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Abstract: The Tesla valve is a non-moving check valve used in various industries to control fluid flow.
It is a passive flow control device that does not require external power to operate. Due to its unique
geometry, it causes more pressure drop in the reverse direction than in the forward direction. This
device’s optimal performance in heat transfer applications has led to the use of Tesla valve designs in
heat sinks and heat exchangers. This study investigated a Tesla valve with unconventional geometry
through numerical analysis. Two geometrical parameters and inlet velocity were selected as input
variables. Also, the pressure drop ratio (PDR) and temperature difference ratio (TDR) parameters
were chosen as the investigated responses. By leveraging numerical data, artificial neural networks
were trained to construct precise prediction models for responses. The optimal designs of the Tesla
valve for different conditions were then reported using the genetic algorithm method and prediction
models. The results indicated that the coefficient of determination for both prediction models was
above 0.99, demonstrating high accuracy. The most optimal PDR value was 4.581, indicating that the
pressure drop in the reverse flow direction is 358.1% higher than in the forward flow direction. The
best TDR response value was found to be 1.862.

Keywords: Tesla valve; optimization; diodicity; thermo-hydraulic performance; artificial neural network

1. Introduction

Non-moving-part valves (NMPVs) are efficient equipment used as passive fluid con-
trollers. Compared to conventional check valves with moving parts, NMPVs have advan-
tages in terms of manufacturing and do not require external power to operate [1]. One
specific type of NMPV is the Tesla valve. The Tesla valve, first introduced by Nikola Tesla
in 1920, is a check valve with no moving parts in its structure and is also known as a fluid
diode [2–4]. This valve allows fluid to flow easily in the forward direction but prevents
fluid from flowing in the reverse direction. Due to its unique construction, the Tesla valve
causes a lower pressure drop in the forward direction than in the reverse direction [5]. In
fact, Tesla valves can be considered one-way valves. Due to the demand for passive fluid
flow control, especially in mini and micro scales, the utilization of Tesla valves is becoming
increasingly attractive to researchers. These valves are widely utilized in industries for
controlling flow rate and direction in equipment such as internal combustion engines [6],
turbines [7], pumps [8], and compressors [9,10]. Tesla valves can also be used in mini and
microfluid applications, such as micromixers [11], and for the decompression process in
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hydrogen fuel cells [12,13]. Furthermore, their thermal characteristics make them suitable
for heat transfer applications, especially in heat sinks for battery cooling [14,15].

De Vries et al. [16] designed a new construction for the Tesla valve to improve fluid
flow and reduce thermal resistance in a pulsating heat pipe (PHP). They experimentally
investigated its diodicity and operation by steady two-phase flow and laminar single-
phase modeling. Laminar single-phase modeling demonstrated that the new construction
of the Tesla valve generates more diodicity than other conventional Tesla valves at low
Reynolds numbers. In addition, they found a 14% decrease in thermal resistance for the
PHP with Tesla valves compared to similar PHP without Tesla valves in their structure.
Jin et al. [12] numerically investigated the hydrogen decompression process using a Tesla
valve with reverse flow direction for a wide range of inlet velocities. The results of their
study highlighted that a large valve angle, small inner curve radius, and small hydraulic
diameter could offer a high ∆P. Qian et al. [17] investigated the exergy loss and the
possibility of aerodynamic noise occurrence in a Tesla valve with hydrogen fluid flow used
for decompression. To perform these analyses, they applied changes in the valve inlet
and outlet pressure ratio and the number of valve stages. They reported that increasing
the pressure ratio raises the Ma and exergy loss. Also, they found that the Ma increases
and exergy loss decreases by increasing the stage number of the valve. Monika et al. [15]
presented a novel configuration for a multi-stage Tesla valve. They numerically analyzed it
to investigate the temperature gradient created in a cold plate with a Tesla channel for the
thermal management of Li-ion batteries. They observed that their new design provides
more efficient cooling than conventional channels by improving the heat transfer rate of
the cold plate. Liu et al. [2] presented a symmetrical design for the bent channel structure
of the Tesla valve and investigated the hydraulic characteristics of the fluid using the
finite element method (FEM). The results indicated that by enhancing the symmetry of the
structure, the hydraulic diodicity performance of the valve increases. Bao and Wang [10]
improved the relative pressure drop ratio (RPDR) and absolute pressure drop ratio (APDR)
parameters to compensate diodicity performance of the Tesla valve. They designed a novel
Tesla valve with special tapering and widening in its body and compared it with other types
of Tesla valves. Their results stated that the novel presented design has a better APDR than
conventional Tesla valves, and it was also found that this parameter increases linearly with
the increase in the number of valve stages while the RPDR gradually reaches a constant
value. In this study, they also investigated the thermal diodicity and observed that this
parameter increases with increasing velocity and number of stages, but it is independent of
wall and inlet temperatures. Lu et al. [14] presented a cold plate cooling system inspired by
a Tesla valve for the enhancement of cooling in batteries. The optimization results showed
that under specific geometrical conditions and a velocity of 0.83 m/s, the cold plate with
Tesla valve channels and reverse flow establishes a good equilibrium between thermal
performance and energy consumption. Yang et al. [18], using computational fluid dynamics
(CFD) and conducting experiments, designed a new micromixer with a Tesla valve structure
to obtain an effective mixing process in microfluidic equipment for biological applications.
They observed that the mixing performance is more suitable for Reynolds numbers ranging
from 0.1 to 100. Sun et al. [19] numerically analyzed a microchannel heat sink with Tesla
valve-shaped channels. By examining the thermo-hydraulic performance, they realized
that using the channels with Tesla valve design instead of the smooth channel increases the
Nusselt number by 102.3%, and the friction factor increases by 3.21 times.

