropriate value
range of scale factor ζ can be determined. Furthermore, in order to guarantee the
effectiveness and completeness of the extracted fault information, the CSvDE values
of frequency components under different scale factors should be calculated for the
construction of MsFFS.
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(5) The Softmax classifier is employed to identify the fault category of rolling bearings.
For this, the cross-entropy function is considered to calculate the corresponding fault
identification loss as [40,41].
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Figure 3. The flowchart of the proposed fault diagnosis method for rolling bearing of combine
harvester.

Loss = − 1
n

n

∑
i=1

li log
(

l̃i
)
= − 1

n ∑
xi∈{x,l}

C

∑
c=1

Pxi 7→c log(Gl(MsFFs(xi))) (22)

where xi represents the raw signal sample, li represents the corresponding truth label,
l̃i represents the predicted label of the softmax model, n is the number of samples, C is the
number of fault categories, Pxi 7→c represents the corresponding probability of sample xi
belonging to fault category c, and Gl represents the softmax classifier.
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(6) A testing set is utilized to validate the feasibility and superiority of the proposed
diagnosis method.

Through the above diagnosis steps, the specific fault state of a harvester rolling bearing
can thus be identified and determined. In essence, the fault diagnosis results provided by
the proposed method are equivalent to the classification results of the softmax classifier.
In addition, based on the diagnosis results, two commonly used evaluation metrics are
calculated to analyze the performance of diagnosis method, including diagnosis accuracy
and false alarm rate (FPR) [42,43]. Based on the machine learning theory related to the
classification problem, the definitions of these two metrics are presented as follows.

Accuracy(%) =
1
C

C

∑
i=1

(
TPi + TNi

M
× 100%

)
(23)

FPR(%) =
1
C

C

∑
i=1

(
FPi

FPi + TNi
× 100%

)
(24)

where C is the number of fault categories; TPi, TNi, and FPi represent the true positives,
true negatives, and false positives for the i-th fault category, respectively; and M is the total
number of testing samples. The larger accuracy and the smaller FPR represent the better
performance of the diagnosis method.

3. Experiment Validation and Results Discussion
3.1. Dataset Description

In this study, the vibration signals collected from rolling bearings that are installed
on the threshing drum assembly of the combine harvester can be utilized for experimental
analysis. The structure diagram of the test platform is depicted in Figure 4, which mainly
consists of a motor, a torque transducer, a drum assembly, and a signal acquisition system.
As shown in Figure 4, the acceleration sensor is attached to the vertical direction at the front
end of the drum assembly and utilized to acquire the vibration signals of rolling bearings
under different operation conditions with a sampling frequency of 10 kHz. Specifically,
the faults of different types and defect diameters are seeded on the normal bearings by
edM, including three single point faults and one combination fault, as shown in Figure 5.
More detailed information about the bearing fault states in this experiment can be found
in Table 1, in which the abbreviation of each state is defined for clarity. Furthermore, it
should be noted that each experiment sample consists of 2000 data points. The time-domain
waveforms of raw vibration signals for five states are presented in Figure 6. To validate
the stable diagnosis performance of the proposed method, 10 repeated trials with the
same setup are conducted in this case study. Notably, all experiments are implemented
with MATLAB 2016 and the relevant program runs on a laptop with a CPU 3.2 GHz and
16 GB RAM.
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Table 1. Descriptions of rolling bearing fault states in the experiments.

States

Abbreviation

Number of Samples

Label
Fault Type Defect Diameter

(mm) Training Set Testing Set

Normal Nora 50 50 1

Roller fault
0.7 RF_07 50 50 2
1.2 RF_12 50 50 3
1.5 RF_15 50 50 4

Inner ring fault
0.7 IRF_07 50 50 5
1.2 IRF_12 50 50 6
1.5 IRF_15 50 50 7

Outer ring fault
0.7 ORF_07 50 50 8
1.2 ORF_12 50 50 9
1.5 ORF_15 50 50 10

Combination fault
0.7 CF_07 50 50 11
1.2 CF_12 50 50 12
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3.2. Fault Diagnosis Results Analysis
3.2.1. Multiscale Frequency Components Extraction by the SoVMD Algorithm

As the strong non-stationarity and nonlinearity of bearing vibration signals, the fault
diagnosis accuracy would be obviously reduced if the process of feature extraction is



