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Abstract: Nowadays, various fields in environmental sciences require the availability of appropriate
techniques to exploit the information given by multivariate spatial or spatio-temporal observations.
In particular, radon flux data which are of high interest to monitor greenhouse gas emissions and
to assess human exposure to indoor radon are determined by the deposit of uranium and radio
(precursor elements). Furthermore, they are also affected by various atmospheric variables, such as
humidity, temperature, precipitation and evapotranspiration. To this aim, a significant role can be
recognized to the tools of multivariate geostatistics which supports the modeling and prediction of
variables under study. In this paper, the spatio-temporal distribution of radon flux densities over
the Veneto Region (Italy) and its estimation at unsampled points in space and time are discussed.
In particular, the spatio-temporal linear coregionalization model is identified on the basis of the
joint diagonalization of the empirical covariance matrices evaluated at different spatio-temporal lags
and is used to produce predicted radon flux maps for different months. Probability maps, that the
radon flux density in the upcoming months is greater than three historical statistics, are then built.
This might be of interest especially in summer months when the risk of radon exhalation is higher.
Moreover, a comparison with respect to alternative models in the univariate and multivariate context
is provided.

Keywords: multiple correlation; space–time coregionalization model; space–time prediction; cokriging

1. Introduction

Radon is a colorless, odorless, tasteless, inert radioactive gas, that is derived from the
decay of uranium, which is a radioactive element found in small quantities in all sediments
and rocks. According to the IARC (International Agency for Research on Cancer) and
the WHO (World Health Organization), radon pollution represents the second leading
cause of lung cancer after smoking. Since radon is present in the depths of the Earth
in gaseous phase, it reaches the surface after interacting with other natural elements, such
as uranium and radio (precursor elements). Moreover, various atmospheric variables, such
as humidity, temperature and precipitation [1,2], also affect the transport of radon on the
surface. In the literature, different variables related to radon migration from the soil to the
atmosphere were used and various methods based on the spatial regression techniques
(i.e., Geographical Weighted Regression, Empirical Bayesian Regression Kriging, Machine
Learning and Forecast Regression) were proposed [3–7]. However, these contributions
focus on the analysis of spatial radon distribution, while disregarding the opportunity to
propose a spatio-temporal modeling where the spatial and temporal dimensions of the
investigated phenomenon, as well as their possible interactions are considered. In this
context, geostatistics can offer appreciable techniques and tools to face estimation problems
in space and time, not only for the univariate case, but also for the multivariate one,
which represents an innovative approach for the study of radon data. For this last, it
is crucial to estimate the spatio-temporal multiple covariance function and define an

Entropy 2023, 25, 1104. https://doi.org/10.3390/e25071104 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25071104
https://doi.org/10.3390/e25071104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25071104
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25071104?type=check_update&version=1


Entropy 2023, 25, 1104 2 of 23

apt multivariate correlation model which can ensure reliable inference on the radon flux
variable. Indeed, efforts are focused on the estimation and modeling of the matrix-valued
covariance function, which explains the direct and cross linear dependence in space or in
space–time among the variables.

Besides models for multivariate spatial data which were extensively explored [8–11], vari-
ous contributions can be found in the literature regarding multivariate spatio-temporal data
modeling starting from the early nineties [12–18]. However, the linear coregionalization
model (LCM) developed in space and in space–time (ST-LCM) is sufficiently flexible compu-
tationally speaking to be applied extensively for a large variety of scientific fields [9,19–23].
Li et al. [24] proposed a methodology to evaluate the appropriateness of several com-
mon assumptions, such as symmetry, separability and linear model of coregionalization,
on multivariate covariance functions in the spatio-temporal context, while Choi et al. [13]
proposed an ST-LCM where the multivariate spatio-temporal process was expressed as
a linear combination of independent Gaussian processes in space–time with mean zero
and a separable spatio-temporal covariance. Apanasovich & Genton [25] considered some
solutions to the symmetry problem; moreover, they proposed a class of cross-covariance
functions for multivariate random fields based on the work of Gneiting [26]. The maximum
likelihood estimation of heterotopic spatio-temporal models with spatial LCM components
and temporal dynamics was developed by Fassó and Finazzi [27]. A GSLib [28] routine for
cokriging was properly modified in De Iaco et al. [29] to incorporate the ST-LCM, previ-
ously developed [15] using the generalized product–sum variogram model. In [30–32], an
automatic procedure for fitting the ST-LCM was presented and some computational aspects,
analytically described by a main flow-chart, were discussed. Simultaneous diagonalization
of the sample matrix variograms or the sample covariance matrices was used to isolate
the basic components of an ST-LCM and it has been illustrated how nearly simultaneous
diagonalization of the covariance matrices simplifies their modeling.