Artificial neural network (ANN) is a technology inspired by the brain and biological
nervous system that mimics their electrical activity. This method forms the core of deep
learning algorithms and is a subset of machine learning. One of the main benefits of
ANN over other models is its ability to represent a multivariable problem based on the
complex interactions between the variables and extract implicit nonlinear correlations
among them [20–22]. This model-optimization method is widely used across various fields
due to its impressive performance [23–27].
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Polat and Cadirci [28] investigated the heat transfer of a microchannel heat sink with
a diamond-shaped pin fin array under laminar, steady-state, and incompressible flow
boundary conditions. They utilized a multi-layer ANN model coded in Python and trained
with CFD outcomes to investigate Nusselt and Poiseuille numbers representing thermal and
hydrodynamic features. The results showed that the pin-fin angle has the greatest impact on
Nusselt and Poiseuille numbers. Kanesan et al. [29] developed a response model for thermal
energy storage heat sinks, which are commonly used to cool electronics. They examined an
aluminum heat sink for thermal energy storage (TES) using paraffin as the phase change
material (PCM). By combining the trained ANN model with the genetic algorithm (GA)
method, they optimized the variables related to the TES heat sink’s geometry and the used
PCM volume. This research demonstrates that combining ANN with GA creates a more
effective optimization tool. Mahmoudabadbozchelou et al. [30] studied the enhancement
of the heat transfer rate of impinging jets by adding nanoparticles to the background fluid.
They utilized ANN and GA methods to optimize the uniform cooling of a continuously
heated surface. The results indicated that the addition of nanoparticles to water led to an
increase in heat transfer due to the increased thermal conductivity of the fluid, and larger
particle sizes and concentrations caused a further increase. Kuang et al. [31] investigated
the heat transfer in the boiling process of hydrogen flow and used ANN to identify the
most influential parameter in this process. The study found that the boiling number is
one of the most critical factors in determining the boiling heat transfer coefficient. The
researchers also observed that the effect of saturation pressure on the flow boiling heat
transfer coefficient is more significant than its effect on the flow rate of liquid hydrogen.
Yunn Heng et al. [32] proposed a rapid and reliable transient thermal prediction technique
for estimating the exit temperature of a parabolic trough collector tube. ANN was applied
to analyze the increase in exit temperature produced by a single heat flux pulse. They
observed that the outcomes could be utilized for preliminary system planning, heat balance
assessment, and systems engineering. The study reported that this method works well
with changing and steady solar radiation, making it useful for designing parabolic trough
technologies in any weather condition worldwide. Ermis et al. [33] investigated phase
change heat transfer in a finned-tube latent heat thermal storage system using an ANN
approach. The trained ANN model predicted the total quantity of stored heat with an
average error of 5.58%, resulting in a more accurate heat storage estimation than the
numerical model results. In another study, Xie et al. [34] evaluated multi-layer neural
network designs based on experimental datasets of Nusselt number and friction factor
for three heat exchangers. Their findings demonstrated that the ANN method performs
well in predicting heat transfer and fluid flow for laminar or turbulent regimes in such
heat exchangers, such that the variance between their study’s predicted and experimental
results was approximately 4%. Their work suggests that ANNs can be utilized for thermal
system performance anticipation, particularly heat exchanger modeling for heat transfer
assessment. Beigmoradi et al. [35] conducted a study on the aerodynamic optimization
of the rear end of a car using ANN. They selected several geometric parameters as input
variables and studied the drag coefficient and maximum acoustic power level as responses.
The Taguchi method was used to reduce the number of tests, and the GA method was
used to optimize the model. The results indicate that the drag coefficient decreases with
the increase in the rear box length parameter, but it leads to an increase in the acoustic
power response. Li et al. [36] used three ANNs to predict the properties of China RP-3
kerosene at a faster rate. Their results show that the properties predicted by ANN models
have high accuracy and are consistent with the calculations of the extended corresponding
state principle method. They also observed that the prediction of properties is 104 times
faster than the calculations, which is a significant achievement. George et al. [37] optimized
the design of a multi-layer porous wave absorber by using the ANN method and a data
set consisting of 200 combinations. The trained prediction model in their work has a
determination coefficient of 0.97, indicating high accuracy in predicting results. They found
that the optimal range of design variables for submergence depth was 0.055–0.067, the
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distance between plates was 0.064–0.080, and porosity was 0.117–0.173. Zhu et al. [38]
investigated the total output power due to changes in the configuration of the array of wave
energy converters. Using the ANN method, they trained a prediction model for the desired
response. They reported that using energy converters with shorter distances improves
energy absorption and was also suitable and beneficial for engineering applications.

