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Abstract: In this review, we establish a relation between information erasure and continuous phase
transitions. The order parameter, which characterizes these transitions, measures the order of the
systems. It varies between 0, when the system is completely disordered, and 1, when the system is
completely ordered. This ordering process can be seen as information erasure by resetting a certain
number of bits to a standard value. The thermodynamic entropy in the partially ordered phase is
given by the information-theoretic expression for the generalized Landauer bound in terms of error
probability. We will demonstrate this for the Hopfield neural network model of associative memory,
where the Landauer bound sets a lower limit for the work associated with ‘remembering’ rather
than ‘forgetting’. Using the relation between the Landauer bound and continuous phase transition,
we will be able to extend the bound to analog computing systems. In the case of the erasure of
an analog variable, the entropy production per degree of freedom is given by the logarithm of the
configurational volume measured in units of its minimal quantum.

Keywords: Landauer bound; continuous phase transitions; analog computing

1. Introduction

Landauer’s principle [1–3] tells us that forgetting is costly: the erasing of one bit
of information, namely resetting it to a particular memory state, independently of its
previous memory state, has an entropic cost of, at least, kT ln(2) energy (where T is the
temperature and k the Boltzmann constant). This is the content of the famous statement that
“information is physical” as realized first by Szilard [4] and after by Landauer: information
can only be processed by physical systems, computers, and thus it is subject to the laws of
thermodynamics of physical systems. The minimum energy expenditure of kT ln(2) solves
the problem of the violation of the second law of Maxwell’s demon [5]: the second law is
not violated since one has to take into account the cost of erasing the demon’s memory. The
paradox of Maxwell’s demon has also been addressed in a related but slightly different way
by Brillouin [6,7], using the idea of negentropy, namely the reverse of entropy, describing a
system becoming “more ordered”, and its relation with information. A bit of information is
obtained by the demon at the price of some negative entropy lost in the environment, which
allows the demon to make choices which decrease the entropy in the environment. The
relation between the negentropy and the Landauer limit was analyzed in [8,9] considering
a system of magnetic skyrmions. There, it was shown that the Landauer bound can be
seen as a variation of the negentropy of the skyrmion. Landauer’s principle was recently
experimentally verified in [10–13].

Since its formulation, many discussions have been devoted to the validity and useful-
ness of Landauer’s principle [14–16], and many attempts have been devoted to possibly
beat Landauer’s limit since it sets a minimum energy expenditure in computation. More
sophisticated formulations have been proposed [17,18], which take into account the role of
the conditional entropy to relate Shannon and Gibbs entropy and that lower Landauer’s
limit. For a review on recent developments on the thermodynamics of information, see [19].
Another possibility to beat this limit is to admit errors during the erasure procedure. In
this case, the original Landauer limit and the associated minimum cost of erasure can be
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lowered. In [20], it was shown that, admitting errors, the Landauer bound can be lowered
and the minimum work necessary to stochastically erase one bit becomes

−∆S
k

= ln2 + p ln(p) + (1− p) ln(1− p) , (1)

where p is the error probability. This error probability, which can be interpreted as mutual
or conditional entropy [21,22], becomes relevant [20] for future nanoscale implementations
of switches which must necessarily take into account also their thermal fluctuations.