Entropy 2023, 25, 1111 12 of 21

directly executed using the entropy-based approach. In order to reduce the influence of
signals complexity on diagnosis accuracy, as mentioned in Section 2.1, the collected signals
should be decomposed first to learn the inherent characteristics of fault states from different
frequency scales. Based on the developed SoVMD method, a series of multiscale frequency
components ci(t) can be effectively obtained from raw signals. Specifically, the parameters
related to the searching process are initialized as M = 100, P = 200, and SS0 = 100.
Furthermore, the searching intervals of K and α are set as [3, 15] and [500, 1500], respectively.
Taking a signal sample of a roller fault with a 1.2 mm defect diameter (RF_12) as an example
for analysis, Figure 7 lists the extracted frequency components of this sample by SoVMD
and the corresponding frequency spectrum of these components. We can observe from this
figure that the fault sample is decomposed into 10 frequency components and the spectra of
these components are significantly different. The decomposition results mentioned above
indicate that the problem of mode mixing can be effectively overcome using the SoVMD
algorithm. In a follow-up study, based on the CSvDE theory, the obtained frequency
components can be utilized to construct the MsFFS for bearing fault identification.
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3.2.2. Analysis of CSvDE Scale Factor

As depicted in Equations (13) and (14), the maximum value of scale factor ζ should be
determined preliminarily to construct the MsFFS of bearings for accurate fault diagnosis.
For this, Figure 8 presents the development trend of CSvDE average values for all training
samples under 12 operation states with the increase in scale factor, in which the scale factor
varies from 1 to 20. More specifically, the remaining three parameters of CSvDE can be
set as γ = 4, m = 6, and ξ = 1 [35,36]. It can be found from the figure that the values of
CSvDE show a gradual decreasing tendency with the scale factor increasing, regardless of
the working state. Moreover, when ζ > 15, the curve of CSvDE tends to be stable and there
is obvious overlap between the CSvDE values of different fault states, which indicates that
the current value of ζ is appropriate for fault identification. In other words, the interval of
the scale factor for the construction of the MsFFS can be determined as ζ ∈ [1, 15].
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In addition, to analyze the difference of CSvDE features of frequency components
between 12 working states, the CSvDE values of all components under four different scale
factors (ζ = 1, 5, 10, 15) are calculated, as shown in Figure 9. It is obvious that the CSvDE
values of the last few components are larger than those of the first several components
when ζ = 1, and a similar phenomenon occurs in the results of the other three factors. This
is because the last few components with high frequency exhibit a stronger randomness
and contain more information of fault states compared with the first several components.
Moreover, it is worth noting that for the 12 states, the differences in CSvDE values of the
last five components are more significant. However, there is obvious overlap between
the CSvDE values of the other components. The relevant results indicate that the last five
components show greater potential for identifying different operation states of bearings.
Consequently, two groups of experiments can be conducted in this study, as described in
Table 2. In other words, from the perspective of feature construction, we try to explore the
influence of MsFFS structure on the diagnosis accuracy. And most remarkably, much more
attention should be paid to Experiment 1 to demonstrate the superior performance of the
proposed method.
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Table 2. The relevant information about the two groups of experiments.

Experiment Group Description
The Dimension of MsFFS

Training Set Testing Set

1
All components should be

used to construct
the MsFFS

600 × 150 600 × 150

2
The last five components
are adopted to construct

the MsFFS
600 × 75 600 × 75

Experiment 1: Without the process of frequency component selection, all components
obtained by SoVMD are used to construct the MsFFS.

Experiment 2: Based on the analysis results mentioned above, the last five components
are considered to construct the MsFFS.

As depicted in Equation (21), the MsFFS can be effectively constructed for bearing
fault diagnosis based on the extracted multiscale frequency components and CSvDE theory.
Here, utilizing the results of the training set in Experiment 1 as an example, the following
formula shows the constructed MsFFS to train the softmax classifier:



Nora1(CSvDE(c1, 4, 6, 1, 1)) Nora1(CSvDE(c1, 4, 6, 1, 2)) · · · Nora1(CSvDE(c1, 4, 6, 1, 15)) · · · Nora1(CSvDE(c10, 4, 6, 1, 15))
...

...
. . .

...
. . .