The present study investigated a two-stage Tesla valve with an unconventional ge-
ometry numerically. The parameters of the divider baffle length (L), step length (S), and
inlet velocity of the valve (V) were considered as input variables. Also, the diodicity (PDR)
and the ratio of the temperature difference (TDR) in reverse and forward directions were
selected as the responses. Of course, due to the consistency of the properties and mass
flow rate of the passing fluid in both directions, TDR also indicates the heat transfer ratio.
Numerous numerical experiments were conducted under different conditions to obtain
the prediction models for each response, and the results were used to train artificial neural
networks. These models can predict the values of the responses accurately and quickly
without the need for complex calculations or additional experiments. Finally, the optimal
conditions and designs of the Tesla valve for various applications were determined using
the genetic algorithm method and the obtained prediction models. This approach can
significantly reduce the time and cost required for designing and optimizing the Tesla valve
for specific applications.

2. Methodology
2.1. Tesla Valve Structure

According to the results of the research conducted on Tesla valves and preliminary
analysis, a specific structure for this device was proposed, which was based on the design
by Bao and Wang [10]. The physical shape and geometrical characteristics of the Tesla valve
structure are shown in Figure 1. A three-dimensional view of the intended structure is
depicted in Figure 1a. The constant and variable dimensions of the simulated geometry are
shown in Figure 1b and Figure 1c, respectively. The most significant difference between this
Tesla valve and other conventional Tesla valves is the use of a unique three-way pattern
that consists of a divider baffle. In this work, the divider baffle length (L) and step length
(S) were considered as the two geometrical variables to investigate the performance of the
Tesla valve. It should also be noted that in addition to the variables mentioned, the effects
of the velocity of the input flow to the Tesla valve were investigated.
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The fluid movement pattern in this unconventional design for the Tesla valve in
reverse and forward directions is based on Figure 2a and Figure 2b, respectively. When
the fluid enters the valve in the reverse direction, the dividers direct part of the fluid flow
into the bent channels. While with the movement of the fluid in the forward direction, the
main flow of the fluid can easily pass through the main channel of the valve. Therefore, it
is expected that due to more friction and fluid interaction in the reverse direction, a greater
∆P will occur in this direction.
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2.2. Assumptions and Boundary Conditions

All numerical analysis and simulation processes were performed using FEM in COM-
SOL Multiphysics software. Since this study aims to enhance the diodicity and TDR of
the Tesla valve, water fluid was simulated under special conditions. Consequently, sev-
eral boundary conditions and assumptions were applied to achieve an appropriate result.
Boundary conditions and assumptions are as follows:

• This study was investigated in a steady state;
• The fluid passing through the Tesla valve was turbulent, single-phase, and incompressible;
• The thermophysical characteristics of the water were considered to be constant, as

listed in Table 1;
• No-slip and no-temperature-jump conditions were assumed for the walls in contact

with the fluid;
• The wall’s temperature around the fluid was adopted constant and equal to 350 K

(Figure 2c);
• The water inlet temperature was considered constant and equal to 293.15 K;
• The gauge pressure of the Tesla valve outlet was considered zero.



Entropy 2023, 25, 967 6 of 22

Table 1. The thermophysical characteristics of the water at 293.15 K [10].

Properties Value

ρ (kg/m3) 998.2
µ (Pa·s) 1.003 × 10−3

Cp (J/kg·K) 4182
λ (W/m·K) 0.6

2.3. Governing Equations

The present study numerically investigated the fluid flow and heat transfer inside the
designed Tesla valve using CFD in two dimensions. Governing equations that must be
solved for determining thermo-hydraulic parameters of the flow are conservation equations
and k-ε turbulence model equations. For an incompressible viscous flow, the first equation
is the mass conservation equation, and it can be expressed as follows [10,39]:

ρ∇·V = 0 (1)

The momentum conservation equation is written as follows:

ρV·∇V = −∇P +∇·
(
(µ + µt)

(
∇V + (∇V)T

))
(2)

Also, the energy conservation equation is given by:

ρCpV·∇T = ∇·
((

λ +
µt

Pr

)
∇T
)

(3)

where V, µ, µt, and λ represent the velocity, dynamic viscosity, turbulent viscosity, and
thermal conductivity, respectively. In this research, the standard k-ε turbulent model was
employed in order to analyze the flow in the valve. This turbulence model is the most
prevalent model used in CFD to represent the mean flow characteristics of turbulent flow. It
is a two-equation model that uses two transport equations to provide a general description
of turbulence. The turbulent kinetic energy and specific dissipation rate for turbulent flow
in the standard k-ε model are defined by Equations (4) and (5), respectively [40–42].

ρV·∇k = ∇·
((

µ +
µt

σk

)
∇k
)
+ Pk − ρε (4)

ρV·∇ε = ∇
((

µ +
µt

σε

)
∇ε

)
+ Cε1

ε

k
Pk − Cε2ρ

ε2

k
(5)

µt = ρCµ
k2

ε
(6)

Pk = µt

(
∇V :

(
∇V + (∇V)T

))
(7)

where k and Pk represent the turbulent kinetic energy and the production of this energy due
to the mean velocity gradients, respectively, and the parameter ε is the energy dissipation
rate obtained in the turbulent flow. Also, the constants related to the turbulence model are
presented in Table 2.