Information is physical; this statement, as shown in [23], implies that physical systems,
which contain order, can encode information bits. Continuous phase transitions represent
a paradigmatic example of these physical systems. Continuous phase transitions are
characterized by symmetry breaking. The order parameter describes the symmetry broken
phase and it is zero in the unbroken phase. These transitions, which are generally driven
by temperature in the classical case, are described by the phenomenological Landau theory
expressed in terms of the temperature and of the order parameter [24]. As we lower the
temperature below the critical temperature TC, at which the phase transition takes place, the
Landau function [24], representing the effective potential, goes from one single minimum
to a manifold of minima, e.g., it bifurcates into two minima in the case of Z2 symmetry
breaking, creating a new order and a new configuration space for the system. The work
performed on the system to lower the temperature is completely used to lower the entropy
and to change the state of the system, making it “more ordered”. We call this procedure
efficient. To better understand the relation between Landauer erasure and continuous phase
transition, let us consider one classical bit of information stored in a bistable potential,
exemplified by a particle in a double potential well. The first step of the erasure of the
memory corresponds to the lowering of the barrier; note that in this step, the phase space
available doubles. This corresponds to the disordered phase with m = 0. Then, in general,
by applying a tilting force and raising again the barrier will force the particle to be in one
of the wells, depending on the tilting force, thus resetting either to zero or to one. This
is a non-equilibrium state valid for a time smaller than the relaxation time in the well.
In this last step, we have a phase space reduction; we ‘compress’ two states in one, and
this is what causes the heat dissipation. In spontaneous symmetry breaking, something
similar happens. Above the critical temperature, all possible degenerate ground states are
available, while below the critical temperature, the system ‘chooses’ one state. In the case
of symmetry breaking, an external perturbation, which is generally then set to zero, is what
makes the system choose a particular state. In Landauer erasure, this is the role of the
tilting in the double-well potential model for a single switch [10].

A particularly interesting example is given by neural networks [25], which are com-
posed of a large number of interacting stochastic bits. Neural networks are the basic
elements of associative memories. Contrary to address-oriented memories, recovery of
the information is based on the similarity between the stored memory pattern and the pre-
sented pattern. The Hopfield model [26] is the most used example of neural networks [25].
The Hopfield model undergoes a phase transition, characterized by order parameter m
that goes from zero in the disordered phase to one in the ordered phase. The transition
is driven by a fictitious temperature: below TC, the system becomes ordered. As shown
in [23] (and derived in Section 2) this phase transition is akin to an erasure with errors
for the N stochastic neurons. The entropy difference between the disordered phase and
the partially ordered phase can be exactly written as Equation (1) of [10,20,21], where, in
this case, the error probability is related to the order parameter. Note that, while in the
Landauer case, the erasure corresponds to forgetting, in the case of the neural networks, it
corresponds to remembering.

A phase transition is clearly a collective phenomenon; a single spin cannot have a
phase transition, while one can erase a single bit or flip a single spin. However, in the
example we chose of the Hopfield model, which, as we will show in the next section, can be
mapped in a long range Ising model [25], the bits which compose the associative memory
represent the information bearing degrees of freedom. The order parameter m, which
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characterizes the continuous phase transition, plays the role of the error in an erasure with
errors. When the parameter m is equal to one, we have the completely ordered phase
corresponding to the erasure without errors. In [23], we showed that the entropy difference
between the disordered phase and the completely ordered phase goes approximately
kT ln 2 times the number of spins of the network, which coincides with the number of the
information bearing degrees of freedom.

The Landauer principle [1] was originally formulated to compute the minimal energy
required to erase a bit of information and it applies, thus, to the system in which information
is represented by discrete units. What happens for analog computing systems? In [27], the
relation between erasure and continuous phase transition allowed us to extend Landauer’s
principle to systems where information is a continuous variable.

When we erase discrete information, assuming that the conditional entropy is zero [18],
the difference in the Shannon entropy between the final state, to which we reset the memory,
e.g., to one, and the one in which the system can be in any one of the possible states si with
probability pi, is given by

∆SS =
M

∑
i

pilnpi , (2)

where M is the finite number of possible logic states. The continuous generalization of the
Shannon entropy is defined as [28,29]

Scont
S = −

∫
x∈M

p(x)lnp(x) . (3)

where p(x) is the probability distribution of the relevant degree(s) of freedom. The
information-theoretic continuous Shannon entropy, however, requires an appropriate
regularization, which adapts the dimensional character of the relevant degrees of freedom
to the dimensionless quantity considered in the probability density p(x). This is because
the continuous extension of the Shannon entropy, contrary to the discrete entropy, which
is an absolute quantity, is not invariant under the change of coordinates [28]. To cure this
problem, Jaynes [30–32] proposed to modify Equation (3) by introducing an invariant factor
p0(M), which represents the density of the discrete distribution, which gives p(x) in the
continuum limit:

Scont
S = −

∫
x∈M

p(x)ln
p(x)

p0(M)
. (4)

The factor p0(M), introduced as a regularization, arises naturally when we consider
the continuous Landauer reset. This factor needs to be introduced to cure the problem of
classical continuous entropy, which can be negative and divergent [33,34], and is given by
the minimum quantum of configuration volume of the physical system.