This paper aims at presenting a spatio-temporal multivariate geostatistical modeling
approach, based on joint diagonalization of the empirical covariance matrices evaluated
at different spatio-temporal lags. Thus, the possibility to consider a reduced number of
uncorrelated variables (lower than the number of observed variables) and to separately
model the spatio-temporal evolution of these uncorrelated components represents a sub-
stantial simplification in multivariate modeling. A space–time linear coregionalization
model (ST-LCM) with proper parametric models for the latent components was fitted to
the matrix-valued covariance function estimated for the radon flux and three relevant
atmospheric variables, which include evapotranspiration, minimum humidity and mean
temperature. The analysis highlighted how to identify the space–time components and
choose the corresponding model by evaluating some characteristics of the components,
such as separability and type of non-separability. Apart from the practical importance of
this study in the specific field of application, it empirically proves the flexibility of modeling
the matrix-valued covariance structure using the ST-LCM when more than two or three
variables are involved. This is made possible through an approach based on the joint diago-
nalization of sample covariance matrices at different lags. Indeed, it enables analysts to
overcome the complexity of fitting the ST-LCM, particularly when the number of variables
to be analyzed increases, as it does not require modeling all direct and cross-covariance
functions. Furthermore, through the aforementioned procedure, analysts can easily identify
the basic components of the ST-LCM and model each component according to its empirical
characteristics, which may necessitate the use of different classes of covariance models
featuring various types of non-separability [33].

In the following, after an introduction of the theoretical framework of the multivariate
spatio-temporal random function and its features (Section 2), the ST-LCM, its assumptions
and appropriate statistical tests are presented (Section 3), then techniques for prediction and
risk assessment maps are introduced (Section 4). Finally, the spatio-temporal multivariate
exploratory analysis concerning radon flux and three atmospheric variables (temperature,
humidity and evapotranspiration) in the Veneto Region (Italy), and the subsequent model-
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ing step are provided (Sections 5 and 6). Predictions of the primary variable (radon flux) are
obtained through spatio-temporal cokriging (Section 7) for some future months. Then, risk
maps showing the probability that the radon flux in a summer month exceeds the value of
some chosen statistics (25th percentile, average, median), computed on the corresponding
historical data, are produced (Section 8). The choice of summer month is justified by the
need to investigate the risk of radon exhalation when warmer climatic conditions in the
study area favor the increase of radon flux.

It is worth pointing out that the prediction results of this multivariate study might
be of interest for their reflections in public health and for planning consequent remedia-
tion strategies.

2. Multivariate Spatio-Temporal Random Function

Let Z(u) = [Z1(u), . . . , Zp(u)]T , be a vector of p spatio-temporal random functions
(STRF) defined on the domain D× T ⊆ Rd+1, with (d ≤ 3), then

{Z(u), u = (s, t) ∈ D× T ⊆ Rd+1},

represents a multivariate spatio-temporal random function (MSTRF), where s = (s1, . . . , sd)
are the coordinates of the spatial domain D ⊆ Rd and t the coordinate of the temporal
domain T ⊆ R.

Afterwards, the MSTRF will be denoted by Z and its components by Zi. The p STRF
Zi, i = 1, . . . , p, are the components of Z and they are associated to the spatio-temporal
variables under study; these components are called coregionalized variables [34]. The obser-
vations zi(uα), i = 1, . . . , p, α = 1, . . . , Ni, of the p variables Zi, at the points uα ∈ D× T,
are considered a finite realization of an MSTRF Z and Ni is the number of spatio-temporal
points for the variable Zi.