Table 2. Constant parameters related to standard k-ε turbulence model.

Constant Parameter σk σε Cε1 Cε2 Cµ

Value 1 1.30 1.44 1.92 0.09
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In the present study, the segregated approach, a pressure-based solver, was used
to solve the governing equations. As implemented in COMSOL Multiphysics, this ap-
proach solves the velocity and pressure in one step. In contrast, other variables, such as
temperature, are solved separately in other steps. This solver configuration allows for
the decoupling and independent solution of different variables, which can help improve
computational efficiency and convergence [43]. This research used a parallel direct sparse
solver (PARDISO) in numerical simulations. The PARDISO solver is a state-of-the-art
direct sparse solver in computational science and engineering. This solver is known for its
efficiency, scalability, and ability to handle large-scale linear systems from various numer-
ical simulations. It employs advanced algorithms and parallel computing techniques to
efficiently handle the matrix factorization and solve the system of equations [44–46].

Diodicity is an essential factor that evaluates the Tesla valve’s hydraulic performance.
This parameter highlights the effectiveness of the valve based on the ratio of ∆P in reverse
flow to forward flow in an identical flow rate [1]. By increasing diodicity, the performance
of this device as a check valve will be improved. On the other hand, if this device is used
in thermal applications, the thermal parameters of this device should be improved. The
hydraulic and thermal diodicity of the Tesla valve were presented as PDR (pressure drop
ratio) and TDR (thermal difference ratio), respectively, which were calculated as follows:

PDR =
∆Pr

∆Pf
=

(Pin − Pout)r
(Pin − Pout) f

(8)

TDR =
∆Tr

∆Tf
=

(Tout − Tin)r
(Tout − Tin) f

(9)

2.4. Mesh Independency

COMSOL Multiphysics was used to develop a two-dimensional triangular mesh type,
as seen in Figure 3. In this simulation, the average mesh quality is 0.93. According to the
statistics in Table 3, the thermal and hydraulic results of the numerical simulation with
the number of 50.44 elements per 1 mm2 are independent of the mesh. As can be seen, by
increasing the mesh elements number to 88.58 per 1 mm2, the time to solve the simulation
increases by 56%, while the results related to the temperature difference and pressure drop
change by 1.23% and 0.44%, respectively.
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Table 3. Mesh independence validation for tesla valve with six-stage and reverse flow at conditions
V = 0.2 m/s, Tin = 274.15 K, and Tw = 368.15 K.

Number of
Elements per

1 mm2
Solve Time

∆Tr ∆Pr

Value (K) Difference
(%) Value (Pa) Difference

(%)

3.89 00:00:48 24.210 21.45 1905 7.15
22.68 00:03:38 29.320 4.87 1835 0.83
50.44 00:25:13 30.440 1.23 1828 0.44
88.58 00:39:27 30.820 - 1820 -
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2.5. Simulation Method Validation

Since this work is a numerical study, it needs to be validated by a reliable experimental
reference. Therefore, all processes and numerical simulations in the present study were
based on the experimental research conducted by Bao and Wang [10], and the results of this
work were compared with their research findings to ensure the accuracy and validity of
the analysis done in this work. In the present work, the thermo-hydraulic performance of
the equivalent shunts (ES) Tesla valve with six stages was investigated and compared with
the reference study [10]. Figure 4 shows that both hydraulic and thermal results obtained
from the numerical analysis have a reasonable correlation with the findings provided in
the experimental reference study, indicating that the numerical method adopted in this
research has reasonable accuracy. It is worth noting that in the subsequent part of this work,
a two-stage Tesla valve was designed instead of the six-stage valve to allow for physical
changes and further investigations.
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results in the reverse flow.

2.6. Turbulent Model Validation

In this research, different turbulence models were tested and compared with the ex-
perimental results to select the turbulence model used in the numerical analysis, according
to Figure 4a,b. Equation (10) was used to calculate the average error of numerical analysis
for each turbulence model. According to the results of the numerical analysis using the k-ω
turbulence model, the average error of the hydraulic results in the reverse flow was 25.7%,
and it was 10.2% in the forward flow. However, when the SST k-ω model was used in the
simulations, the average errors for the reverse and forward directions results were reduced
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to 22.7% and 2.6%, respectively. The realizable k-ε model showed an average error of 15%
in the reverse flow and 3.3% in the forward flow for the results obtained in the analysis of
the Tesla valve. On the other hand, the standard k-εmodel gave an average error of 8.3%
and 8.4% for hydraulic results in the reverse and forward directions, respectively. Based
on these results, it can be concluded that the standard k-ε model is the most appropriate
turbulence model to use in numerical simulations because it gives suitable and close each
other average errors in both directions.