...
Nora50(CSvDE(c1, 4, 6, 1, 1)) Nora50(CSvDE(c1, 4, 6, 1, 2)) · · · Nora50(CSvDE(c1, 4, 6, 1, 15)) · · · Nora50(CSvDE(c10, 4, 6, 1, 15))
RF−071(CSvDE(c1, 4, 6, 1, 1)) RF−071(CSvDE(c1, 4, 6, 1, 2)) · · · RF−071(CSvDE(c1, 4, 6, 1, 15)) · · · RF−071(CSvDE(c10, 4, 6, 1, 15))

...
...

. . .
...

. . .
...

RF−0750(CSvDE(c1, 4, 6, 1, 1)) RF−0750(CSvDE(c1, 4, 6, 1, 2)) · · · RF−0750(CSvDE(c1, 4, 6, 1, 15)) · · · RF−0750(CSvDE(c10, 4, 6, 1, 15))
...

...
. . .

...
. . .

...
CF−121(CSvDE(c1, 4, 6, 1, 1)) CF−121(CSvDE(c1, 4, 6, 1, 2)) · · · CF−121(CSvDE(c1, 4, 6, 1, 15)) · · · CF−121(CSvDE(c10, 4, 6, 1, 15))

...
...

. . .
...

. . .
...

CF−1250(CSvDE(c1, 4, 6, 1, 1)) CF−1250(CSvDE(c1, 4, 6, 1, 2)) · · · CF−1250(CSvDE(c1, 4, 6, 1, 15)) · · · CF−1250(CSvDE(c10, 4, 6, 1, 15))


In addition, to validate the more superior performance of the proposed method, six

other approaches are also employed for rolling bearing fault diagnosis, including the EMD-
CSvDE, VMD-CSvDE, SoVMD-multiscale sample entropy (MSE) [44], SoVMD-multiscale
permutation entropy (MPE) [45], support vector machine (SVM) [46], and artificial neural
network (ANN) [47]. More specifically, the first four comparison methods are designed to
analyze the contribution of each link in the process of fault diagnosis, i.e., SoVMD-based
multiscale frequency component extraction and CSvDE-based MsFFS construction. As
described in Section 3.1, 10 trials with the same setup are implemented in two groups
of experiments. Detailed descriptions about the parameter setup of seven methods in
Experiment 1 are shown in Table 3.

Considering the two different groups of experiments, the detailed diagnosis accuracies
and FPRs of 10 trials for seven methods are presented in Figures 10 and 11, respectively.
Based on these results, the average accuracies and average false alarm rates of the seven
methods in two experiments can be calculated and are listed in Table 4. In addition,
to compare the implementation efficiency, the average computation time of 10 trials for
different methods is shown in Table 5.
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Table 3. Descriptions about the parameter setup of seven methods in Experiment 1.

Methods Parameter Setup

The proposed method

For SoVMD, the maximum number of iterations is 1000, and the number of
components and the penalty factor are optimized between [3, 15] and [500, 1500],
respectively. For CSvDE, the embedding dimension, category number, and time

delay are set as 4, 6, and 1, respectively, and the scale factor
varies between 1 and 15.

EMD-CSvDE For EMD, the maximum number of iterations is 1000. For CSvDE, the
corresponding parameters are set as the same as that of the proposed method.

VMD-CSvDE

For VMD, the maximum number of iterations is 1000, and the number of
components and the penalty factor are arbitrarily determined as 7 and 1000,

respectively. For CSvDE, the corresponding parameters are set as the same as that
of the proposed method.

SoVMD-MSE
For SoVMD, the corresponding parameters are set as the same as that of the

proposed method. For MSE, the embedding dimension and time delay are set as
4 and 1, respectively, and the scale factor varies between 1 and 15.

SoVMD-MPE
For SoVMD, the corresponding parameters are set as the same as that of the

proposed method. For MPE, the embedding dimension and time delay are set as
4 and 1, respectively, and the scale factor varies between 1 and 15.

SVM The RBF is used as the kernel function. The penalty factor is set as 3, and the
kernel radius is set as 1.

ANN The structure of the network is 2000-300-12. The learning rate and momentum are
0.1 and 0.3, respectively, and the maximum number of iterations is 1000.
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Table 4. Comparison of average accuracies and average FPRs of 7 methods in two experiments.