An MSTRF Z, with p components, is second-order stationary if:

• for any STRF Zi, i, . . . , p,

E[Zi(u)] = mi, u ∈ D× T, i = 1, . . . , p; (1)

• for any pair of STRF Zi and Zj, i, j = 1, . . . , p, the cross-covariance Cij depends only
on the spatio-temporal separation vector h = (hs, ht) between the points u and u + h:

Cij(h) = E[(Zi(u + h)−mi) (Zj(u)−mj)] =

= E[Zi(u + h) Zj(u)]−mi mj, (2)

where u, u + h ∈ D× T, i, j = 1, . . . , p.
The function Cij(·) is also called direct covariogram, if i = j, or cross-covariogram, if i 6= j.

There exist several physical phenomena for which neither variance, nor the covariance
exist, however it is possible to assume the existence of the variogram.

2.1. Separability for an MSTRF

The cross-covariance Cij for a second-order stationary MSTRF Z is separable if:

Cij(h) = ρ(h) aij, h = (hs, ht) ∈ D× T, i, j = 1, . . . , p, (3)

where aij are the elements of a (p× p) positive definite matrix and ρ(·) is a correlation
function. In this case, it results in:

Cij(h)
Cij(h′)

=
ρ(h)
ρ(h′)

, h, h′ ∈ D× T, i, j = 1, . . . , p,

hence the changes of the cross-covariances, with respect to the changes of the vector h, do
not depend on the pair of the STRF Zi, Zj.
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The cross-covariance Cij for a second-order stationary MSTRF Z is fully separable if:

Cij(hs, ht) = ρS(hs) ρT(ht)aij, (hs, ht) ∈ D× T, i, j = 1, . . . , p,

where aij are the elements of a (p× p) positive definite matrix, ρS(·) is a spatial correlation
function and ρT(·) is a temporal correlation function. In the literature, many statistical
tests for separability have been proposed and are based on parametric models [35–37],
likelihood ratio tests and subsampling [38] or spectral methods [39,40].

2.2. Symmetry for an MSTRF

The cross-covariance Cij of a second-order stationary MSTRF Z, with p components,
is symmetric if:

Cij(h) = Cij(−h), h ∈ D× T, i, j = 1, . . . , p,

or, equivalently, if:

Cij(h) = Cji(h), h ∈ D× T, i, j = 1, . . . , p.

The cross-covariance Cij of a second-order stationary MSTRF Z, with p components, is fully
symmetric if:

Cij(hs, ht) = Cij(hs,−ht), (hs, ht) ∈ D× T, i, j = 1, . . . , p,

or, equivalently,

Cij(hs, ht) = Cij(−hs, ht), (hs, ht) ∈ D× T, i, j = 1, . . . , p.

Atmospheric, environmental and geophysical processes are often under the influence of
prevailing air or water flows, resulting in a lack of full symmetry [26,41,42]. According to the
relationships between separability, symmetry, stationarity and the LCM in the general class of
cross-covariances of an MSTRF Z, it is worth recalling that if a cross-covariance is separable,
then it is symmetric. However, in general, the converse is not true. Moreover, the hypothesis
of full separability is a special case of full symmetry. Several tests to check the symmetry and
separability of direct and cross-covariances can be found in the literature [24,40,43–45].

2.3. Direct and Cross-Covariance Estimators

Structural analysis requires covariance and variogram estimation, starting from the
observed values of the variables under study. Hence, it is of basic importance to introduce
the estimators of the direct and cross-covariances, respectively, defined afterwards.

Let Ai, i = 1, . . . , p, be the sets of points of the domain D × T ⊆ Rd+1, where the p
variables have been observed: Ai = {uα = (s, t)α, α = 1, . . . , Ni}, i = 1, . . . , p, then the
estimators of the direct and cross-covariances are built as follows:

Ĉij(rs, rt) =
1

|Lij(rs, rt)| ∑
Lij(rs ,rt)

{
[Zi(s + hs, t + ht)− m̂i] [Zj(s, t)− m̂j]

}
, (4)

with i, j = 1, . . . , p (i = j for the sample direct covariance and i 6= j for the sample cross-
covariance), where

m̂i =
1
Ni

Ni

∑
α=1

Zi(s, t)α, i = 1, . . . , p,

while |Lij(rs, rt)| is the cardinality of the following set:

Lij(rs, rt) =
{
(s + hs, t + ht) ∈ Ai, (s, t) ∈ Aj : ‖rs − hs‖ < Tol(rs) and |rt − ht| < Tol(rt)

}
,



Entropy 2023, 25, 1104 5 of 23

where rs is the spatial separation vector (lag) with tolerance Tol(rs) and rt is the temporal
lag with tolerance Tol(rt), then Tol(rs) and Tol(rt) are some specific regions of tolerance
around rs and rt, respectively.