The y+ is a dimensionless parameter similar to the local Reynolds number used in CFD
to characterize the near-wall flow behavior by quantifying the distance from the solid wall
to the nearest mesh element’s center. This parameter is used as a criterion to evaluate the
appropriateness of the grid element size on the walls’ borders. On the other hand, it plays
a crucial role in selecting an appropriate wall modeling approach, such as wall functions
or low Reynolds number (LRN) models, based on the flow regime and the desired level
of accuracy for capturing the near-wall physics. This parameter is calculated according
to Equations (11) and (12). In these equations, Vτ and τw represent the friction velocity
and wall shear stress, respectively. Also, y is the distance between the wall and the center
of the nearest mesh element to the wall. Higher y+ values (often above 30) indicate fully
turbulent flows where wall functions are effective. In comparison, lower y+ values suggest
laminar or transitional flows requiring more refined modeling techniques to resolve the
near-wall region accurately [47]. The calculation of y+ was performed across different
turbulence models, and the results are presented in Table 4. It is evident from the data that
the y+ values almost in all cases exceed 30, indicating a predominantly turbulent near-wall
flow regime.

Table 4. The value of y+ in different turbulence models at Z = 300 mm, Tin = 274.15 K, and
Tw = 368.15 K conditions.

Turbulence
Model Wall Model

Value of y+ Suitability
SituationReverse Flow Forward Flow

Standard k-ε Wall functions 41.910 40.749 suitable
Realizable k-ε Wall functions 41.784 45.745 suitable

SST k-ω LRN 29.211 36.539 unsuitable
k-ω LRN 39.675 42.715 unsuitable

According to the y+ parameter results, it can be seen that the use of the wall functions
model was suitable for investigating the fluid flow behavior near the walls in the present
study. These wall functions are derived from empirical correlations based on experimental
data, and k-ε models widely use these wall functions to capture the turbulence charac-
teristics near walls. Also, because the values of y+ were above 30, using the LRN wall
model, which is used in the k-ω and SST k-ω turbulence models, was unsuitable for use in
the present work [48,49]. Further, considering that the numerical results of the standard
k-ε turbulence model were in better agreement with the experimental results compared
to the realizable k-ε model, the standard k-ε model was used for further investigations in
this work.

Error = 100× 1
m ∑m

i=1

∣∣rnum − rexp
∣∣

rexp
(10)

y+ =
ρVτy

µ
(11)

Vτ =

√
τw

ρ
(12)
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2.7. Artificial Neural Network Approach

One way to reduce computational time and save financial resources is by using black-
box methods, which deal with input and output data without considering the possible
physical processes. A practical approach in this field is the artificial neural network (ANN),
inspired by the human nervous system. Neurons are the fundamental processors in neural
networks, and each neuron may receive multiple inputs from other neurons and have one
or more outputs based on its activity [33].

In this study, a separate three-layer structure was designed for each response (TDR
and PDR), consisting of input, hidden, and output layers, as shown in Figure 5a. The
input layer has three neurons that serve as the network’s inputs. The hidden layer has four
neurons, and the output layer contains one neuron. Based on the investigations conducted,
it was observed that prediction models with fewer than four neurons in the hidden layer
did not have satisfactory performance. Conversely, an excessive increase in neurons in this
layer led to overfitting in the model’s results. The activation functions must be derivable to
perform the backpropagation function in model training. Therefore, the tangent-sigmoid
activation function was used in hidden layer neurons, and the linear activation function
was used in the output layer neuron to obtain the response value. To better understand
the performance of each neuron in the hidden and output layers, Figure 5b was presented,
which shows the performed calculations.
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MATLAB (2016b) software was applied to optimize models using the ANN approach,
and the Levenberg–Marquardt method was employed to train artificial neural networks by
utilizing the available data. The variables and their ranges for simulation and optimization
were tabulated in Table 5, and these ranges were selected based on the geometric and
boundary conditions. Furthermore, Table 6 presents a list of numerical tests selected
using the central composite design (CCD) method, which can minimize the number of
tests, which is an important aspect, especially in experimental studies [50]. To ensure the
development of reliable prediction models, a careful data allocation strategy was employed.
As illustrated in Table 6, 70% of the data was allocated for training the models, 15% for
validation purposes, and 15% for testing the models. Notably, this classification was
performed randomly, ensuring an unbiased data distribution. To assess the validity and
accuracy of the predicted results by the ANN method, three error functions were used,
including the determination coefficient (R2), mean absolute error (MAE), and root mean
square error (RMSE).

Table 5. Selected variables and levels.

Variable
Variable Levels

−1 0 +1

L (mm) 2 5 8
S (mm) 2 5 8
V (m/s) 0.2 1.1 2

Table 6. Selected numerical experiments to perform numerical simulations.