Methods
Experiment 1 Experiment 2

Accuracy (%) FPR (%) Accuracy (%) FPR (%)

The proposed
method 96.70 ± 0.38 0.30 ± 0.02 93.97 ± 0.33 0.55 ± 0.03

EMD-CSvDE 92.52 ± 0.68 0.68 ± 0.08 91.07 ± 0.61 0.81 ± 0.09
VMD-CSvDE 94.73 ± 0.46 0.51 ± 0.06 93.17 ± 0.43 0.62 ± 0.07
SoVMD-MSE 92.38 ± 0.69 0.70 ± 0.09 90.52 ± 0.61 0.86 ± 0.09
SoVMD-MPE 91.03 ± 0.81 0.82 ± 0.11 88.57 ± 0.70 1.05 ± 0.13

SVM 62.37 ± 1.16 3.57 ± 0.34 62.28 ± 1.19 3.61 ± 0.33
ANN 56.92 ± 1.37 3.99 ± 0.40 57.15 ± 1.26 3.92 ± 0.38

Table 5. Comparison of average computation time of 7 methods in two experiments.

Methods

Average Computation Time in
Experiment 1 (s)

Average Computation Time in
Experiment 2 (s)

For Training Set For Testing Set For Training Set For Testing Set

The proposed
method 87.15 69.21 62.34 51.05

EMD-CSvDE 79.79 58.03 52.05 43.91
VMD-CSvDE 71.53 52.82 47.97 40.67
SoVMD-MSE 86.06 66.52 57.16 48.62
SoVMD-MPE 82.23 64.71 55.62 45.39

SVM 22.07 15.55 21.53 15.67
ANN 27.92 23.99 26.86 23.03

From the perspective of diagnosis accuracy and FPR of each trial, it can be seen from
Figures 10 and 11 that the accuracy and FPR of the proposed method are obviously superior
to those of the other six approaches for both experiments. More comprehensively, as shown
in Table 4, we can observe that the average accuracy and average FPR of the proposed
method in Experiment 1 are 96.70% and 0.30%, respectively, which are slightly superior to
EMD-CSvDE, VMD-CSvDE, SoVMD-MSE, and SoVMD-MPE, and significantly superior
to SVM and ANN. Specifically, compared with the other six approaches, the accuracy of
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the proposed method in Experiment 1 is improved by 4.51%, 2.08%, 4.68%, 6.23%, 55.04%,
and 69.89%, respectively, and the FPR is reduced by 55.88%, 41.18%, 57.14%, 63.41%,
91.60%, and 92.4%, respectively. Similar results also appear in Experiment 2 depicted in
Table 4. Meanwhile, the standard deviations of the developed method for these two metrics
are obviously smaller than those of the other approaches in any group of experiments,
which confirms the stronger stability and robustness of the proposed method for bearing
fault diagnosis. In addition, from the results presented in Table 5, it can be found that
the average computation time of the proposed method is slightly more than those of
EMD-CSvDE, VMD-CSvDE, SoVMD-MSE, and SoVMD-MPE, while it is much more than
those of SVM and ANN, regardless of Experiment 1 or Experiment 2. Compared with the
other four combined methods, the process of adaptive parameter optimization and MsFFS
construction with variable scale factors in the framework of the proposed method will take
more time to improve diagnosis accuracy. In addition, without the consideration of the
strategies of signal decomposition and MsFFS construction, the computational costs of
SVM and ANN will be reduced compared to those of the other five diagnosis methods.