3. Linear Coregionalization Model in Space–Time

ST-LCM is based on the hypothesis that each direct or cross-covariance function can
be represented as a linear combination of some basic models and each direct or cross-co-
variance function must be built using the same basic models. Let Z be a second-order
stationary MSTRF Z with p components, Zi, i = 1, . . . , p. The matrix C for the second-order
stationary Z is built as follows:

C(h) =
L

∑
l=1

Bl cl(h). (5)

where h = (hs, ht), u = (s, t), u + h = (s + hs, t + ht), cl are covariance functions, called
basic structures, and the matrices Bl =

[
bl

ij

]
, called coregionalization matrices, must be

positive definite, where the coefficients bl
ij satisfy the following property:

bl
ij = bl

ji, i, j = 1, . . . , p.

Thus, on the basis of this assumption Cij(h) = Cij(−h) and Cij(h) = Cji(h), with i, j =
1, . . . , p, i 6= j.

The basic structures cl(h) = cl(hs, ht) of the ST-LCM (5) can be modelled by using
several space–time covariance models known in the literature, according to its empirical
characteristics, which may necessitate the use of different classes of covariance models
featuring various types of non-separability [33].

Fitting an ST-LCM to the data requires the identification of the space–time basic
covariance functions and the corresponding positive definite coregionalization matrices.
However, this is often a hard step to tackle. An approach based on the joint diagonalization
of a set of covariance matrices computed for several spatio-temporal lags, allows us to
determine the ST-LCM parameters in a very simple way.

3.1. Checking the Model Assumptions

In several environmental applications [10], the cross-covariance function is not sym-
metric, as for example, in time series in the presence of a delay effect, as well as in hydrology,
for the cross-correlation between a variable and its derivative, such as water head and
transmissivity [46]. Hence, this assumption should be tested before fitting an ST-LCM.

The appropriateness of the assumption of symmetry of an ST-LCM can be tested by
using the methodology proposed by Li et al. [24] and discussed in De Iaco et al. [43]. This
is based on the asymptotic joint normality of the sample space–time cross-covariances
estimators. Given a set Λ of user-chosen spatio-temporal lags and the cardinality c of Λ, let
Gn = {Cij(hs, ht) : (hs, ht) ∈ Λ, i, j = 1, . . . , p} be a vector of cp2 cross-covariances at spatio-
temporal lags k = (hs, ht) in Λ. Moreover, let Ĉij(hs, ht) be the estimator of Cij(hs, ht) based
on the sample data in the spatio-temporal domain D× Tn, where D represents the spatial
domain and Tn = {1, . . . , n} the temporal one, and define {Ĉij(hs, ht) : (hs, ht) ∈ Λ, i, j =

1, . . . , p}. Under the assumptions given in Li et al. [24], |Tn|1/2(Ĝn −G)
d→ Ncp2(0, Σ),

where |Tn|Σ converges to Cov(Ĝn, Ĝn). The tests for symmetry properties can then be
based on the following statistics

TS = |Tn|(AĜn)
T(AΣAT)−1(AĜn)

d→ χ2
a, (6)

where a is the row rank of the matrix A, which is such that AG = 0 under the null
hypothesis.
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Moreover, the choice of modeling the MSTRF Z by an ST-LCM is based on the prior
assumption that the multivariate correlation structure of the variables under study is
characterized by L (L ≥ 2) scales of spatio-temporal variability. On the other hand, if the
multivariate correlation of a set of variables does not present different scales of variability
(L = 1), then the cross-covariance functions are separable. (3) Hence, as in the spatial
context [10], a space–time intrinsic coregionalization model can be considered. Obviously,
this last model is just a particular case (L = 1) of the ST-LCM defined in (5) and it is
much more restrictive than the linear model [34] since it requires that all the variables
have the same correlation function, with possible changes in the sill values. Note that, if a
cross-covariance is separable, then it is symmetric.