In Section 2 of this review, we analyze the relation between continuous phase tran-
sitions, characterized by an order parameter, and the Landauer bound [23]. Using the
example of the Hopfield model [26], we show that the information-theoretic expression for
the entropy production during the erasure process, expressed in terms of the error probabil-
ity, has the same expressions as the thermodynamic entropy in the partially ordered phase.
For the Hopfield model, however, the completely ordered state corresponds to perfect
remembering rather than forgetting, so the Landauer bound sets a lower limit for the cost
of ‘remembering’ [35].

In Section 3, using the relation between the Landauer’s limit and continuos phase
transitions, we extend the results of Section 2 to analog computing systems [27]. In this case,
the entropy production per degree of freedom during the erasure of an analog variable
is given by the logarithm of the configurational volume measured in units of its minimal
quantum. Additionally, in this case, we have a “discretization” of the information bearing
degrees of freedom, and an infinite amount of energies will be required to perform a
computation with infinite precision.
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2. Thermodynamic Entropy in Continuous Phase Transitions and Landauer Bound

Neural networks, using the definition given in [25], “are algorithms for cognitive tasks,
such learning and optimization, which are in a loose sense based on concepts derived from
research into the nature of the brain”. One important task that neural networks perform is
pattern recognition: the retrieval of information, contrary to address-oriented memories,
is performed by looking at the “similarity” between a pattern, which is presented, and
the stored patterns. Associative memories have the advantage of being able to retrieve
information even in the case of incomplete or noisy inputs, which is not permitted in
traditional computers. The Hopfield model [26,36] is the paradigmatic example of a neural
network designed to perform the task of associative pattern retrieval and is largely used in
associative memory.

In associative memories, when a new pattern is presented, the network evolves from
a totally unknown state to a state which corresponds to the stored pattern. As shown
in [25], this is gauged equivalent to a state with all neurons, e.g., equal to +1. The transition
between the unknown state and the final state corresponding to the stored pattern is, by
definition, the process of remembering rather than forgetting, and the Landauer limit
corresponds to the minimum energy necessary for remembering. The noise affects the
remembering process: when it is not too large, the network provides the minimum energy
required to remember, and when errors become too important, there is a phase transition
to a state in which remembering becomes impossible.

The Hopfield model [26] is a directed graph of N binary neurons si, i = 1 . . . N, with
si = ±1 fully connected by symmetric synapses with coupling strengths wij = wji (wii = 0),
which can be excitatory (>0) or inhibitory (<0). The state si = +1 indicates the firing state
of the neuron, while si = −1 indicates the resting state. The network is characterized by an
energy function

E = − J
2 ∑

i 6=j
wij sisj , si = ±1 , i, j = 1 . . . N , (5)

where J represents the (positive) coupling constant. The dynamical evolution of the network
state is defined by the random sequential updating (in time t) of the neurons according to
the rule

si(t + 1) = sign(hi(t)) , (6)

hi(t) = J ∑
i 6=j

wijsj(t) , (7)

where hi is the local magnetization. As is standard for neural networks and, thus, for the
Hopfield model [25], the temporal evolution proceeds in finite steps, which correspond to
the updating of neurons according to the rule Equation (7) in this model. At time (t + 1),
the neurons are firing or resting depending on the activation function. This process is
intrinsically discrete in time. The synaptic coupling strengths are chosen according to the
Hebb rule [25]

wij =
1
N ∑

µ=1...p
σ

µ
i σ

µ
j , (8)

where σ
µ
i , µ = 1 . . . p are p binary patterns to be memorized. The synaptic strengths contain

all the information of the memory, which is encoded in the interaction between the spins σ
µ
i .