Numerical
Experiment Number

Position Used in
Machine Learning

Variables

L (mm) S (mm) V (m/s)

1 Train 8 2 0.2
2 Train 5 5 1.1
3 Train 8 8 0.2
4 Validation 5 5 0.2
5 Train 5 5 2
6 Train 5 8 1.1
7 Train 8 8 2
8 Train 5 2 1.1
9 Train 2 2 2
10 Train 2 5 1.1
11 Test 8 2 2
12 Train 2 8 0.2
13 Train 2 8 2
14 Validation 8 5 1.1
15 Test 2 2 0.2

3. Results
3.1. Numerical Results

The Tesla valve functions as a one-way valve and creates a high-pressure drop in
one direction compared to the other direction, making the flow of movement easier in
one direction. Therefore, the ratio of ∆P in one direction to the other, known as diodicity,
is one of the most important parameters in this device. Tesla valves can also be used in
thermal applications. In this work, the thermal performance of the device was investigated
in addition to its hydraulic performance. Due to the stability of fluid properties and mass
flow rate in both flow directions, the ratio of directions temperature difference (TDR) also
indicates the heat transfer ratio. The information related to the numerical tests is reported in
Table 7, and preliminary analyses can be performed using these data. Based on the results,
the maximum values of TDR and PDR are observed in test numbers 8 and 9, respectively.
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The highest ∆P in the reverse direction occurred in test number 7, and the highest ∆P in
the forward movement occurred in numerical experiment 11. At the same time, the largest
difference between the inlet and outlet temperatures in both reverse and forward flow
directions was reported in numerical experiment 3.

Table 7. Data and results related to numerical method experiments.

Numerical
Experiment Number

Numerical Simulation Data

∆Tf (K) ∆Tr (K) ∆Pf (Pa) ∆Pr (Pa) TDR PDR

1 6.31 7.31 254.28 284.32 1.158 1.118
2 3.83 6.08 2479.4 5790.9 1.587 2.336
3 6.94 8.96 240.18 269.04 1.291 1.120
4 5.46 7.13 128.58 149.04 1.306 1.159
5 3.46 5.6 7259.5 18,286 1.618 2.519
6 4.22 6.69 2995.2 7646.8 1.585 2.553
7 4.41 6.45 14,233 24,887 1.463 1.749
8 3.47 6.27 2260.1 7614.9 1.807 3.369
9 2.67 4.77 2767.3 12,578 1.787 4.545
10 3.50 5.59 1407.2 4622.9 1.597 3.285
11 4.16 4.65 15,159 18,580 1.118 1.226
12 5.75 8.14 120.32 209.9 1.416 1.745
13 3.55 5.71 6522.3 19,819 1.608 3.039
14 4.45 5.06 4414.8 4283.5 1.137 0.970
15 4.49 7.13 48.879 135.79 1.588 2.778

Figure 6 shows the pressure contours, and it can be seen that the inlet pressure of
reverse flows is higher than the forward flows direction. Additionally, the fluid pressure
in the reverse flow is high due to the longer fluid movement path, more friction, more
vortices, and more fluid collisions. Figure 7 displays the velocity contours, and it is evident
that in the reverse direction of fluid flow in the Tesla valve, the fluid passes through the
bent channels with a higher mass flow rate and velocity than the forward flow. Using these
two contours, it was concluded that much flow passes through the bent paths in the reverse
direction movement. Therefore, the thermal performance of the device is expected to be
higher in the direction of the reverse flow, which is confirmed by Table 6. Figure 8 presents
the temperature contours for checking the thermal performance. As shown in this figure, in
the Tesla valve with the forward flow, the heat transfer is weaker since less fluid enters the
bent channels, and the temperature of the liquid in the bent channels is higher. Of course,
in the reverse flow temperature contour of experiment 11, the fluid temperature in the
second bent channel is also high due to the geometry of the valve, which causes not much
fluid to enter the bend, and the fluid temperature in that section increases. The temperature
distribution is generally better in the Tesla valve with reverse flow. The results of tests 9,
11, and 13 are presented in all contours. Experiments 9 and 11 were compared to observe
the effect of changing variable L on Tesla valve performance, and experiments 9 and 13
were compared to observe the impact of changing variable S on valve performance. In the
following, the ANN method and predictions of this method were used for a more detailed
investigation of the effect of variables and optimization of geometry and responses.
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3.2. The ANN Results

In this section, the results of the ANN method are discussed. The predicted results for
TDR and PDR responses using the models obtained from the ANN method are compared
with the numerical analysis results and presented in Figure 9a,b. It can be seen that the
results obtained by both methods are similar. The models for the TDR and PDR responses
developed through the ANN method are described in Equations (13) and (15), respectively.
The optimized weights and biases of the models related to the responses were obtained
using the ANN method and LM algorithm. The R2 parameter was examined to assess the
accuracy of the models (Table 8), and it was observed that the TDR model correctly predicts
99.1% of the responses. Also, the R2 error function with a value of 0.992 for the PDR model
indicates that this model can correctly predict 99.2% of responses and has only 0.8% error.

To show the effect of each input variable (L, S, and V) on the output responses, the
plots in Figure 9c,d were presented. In these plots, one variable was changed from −1
to +1 levels while the other two remained constant at zero levels. Also, the reference
point in these graphs is the point where all three variables are at zero level. As seen in
Figure 9c, changes in the L variable up to a certain level do not affect TDR, and from that
level onwards, it causes TDR to decrease. Changes in the S parameter initially cause a
decrease in TDR, and the intensity of this reduction gradually decreases. With an increase
in the value of V, TDR also increases, but the slope of this plot is higher in the initial
part, indicating a greater intensity. In the following, the effects of the independent input
variables on the response of the diodicity are discussed, shown in Figure 9d. According
to the high slope of the L parameter graph, it seems that the effect of this variable on the
diodicity is more significant than the rest of the variables. After the L parameter, the Tesla
valve input velocity variable has the most impact on PDR, and this response rises with the
increase in velocity.
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Table 8. Nonlinear error functions for prediction models obtained by ANN method.