Once the basic components cl , l = 1, . . . , L, are estimated, it is necessary to proceed
with their modeling. The choice of a reasonable class of models to be fitted to each empirical
component ĉl can be supported by analyzing the characteristics of the empirical basic
covariance surfaces [47], such as the type of non-separability through the computation of
the sample non-separability ratios [14] or by applying a statistical test [48,49].

Remark 1. In the ST-LCM, each component is represented as a linear combination of latent,
uncorrelated univariate spatio-temporal processes. However, the smoothness of any component
defaults to that of the roughest latent process, and thus the standard approach does not admit
individually distinct smoothness properties, unless structural zeros are imposed on the latent process
coefficients [9].

3.2. Some Computational Aspects on the ST-LCM Fitting

The model in (5) can be fitted by following a simplified procedure. First, the empirical
basic covariance functions are detected through the use of the joint diagonalization of
the sample (p× p) covariance matrices Ĉ(hs, ht)k = [Ĉij(hs, ht)k] evaluated at different
space–time lags (hs, ht)k = (hsk , htk ), with k = 1, . . . , K. In particular, after determining the
(p× p) orthogonal matrix Ψ, such that

Ψ Ĉ(hs, ht)k ΨT = ∆(hs, ht)k, k = 1, . . . , K, (7)

where ∆k are the diagonal (p× p) matrices, the sample basic uncorrelated components ĉl
(estimates of cl , l = 1, . . . , p) are obtained by extracting all the diagonal entries across the K
matrices ∆k [50,51]. Joint diagonalization with respect to the lags implies that the matrix
Ψ does not depend on the lags. For the purpose of joint diagonalization many algorithms
exist, see Illner et al. [52] for an overview. In this study, the algorithm based on Jacobi
rotations [53] and included in the R package JADE [54] is recalled. Note that only the L ≤ p
basic components ĉl , l = 1, . . . , L, are included in the ST-LCM; the selected components are
the ones that exhibit distinct spatio-temporal scales of variability (corresponding to the lag
where the surface decays).

These selected basic components are then modelled by adopting appropriate classes
of models (according to the empirical characteristics of each basic component). At the
end, the coregionalization matrices are computed and their admissibility is checked. A
reasonable class of models to be fitted to each component can be assessed, according to
some characteristics, such as full symmetry (cl(hs, ht) = cl(hs,−ht) = cl(−hs, ht)) and
full separability (cl(hs, ht) = cl(hs)cl(ht)/cl(0, 0)), which the sample covariance surfaces
might satisfy. In the case of non-separability, the type of non-separability can be studied
through computation of the sample non-separability ratios, as in [14], which measure
the discrepancy between the sample covariance function (supposed non-separable) and
the one corresponding to the separable case (i.e., the product of the spatial and temporal
marginals). Some statistical tests given in [48,49] can be easily applied toward this aim,
without assuming any specific distribution for the data.
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At the end, the elements bl
ij of Bl , l = 1, . . . , L, of the model in (5) are estimated. They

correspond to the ratio between the contributions of Ĉij at the l-th scale of variability,
by [cl(0, 0)], i.e.,

bl
ij =

[Ĉij(hs, ht)l−1]− [Ĉij(hs, ht)l ]

[cl(0, 0)]
, l = 1, . . . , L, (8)

where Ĉij(hs, ht)0 = Ĉij(0, 0), with i, j = 1, . . . , p, i ≤ j.
The positive definiteness condition of the matrices Bl , l = 1, . . . , L, is verified by

checking that their eigenvalues are non negative. In particular, after performing the
spectral decomposition of these matrices,

Bl = VlΛlV
T
l , l = 1, . . . , L,

where Vl are the eigenvector matrices and Λl the diagonal matrices of the eigenvalues, if
there are some negative eigenvalues, they are set equal to zero. In this case, the transformed
coregionalization matrix B′l is derived through the following expression

B′l = VlΛ
′
lV

T
l l = 1, . . . , L, (9)

where the diagonal matrix of the eigenvalues Λ′l is modified with respect to the original Λl
since zeros are in place of the negative eigenvalues.

Further details on computational aspects can be found in [55].