The dynamical evolution of the networks will allow the system, prepared in an initial
state s0

i (presented pattern), to retrieve the stored pattern σλ
i , which most closely “resembles”

the presented pattern, namely the one that minimizes the Hamming distance, i.e., the total
number of different bits in the two patterns.

Updating the Hopfield network according to the Hebb rule guarantees that the dy-
namical evolution minimizes the energy of Equation (5): the stored patterns are “attractors”
for this dynamic, namely, they are local minima of the energy functional, which is bounded
below. This implies that, when an initial pattern is presented, it will evolve until it overlaps
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with the closest stored pattern and then not evolve anymore. The possibility of remem-
bering depends, however, crucially upon the loading factor α = p/N, given by the ratio
between the number of stored memories and the number of available bits [25]: above a
critical value, the network has a phase transition into a spin glass [36], and remembering
becomes impossible.

In what follows, we consider the case of a single stored pattern σi. As shown in [25],
using the gauge transformation,

si → σisi , (9)

the energy functional Equation (5) becomes

E = − J
2N ∑

i 6=j
sisj , (10)

the Hopfield model thus reduces to the long-range Ising model, and the stored pattern
becomes σi = +1 for all i. Remembering for the network, in this case, is equivalent to
resetting the N-bit register to this value. Note that in the Hopfield model, since the synapses
are quadratic in the spins, there is always a symmetry between the memory and its NOT
for one stored pattern, e.g., si = 1 → si = −1 ∀i, if the stored pattern all spins up as we
chose in the present case. Both are minima for the dynamic. However, when a pattern
is presented, the system recovers the one that is closed in the Hamming distance to the
stored pattern.

The deterministic update law Equation (6) can be made probabilistic, introducing a
fictitious temperature T = 1/kβ and, thus, thermal noise:

Prob[si(t + 1) = +1] = f [hi(t)] , (11)

where the activation function f is the Fermi function

f (h) =
1

1 + exp(−2βh)
. (12)

The deterministic behavior is recovered in the limit β→ ∞. The main difference with
respect to deterministic neurons, which are always active or dormant according to the sign
of h is that stochastic neuron activities fluctuate due to thermal noise and we can define a
mean activity for a single neuron:

〈si〉 = (+1) f (hi) + (−1) f (−hi) , (13)

where 〈. . . 〉 denotes the thermal average. Now we note that, for the long-range Ising
model, the mean field approximation 〈 f (hi)〉 → f (〈hi〉) is exact [37], and we thus obtain
the deterministic equation:

〈si〉 = tanh

(
βJ
N ∑

j 6=i
〈sj〉
)

. (14)

Defining the mean magnetization as m ≡ (1/N)∑i < si >, we can rewrite
Equation (14) as

m = tanh (βJm) , (15)

where we considered the thermodynamic limit N → ∞. We can now apply the known
results for the mean field Ising model. The self-consistency Equation (15) has only one
solution for βJ < 1, which corresponds to zero magnetization, m = 0. When βJ > 1,
Equation (15) admits three solutions m = 0 and m = ±m0(β), but only the second two
solutions are stable against small fluctuations; we thus have a magnetization m 6= 0.
The condition βJ = 1 gives the critical temperature Tc = J/k: for T > Tc, the network
is disordered and remembering is not possible, while for T < Tc, the network exhibits a
partial magnetization m 6= 0, which goes m→ 1 for T → 0. Partial erasure is, thus, possible.

Remembering for stochastic neurons is equivalent to a reset operation with errors. For
T ≥ Tc, individual neurons fluctuate freely, and we are in the disordered phase. When T
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goes below Tc, neurons become partially frozen in the stored pattern configuration and
m(T) will tell us what is the average rate of errors in the reset process at this temperature.
In this procedure, all work performed by lowering the temperature goes into lowering the
entropy of the system. In fact, as T goes infinitesimally below TC, the Landau function [24]
bifurcates into two minima, creating a new order and a new configuration space for the
network. Note, however, that if the erasure processes is performed in a finite amount of
time, in this case, the system will dissipate a finite amount of heat [38,39].