To give more details, the fault diagnosis results of the proposed method for the sixth
trial in Experiment 1 and the corresponding multi-class confusion matrix are shown in
Figures 12 and 13, respectively. In Figure 12, it can be seen clearly that a small number of
predicted labels of testing samples deviate from the true labels, i.e., the phenomenon of
misdiagnosis. More specifically, to intuitively reflect the accuracy rate and error rate, the
multi-class confusion matrix can be further built based on the above-mentioned diagnosis
results, as depicted in Figure 13. It can be observed from this figure that the diagnosis
accuracy of different operation states can reach 90% or even higher, especially for six states
(Nora, RF_07, IRF_07, IRF_12, ORF_07, and ORF_15) with an accuracy of 100%. Moreover,
an overall accuracy of 97% can be achieved by the proposed method for the sixth trial
in Experiment 1, which indicates that the proposed method contributes to identify the
different fault types and defect severities of the rolling bearing and also realizes satisfactory
diagnosis accuracy as a whole.
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Through the above experiment results, the relevant conclusions can be summarized
as follows. (1) Among all the diagnosis approaches, the proposed method realizes the
highest diagnosis accuracy and the lowest FPR whether in Experiment 1 or Experiment 2,
which strongly confirms its superior performance on bearing fault diagnosis. (2) Compared
with the last two approaches (SVM and ANN), the remaining methods (the proposed
method, EMD-CSvDE, VMD-CSvDE, SoVMD-MSE, and SoVMD-MPE) can accomplish
the task of fault diagnosis with higher accuracy and lower FPR. The main reason is that
the multiscale frequency component extraction by different decomposition algorithms
contributes to capture the inherent characteristics of the raw signal and further establish
an effective feature space for accurate diagnosis. (3) Adopting the SoVMD algorithm,
the diagnosis accuracy and FPR of the developed method can be significantly improved
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compared with EMD-CSvDE and VMD-CSvDE. This is because the optimal parameters of
the decomposition process can be adaptively determined by the SoVMD method so that
the multiscale frequency components can be effectively obtained without the influence
of the mode mixing problem. (4) From the perspective of feature space construction, the
diagnosis performance of the proposed method is more excellent and stable than the other
two approaches are, including SoVMD-MSE and SoVMD-MPE. Because of the variable
parameters of scale factor, the developed CSvDE method is helpful to construct the MsFFS
more effectively and improve the diagnosis performance compared with the methods
of MSE and MPE. (5) For the same method, the diagnosis results in Experiment 1 are
slightly superior to those in Experiment 2, but it is worth noting that the calculation time in
Experiment 1 is obviously more than that in Experiment 2. This is because a small amount
of fault information can still be contained in the first five frequency components and may be
useful for accurate diagnosis. Taking the fewer components into account, the computation
costs of Experiment 2 can be decreased significantly.
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Finally, to intuitively illustrate the superior performance on feature extraction of the
proposed method, the extracted MsFFS can be reduced and visualized by the t-distributed
stochastic neighbor embedding (t-SNE) algorithm. We use the results of the sixth trial
in Experiment 1 as an example for analysis, and Figure 14 shows the three-dimensional
projections of the original samples and the MsFFS by t-SNE. It is obvious that the MsFFS
obtained by the proposed method can effectively reveal essential information contained
in the original samples and accomplish the fault state identification with high accuracy.
The main reason is that the complex nonlinear relationships between the raw signal and
the MsFFS can be constructed effectively based on the model architecture integrating the
component mode with a variable scale factor. To sum up, the proposed method can achieve
superior performance in capturing valuable features for accurate fault diagnosis.
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4. Conclusions

In this paper, a novel fault diagnosis method based on CSvDE and SoVMD, sys-
tematically integrating the nonstationary signal analysis method with machine learning
technology, is proposed for rolling bearings of combine harvesters. Within the developed
method, to solve the problems existing in traditional EMD and VMD approaches, a SoVMD
algorithm is first designed to extract the multiscale frequency components from the raw
signal sample. In essence, an adaptive parameter optimization method is presented in
the theorical framework of SoVMD to conduct the search of VMD parameters with high
efficiency. Compared with EMD, the mode mixing problem can be effectively tackled by the
SoVMD method. Subsequently, an entropy-based feature construction theory, i.e., CSvDE,
is presented to establish the MsFFS for fault diagnosis. Theoretically, the developed CSvDE
fully blends the advantages of the variable scale of the parameter and DE. Compared with
other entropies, such as MSE and MPE, the advantages of CSvDE result in more accurate
and stable results. The results of a case study of the rolling bearing datasets of combine
harvesters show that the proposed method has a more excellent and robust diagnosis
performance than other existing approaches. Nevertheless, the computation consump-
tion is relatively high; thus, decreasing the time cost and, at the same time, guaranteeing
satisfactory accuracy are still valuable topics to be further explored in the future.
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Nomenclature

CSvDE Composite-Scale-variable Dispersion Entropy
SoVMD Self-optimization Variational Mode Decomposition
MsFFS Multiscale Fault Features Space
WT Wavelet Transform
EMD Empirical Mode Decomposition
EWT Empirical Wavelet Transform
EEMD Ensemble Empirical Mode Decomposition
VMD Variational Mode Decomposition
AE Approximate Entropy
SE Sample Entropy
PE Permutation Entropy
DE Dispersion Entropy
MSE Multiscale Sample Entropy
MPE Multiscale Permutation Entropy
SVM Support Vector Machine
ANN Artificial Neural Network
FPR False Alarm Rate
t-SNE T-distributed stochastic neighbor embedding
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