Error Function Mathematical Form
ANN

TDR PDR

R2 1− ∑m
i=1(rnum−rpred)

∑m
i=1(rnum−rpred)

2
0.991 0.992

MAE 1
m

m
∑

i=1

∣∣∣rpred − rnum

∣∣∣ 0.009 0.034

RMSE
√

1
m

m
∑

i=1

(
rpred − rnum

)2 0.021 0.095

In the following, the two-by-two effects of the variables on the responses were investi-
gated according to Figure 10. Figure 10a shows that as L increases, the TDR value remains
somewhat stable and then decreases, and the effect of this decrease is more significant at
lower S. Figure 10b confirms this observation and shows that the effect of the L parameter
on TDR is more pronounced at higher inlet velocities. Figure 10c reveals that the heat trans-
fer capability of the Tesla valve increases with the increase of the inlet velocity (V), and this
increase is more significant at lower S values. Furthermore, it can be seen that increasing
S leads to a decrease in TDR. Turning to the three-dimensional plots for PDR response,
Figure 10d shows that increasing L reduces PDR, and this effect is more pronounced at
smaller S values. Figure 10e,f demonstrate that increasing the inlet velocity increases PDR,
which is more prominent at smaller L and S values. It is worth mentioning that increasing
the L parameter leads to a decrease in the diodicity of the Tesla valve.
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L, and S, (e) PDR, L, and V, (f) PDR, S, and V was illustrated in these 3D plots.

This section discusses the influence of variables on the performance of the Tesla valve
and the analysis of these effects using streamlines (Figure 11). In this figure, the primary
issue that can be noticed is that in the direction of forward movement, compression of the
lines in the main channel is greater than bent channels, indicating a large fluid flow through
this path. While in the reverse flow direction, the fluid flow is spread in all the channels of
the Tesla valve. The effect of changing the divider baffle length on PDR can be observed
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based on the fluid flow streamlines of the 9th and 11th numerical experiments. According
to the streamlines in the reverse direction, it is apparent that increasing the divider baffle
length causes most of the fluid flow to pass without entering the second bent channel, and
this function reduces the ∆P and diodicity. However, it should be noted that as L increases,
the dimensions of the central path reduce, leading to increased ∆P in both directions of
fluid movement. Comparing the streamlines of experiments 9th and 13th reveals the effect
of changing the parameter S on the Tesla valve’s performance. It is clearly seen that in
the 9th test, more flow enters the bent channels in reverse flow than in the 13th test, and
due to this matter, the ∆P ratio of reverse flow to the forward flow is higher in this design.
Additionally, it should be mentioned that increasing the S variable leads to a larger Tesla
valve, causing more friction and ∆P in both directions.
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As mentioned in the previous sections, one of the most important goals of the current
research is to provide optimal designs for the Tesla valve in different conditions. The goal
was to maximize the values of PDR and TDR, and genetic algorithm and ANN models
were used to predict the optimal design parameters. According to Table 9, the designs with
maximum PDR and TDR values were predicted, and the predicted results for the values of
the responses were also presented. Next, the given Tesla valves were designed and then
numerically tested to ensure that the predictions were correct and that these designs had
the most optimal response values. The data relating to these numerical analyzes were also
reported in Table 9. As can be seen, the predicted results have good accuracy, and at the
same time, these designs have the maximum value of diodicity and TDR in reality. The
maximum value of TDR in the Tesla valve with the design of L = 4.502 mm, S = 2 mm, and
V = 2 m/s was obtained and had a predicted value of 1.908. The numerical results reported
the TDR value for this design as 1.862, and it can be said that the ANN model has a 2.5%
error in predicting this number. Using this number, it can be argued that in this design, the
heat transfer in the reverse direction is 86.2% more than in the forward movement. One of
the essential parameters in Tesla valves is diodicity, and it was predicted that the maximum
value of this response is achieved in the design of L = 2 mm, S = 2.048 mm, and V = 2 m/s.
The predicted and calculated values for PDR were 4.546 and 4.581, respectively, with a low
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prediction error of 0.8%. The number of 4.581, obtained numerically for diodicity, indicates
that the ∆P obtained in the reverse direction is 358.1% higher than the ∆P obtained in the
forward direction. Overall, the approach of using a genetic algorithm and ANN models
to predict the optimal design parameters for the Tesla valve proved successful, and the
numerical analysis confirmed the accuracy of the predictions.

Table 9. Comparison of predicted and numerical data for the predicted optimal design of the Tesla valve.