Following the standard treatment for the mean field Ising model (which in the present
case is an exact solution), we expand the spin variables si around their mean value m as
si = m + δsi, with δsi ≡ (si −m). At the lowest order, the energy functional becomes

E =
JNm2

2
− Jm ∑

i
si , (16)

where we omitted an irrelevant constant. At this order in δsi, the partition function is

Z = ∑
conf.

e−βE = e−βJNm2/2[2cosh(βJm)]N . (17)

We thus obtain for the entropy the expression

S =
∂

∂T
(kTlnZ)

= kN[ln(2 cosh(βmJ))− βmJ tanh(βmJ)] . (18)

At T = Tc, m = 0, the system is disordered, and the entropy takes the maximum value
S = kNln2, while at T = 0, m = 1 and S = 0, the system is ordered and the remembering
is perfect. The entropy variation between the disordered state and the state with partial
remembering 0 < m(T) < 1 is

−∆S
kN

=
1

kN
(STc − ST)

= ln2− ln(2 cosh(
mTc

T
)) +

mTc

T
tanh(

mTc

T
) . (19)

Equation (19) represents the heat dissipated per bit during the simulated annealing
erasure procedure, and, thus, the Landauer bound for stochastic neurons described by the
Hopfield model at temperature T. Perfect remembering, T = 0 and m = 1, gives back the
original bound ln(2). Higher temperature corresponds to erasure with errors, in our case,
due to thermal fluctuations in the fictitious temperature and, when T reaches TC and m
becomes 0, the system has a phase transition to a disordered state, and remembering is not
possible anymore. In the Landauer erasure, this corresponds to resetting to an unknown
state, i.e., setting the probability error p = 1/2 in Equation (1).

The previous analysis tell us that the error probability p in the Landauer erasure
is represented by the stochastic updating rules for the Hopfield network Equation (11).
According to Equation (11), the probability that a neuron flips due to thermal noise is

Prob[si(t + 1) = −si(t)] =
exp [−βhi(t)si(t)]
2 cosh[βhi(t)si(t)]

, (20)

so the probability that it flips from the desired value +1, since we are resetting to a memory
register with all bits +1, to the wrong value −1 is

p = Prob[+1→ −1] ≡ 1
2
(1−m) =

exp (−βJm)

2 cosh(βJm))
. (21)

The maximum error probability p = 1/2 corresponds to m = 0, the maximally
disordered state of the network reached at T = TC, while p = 0 corresponds to the perfect
order for the network with order parameter m = 1 at T = 0. Inserting Equation (21) into
Equation (19), we obtain for the entropy difference, and thus for the dissipated heat, exactly
the information-theoretic expression Equation (1):
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−∆S
kN

= ln2 + p ln(p) + (1− p) ln(1− p) . (22)

When p = 0, the Landauer bound is saturated, and the entropy difference between
the increasingly disordered state of the model and its perfectly ordered T = 0 state reaches
the exact value

∆S = kNln(2) . (23)

Once we reach the value m = 0 for the order parameter, which describes the broken
symmetry phase, we reach the maximum entropy for the network and we cannot keep
disordering the system without violating the Landauer bound and, thus, the second law
of thermodynamics. The phase transition, which takes place at TC, thus corresponds to
the saturation of the Landauer limit. The generalized Landauer theorem states, thus, that
the sum of the entropy loss per bit and the one-bit error entropy cannot be lower than the
bound kln(2), and it is exactly equal to this bound when the procedure is efficient. When
this bound is saturated by the error entropy, resetting (remembering here) is no longer
possible, and a phase transition occurs.

The Hopfield model has a discrete Z2 symmetry corresponding to a spin 1/2. The gen-
eralization to higher-order spins with a classical Z(2n+1) symmetry, with n = 1/2, 1, 3/2 . . .
is, however, straightforward. In the case of a Z(2n+1) symmetry, Equation (23) becomes

− ∆S = (S(TC)− S(0)) = kN ln(2n + 1) . (24)

In the more general case of a continuous phase transition of a system of N elementary
components with D degrees of freedom each, which undergoes a continuous phase transi-
tion to a partially ordered phase below a critical temperature, we have only d degrees of
freedom, which survive in the partially ordered phase, while the others are frozen. The
phase transition is characterized by a complex vector of ordered parameters whose norm
η rises from 0 in the disordered phase to 1 at zero temperature. The ration between the
original degrees of freedom D and the one in the partially ordered phase d can be written as

D/d = qn , (25)

with n being an integer larger than one if D/d is a prime power and q a prime number. If
D/d is not a prime power, we have n = 1 and q = D/d. If we take, for example, the simple
case q = 2, the phase transition can be seen as the formal “resetting” of dN bits to their
standard value, with error probability p(T) = (1− η(T))/2. The entropy change during a
generic phase transition is, thus, again given by Equation (22) with N → dN. Otherwise,
the Landauer bound would be violated in the ordering process. For q = 3, we have trits
instead of bits, and the generalization to other values of q is straightforward.

3. Analog Computing Systems

In analog computing systems, information is encoded in a continuous variable. To
compute the entropy change during the erasure of information encoded in a continuous
variable, we will use the relation between the Landauer principle and entropy change
during continuous phase transitions [23]. We will again assume that the erasure is efficient.

We study the 3-dimensional ferromagnetic classic Heisenberg model, which undergoes
a phase transition with spontaneous symmetry breaking of O(3) → O(2) [24], which is
described by the Hamiltonian

H = − J
2 ∑

<i,j>
si · sj − H ∑

i
si , (26)

where 〈i, j〉, which denotes the sum over nearest neighbors spin, with i that goes from
1 to the number N of spins and |s|2 = 1. In this case, the spin orientation, that encodes
analog information, can take all values on a sphere of unit radius and we have, thus, a
continuum of possible values; for the Ising spins, the orientation is binary, up or down.



Entropy 2023, 25, 984 8 of 12

Since the model is ferromagnetic, we have J > 0. H is a constant external magnetic
field in the ẑ direction. The ferromagnetic Heisenberg model undergoes a continuous
phase transition [24], characterized by an order parameter m, the mean magnetization. For
T ≥ TC, the system is disordered, while for T < TC, the phase becomes partially ordered
and m reaches the value 1 at T = 0. As in the case of discrete symmetry, lowering the
temperature is akin to an erasure process, and m plays the role of the error probability in
the reset operation [20].

Following what we did in the previous section, we identify the Shannon entropy of
the erasure process in the analog computing system with the entropy variation during the
transition from from T = TC to T = 0. The entropy variation

− ∆S
kN

=
(S(TC)− S(0))

kN
, (27)

gives, thus, the Landauer bound for an analog computing system [23].
We use again the mean field approximation; the mean field Hamiltonian for the

Heisenberg model is [24]

Hmf = −J ∑
<i,j>

si Heff +
JNm2

2
,

Heff = (Jm + H) , (28)

where m is the mean magnetization: m ≡ (1/N)∑i〈si〉. The effective magnetic field is the
sum of the average magnetic field, generated by all other spins, plus the external magnetic
field H. As usual, we will take the limit H → 0, obtaining, thus, the partition function:

Z = exp
[

β
JN3m2

2

] ∫
d3sδ(s2 − 1) exp

[
βJ

N

∑
i=1

m cos θi

]
, (29)

where θi is the angle between the spin and the ẑ direction and β = (kT)−1. From
Equation (29), we derive the free energy