Optimized
Parameter

Optimal Design ANN Predicted Data Numerical Data

L (mm) S (mm) V (m/s) TDR PDR TDR PDR

TDR
(maximization) 4.502 2 2 1.908 3.848 1.862 3.835

PDR
(maximization) 2 2.048 2 1.810 4.546 1.776 4.581

Using the models provided by ANN, it is possible to predict designs with the best
performance at different velocities. In this case, the desired velocity value is entered into
the prediction model, and then the genetic algorithm is used to optimize the models. The
optimal designs at different inlet velocities for TDR and PDR responses were presented in
Tables 10 and 11, respectively. As observed in the tables, the predicted results agree with
those obtained from numerical methods in all cases. Furthermore, upon careful examination
of these results, it becomes evident that both responses can be enhanced by increasing the
inlet velocity and selecting an appropriate geometric design for the Tesla valve. Next, the
performance of the two-stage Tesla valve designed by Bao and Wang [10] was reported in
Table 12 to compare with the results of the designs presented in this study. It is evident from
the tables that the optimal designs exhibit significantly superior performance compared to
the reference design, and this improvement is more visible in PDR.

Table 10. Optimal geometric design for TDR optimization at different velocities.

Inlet Velocity
(m/s)

Optimal Geometric Design ANN Predicted Data Numerical Data

L (mm) S (mm) TDR PDR TDR PDR

0.2 2.066 2 1.613 2.766 1.594 2.762
0.5 4.004 2 1.663 2.963 1.740 3.014
1 5.504 2 1.801 3.040 1.794 3.092

1.5 5.117 2 1.860 3.415 1.838 3.448
2 4.502 2 1.908 3.848 1.862 3.835

Table 11. Optimal geometric design for PDR optimization at different velocities.

Inlet Velocity
(m/s)

Optimal Geometric Design ANN Predicted Data Numerical Data

L (mm) S (mm) TDR PDR TDR PDR

0.2 2 3.107 1.586 2.837 1.664 2.787
0.5 2 3.284 1.599 3.108 1.678 3.360
1 2.270 2.978 1.629 4.034 1.745 3.976

1.5 2 2.453 1.691 4.449 1.768 4.398
2 2 2.048 1.810 4.546 1.776 4.581
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Table 12. Performance of the two-stage Tesla valve presented in Bao and Wang’s work at different
velocities.

Inlet Velocity (m/s)
Designed by Bao and Wang [10]

TDR PDR

0.2 1.323 1.310
0.5 1.354 1.611
1 1.358 1.787

1.5 1.375 1.845
2 1.386 1.874

4. Conclusions

This research aimed to optimize the design of a two-stage Tesla valve and study its
fluid flow and heat transfer characteristics numerically. The input variables were selected
as L, S, and V, and two responses, TDR and PDR, were used to evaluate thermal and
hydraulic performances. Then, an ANN was trained for each response using data obtained
from numerical experiments to predict the responses for different designs. By using these
models, without doing experimental and numerical work and complex calculations, and
in the shortest time, the responses related to the design of the desired Tesla valve can be
predicted. In the following, the optimal designs of this device for different conditions were
presented using models trained by the ANN method and genetic algorithm. According to
the findings, the following was determined:

• It was shown that the models obtained using the ANN method could correctly pre-
dict the results for the thermal and hydraulic diodicities of the Tesla valve with a
determination coefficient of 99.1% and 99.2%, respectively;

• It was found that increasing the length of the divider baffle decreases PDR. Also,
increasing this variable from a specific limit reduces the value of the TDR response;

• The fluid inlet velocity parameter positively affects the responses, and generally, with
its increase, PDR and TDR also increase;

• The highest value of diodicity was predicted for the Tesla valve with L = 2 mm,
S = 2.048 mm, and V = 2 m/s parameters. This prediction was confirmed by per-
forming numerical tests. The predicted diodicity value for this design is 4.546, and
numerical tests reported this number to be 4.581. The prediction error of this response
is very low and equal to 0.8%. This Tesla valve with a PDR of 4.581 indicates that
the pressure drop in the reverse flow direction is 358.1% more than in the forward
flow direction;

• The most optimal TDR response value was predicted to be 1.908, obtained in the
condition of L = 4.502 mm, S = 2 mm, and V = 2 m/s. Numerical tests were performed
on the designed Tesla valve, and the actual TDR was 1.862, a 2.5% difference from the
predicted value. TDR with this value shows that the Tesla valve with the mentioned
design has 86.2% more heat transfer in the reverse direction.
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Abbreviations

Nomenclature
b bias
Cp specific heat capacity (J/kg·K)
k turbulent kinetic energy
L divider baffle length (mm)
Ma Mach number
m number of tests
.

m mass flow rate (g/min)
∆P pressure drop (Pa)
Pr Prandtl number
r response
S step length (mm)
T temperature (K)
V velocity (m/s)
Vτ friction velocity (m/s)
W weight
Z height of fluid column (mm)
Symbols
ρ density (kg/m3)
µ dynamic viscosity (Pa·s)
λ thermal conductivity (W/m·K)
ε energy dissipation rate
Subscripts
exp experimental data
f forward flow direction
in inlet
num numerical data
out outlet
pred predicted data
r reverse flow direction
t turbulence
w wall
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