F
N

=
Jm23

2
− 1

β
ln
[

4π sinh βmJ
βmJ

]
, (30)

and from the free energy, the entropy

S
kN

= ln
[

4π sinh βmJ
βmJ

]
− βmJL(βmJ) , (31)

where L(x) = coth x− 1/x is the Langevin function.
Let us now consider the limits for T = TC and T = 0 of Equation (36). When

T → TC, m→ 0, and the entropy reaches its maximal value, the logarithm of the volume of
the configuration space, namely, the area of a sphere of unitary radius:

S(TC)

kN
= ln(4π) . (32)

When T → 0 and m→ 1, which corresponds to the perfect reset, the entropy becomes
negative and divergent, contrary to the third law of thermodynamics:

S(T → 0)
kN

→ −∞ . (33)

This problem is common for various classical systems. One textbook example is the
classical harmonic oscillator [40], and, in general, the way to cure this problem is to consider
the classical system as the limit of its quantum counterpart.

In the mean field approximation, the quantum ferromagnetic Heisenberg model
describes a system of quantum, non-interacting spins si with (2s + 1) components in an
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external magnetic field Heff. The mean field Hamiltonian for the quantum Heisenberg
model is [41]:

H = −Heff

N

∑
i=1

si . (34)

It describes non-interacting (2s + 1) components spins in an external magnetic field
Heff, which, again, is the sum of the average magnetic field generated by all other spins
plus an external magnetic field H. The partition function is

Z =

[
s

∑
n=−s

exp βHeffn

]N

, (35)

while the entropy, in the limit in which the external magnetic field H → 0, is

S
kN

= ln

[
sinh(1 + 1

2s )βmJs

sinh βmJs
2s

]
− βmJsBs(βmJ) , (36)

where Bs(βmJ) is the Brillouin function defined as Bn(x) = 2n+1
2n coth

(
2n+1

2n x
)
− 1

2n coth
(

1
2n x
)

.

In the limit T → 0, the entropy Equation (36) goes to zero, S(T=0)
kN = 0, in agreement with

the third law of thermodynamics.
The classical limit of the quantum Heisenberg model [42–44] is obtained by properly

distributing the (2s+ 1) values of the quantum spin on the classical sphere of area 4πr2 with
r that is the dimension of an action and is equal to 1 in our case. If we call smax the highest
weight of the representation in the quantum case, we can define the spin density as [42]

∆(2smax + 1)→ 4π for smax → ∞ , ∆→ 0 . (37)

To ensure the existence of the infinite spin limit [42], we need, however, to rescale the
spin as s→ s/smax. The minimum state volume ∆ represents the minimum area in the uni-
tary sphere occupied by a spin. This minimum volume is given by the Heisenberg principle:

∆ =
1
2

h̄2smax ; h̄smax → sclas for smax → ∞ , h̄→ 0, (38)

with sclass, which has the dimensions of an action, and sclass = 1 in our case. Correspond-
ingly, we define the regularized entropy as

S
kN

= ln 4π
(2smax+1)

[
sinh(1+ 1

2smax )βmJ

sinh βmJ
2smax

]
−βmJBsmax(βmJ) . (39)

The classical limit corresponds to smax → ∞. When T = TC, the entropy is, as before,

S(T = TC)

kN
= ln(4π) , (40)

while at T = 0, we obtain

S(T → 0)
kN

= ln
(

4π

2smax + 1

)
= ln

1
2

h̄2smax = ln
1
2

h̄ , (41)

where we use Equations (37) and (38) (note that in the last term of Equation (41), h̄ is
divided by a constant that has the dimension of an action and that it is equal to one). This
result tells us that if we want to avoid the entropy divergence, we cannot actually send
h̄ → 0. In fact, the limit h̄ → 0 corresponds to a classical distribution concentrated in
regions smaller than the minimum area allowed by the Heisenberg principle. ∆ is the factor
p0(M) in Equation (4), and its presence is due to the fact that the continuous Shannon
entropy must be regularized in order to make it invariant upon a change of coordinates.
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Using Equations (40) and (41), we obtain for the entropy variation

−∆S
kN

=
S(TC)− S(T = 0)

kN
=

= ln(4πs2
clas)− ln

1
2

h̄2smax = ln
8πsclas

h̄
. (42)

For the Heisenberg model, we have sclass = 1, and we thus obtain

− ∆S
kN

=
S(TC)− S(T = 0)

kN
= ln

8π

h̄
, (43)

(note that the quantity inside the logarithm is dimensionless since sclass = 1 has the dimen-
sions of an action). Entropy variation Equation (43) represents the analog generalization of
the Landauer bound: the entropy change during the erasure process performed by resetting
a continuous variable, the spin s, to a standard value is given by the available configuration
volume (the area 4π in this case) measured in units of the minimum quantum of configura-
tion volume ∆. This implies that, both for digital or analog information, physical systems
can encode only a finite countable amount of information [28,45,46], and that information
can be manipulated only with finite precision: infinite precision, namely the realization of a
truly analog computing system, is forbidden by the laws of physics.

The maximum number of possible logic states that we can associate with the Heisen-
berg model is

Nl = int
(

8π

h̄

)
, (44)

(int(a) is the integer part of number a), while for a generic angular momentum L, it is

Nl = int
(

8πL
h̄

)
, (45)

to which we can associate a finite number of bits:

n = log2(Nl) . (46)

For the case of a cube of 5× 5× 5 = 125 atoms [47], with an angular momentum per
atom of the order of L ≈ h̄, for which the interactions between the momenta are such that
they behave like a single classical momentum, we have Nl = 3140. From Equation (46),
we obtain a number n ≈ 11.6 of bits that can be stored. Under the same assumption, in a
system of magnetic nano-dots with a 20 nm side, containing approximately 200 million
atoms, we can store up to n = 27.6 bits. If we want to perform with this system a perfect
Landauer reset, the amount of heat to be dissipated is readily provided by Equation (42):
Q ≥ 19.11kT, approximately 30 times what we would have for a binary system reset.

We now want to consider the more general case of the symmetry breaking pattern
O(n)→ O(n− 1). Within the mean field approximation, this generalization is straightfor-
ward. From Equation (29), substituting d3s→ dns, we have

Z = exp
[

β
JN3m2

2

] ∫
dnsδ(s2 − 1) exp

[
βJ

N

∑
i=1

m cos θi

]
, (47)

and for the entropy

S
kN

= ln

[
2

n
2 π

n
2

I n
2−1(βmJ)

(βmJ)
n
2

]
− βmJ

I n
2
(βmJ)

I n
2−1(βmJ)

, (48)

with Iν(z), the modified Bessel functions of the first kind.
The entropy difference between the perfectly ordered state at T = 0 and the completely

disordered one, at T = TC , m = 0, which gives the Landauer bound for the erasure of a
O(n) spin s is

− ∆S
kN

=
S(TC)− S(0)

kN
, (49)
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with
S(TC)

kN
= ln Sn−1 , Sn−1 =

2π
n
2

Γ
( n

2
) , (50)

where Sn−1 is the area of the (n− 1)-sphere of unit radius and Γ(x) is the Euler gamma
function. As for the Heisenberg model, the limit T → 0 is singular, and the entropy is
negative and logarithmically divergent: (S(T → 0)/kN)→ −∞.

The regularization of the entropy in this case is, however, more complicated since,
contrary to the O(3) Heisenberg model, the analytical results are not known [48] for the
O(n)-symmetric quantum Heisenberg model, not even in the mean field. Additionally, the
definition of the classical limit is not clear. Extending to this case the results obtained for
the O(3) case, given by Equation (50), we conjecture that for the O(n)-symmetric case, the
entropy change during the erasure process will be given by the available configuration
volume, the area of the n-sphere, measured in units of the minimum quantum of the
configuration volume that in this case will be ∝ h̄n−2. In the case of the SU(n)-symmetric
(restricted to symmetric representations) Heisenberg model, the possibility of having
a positive classical entropy was proposed by Lieb and Solovey [49] using a coherent
states approach.
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