4. Prediction and Risk Assessment in Space–Time

For prediction purposes, various cokriging algorithms can be found in the litera-
ture [56,57]. As a natural extension of spatial ordinary cokriging to the spatio-temporal
context, the linear space–time predictor can be written as

Ẑi(u) =
p

∑
j=1

Nj

∑
α=1

wij
α (u)Zj(uα), i = 1, . . . , p (10)

where u = (s, t) ∈ D × T is a point in the space–time domain, uα = (s, t)α ∈ D × T,
α = 1, . . . , Ni, are the data points in the same domain and wij

α (u) are the weights assigned
to the value of the jth variable, j = 1, . . . , p, at the αth data point, to predict the ith variable,
i = 1, . . . , p, at the point u ∈ D× T.

The predicted space–time random vector Ẑ(u) at u ∈ D × T, is such that
each component Ẑi(u), i = 1, . . . , p, is obtained by using all information at the data points
uα = (s, t)α ∈ D× T, α = 1, . . . , Ni.

The weights wij
α (u), α = 1, . . . , Ni, are determined by ensuring the unbiased condition

for the predictor Ẑi(u) and the efficiency condition, obtained by minimizing the error
variance [34].

Similarly, for environmental risk assessment, the formalism of multivariate spatio-
temporal indicator random function (MSTIRF) and corresponding predictor, have to be
introduced. Let

I(u, z) = [I1(u, z1), . . . , Ip(u, zp)]
T ,

be a vector of p spatio-temporal indicator random functions (STIRF) defined on the domain
D× T ⊆ Rd+1, with (d ≤ 3), as follows

Ii(u, zi) =

{
1 if Zi is not greater (or not less) than the threshold zi,
0 otherwise
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where z = [z1, . . . , zp]T . Then

{I(u, z), u = (s, t) ∈ D× T ⊆ Rd+1},

represents an MSTIRF. In other words, for each coregionalized variable Zi, with i = 1, . . . , p,
an STIRF Ii can be appropriately defined. Then the linear space–time predictor (10) can
be easily written in terms of the indicator random variables Ii, i = 1, . . . , p. If the spatio-
temporal correlation structure of an MSTIRF is modelled by using the ST-LCM, the cokrig-
ing can be used to produce risk assessment maps, for one or all the variables under study.
If p = 1, the dependence of the indicator variable is characterized by the corresponding
indicator covariance of I: CST (h), which depends solely on the lag vector h = (hs, ht), for
any pair of points (s, t) and (s + hs, t + ht) where (s, s + hs) ∈ D2 and (t, t + ht) ∈ T2.
The fitted model for CST must satisfy an admissibility condition in order to be valid and
ordinary kriging can be used to generate the environmental risk assessment maps.

The GSLib routine “COK2ST” [29] can be used to produce multivariate predictions in
space–time, for one or all the variables under study, using the ST-LCM (5).

5. Space–Time Multivariate Analysis for Radon Flux Measurements

In this section, after a brief description of the geographical area under study, in terms of
geological characteristics and meteorological conditions, the spatio-temporal multivariate
data set related to the variables radon flux, average temperature, minimum humidity and
evapotranspiration is presented. Finally, a description of the spatial and temporal profile of
the variables is proposed.

5.1. Study Area

The Veneto Region is located in the north-eastern part of Italy and occupies an area
of about 18,400 km2. It is divided into seven provinces (Belluno, Padua, Rovigo, Treviso,
Venice, Verona and Vicenza) as shown in Figure 1.
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5. Space–Time Multivariate Analysis for Radon Flux Measurements

In this section, after a brief description of the geographical area under study, in terms of
geological characteristics and meteorological conditions, the spatio-temporal multivariate
data set related to the variables radon flux, average temperature, minimum humidity and
evapotranspiration is presented. Finally, a description of the spatial and temporal profile of
the variables is proposed.

5.1. Study Area

The Veneto Region is located in the north-eastern part of Italy and occupies an area
of about 18,400 km2. It is divided into seven provinces (Belluno, Padua, Rovigo, Treviso,
Venice, Verona and Vicenza) as shown in Figure 1.

Verona

Vicenza
Treviso

Venice

Belluno

Padua

Rovigo

25 km

Meteorological stations

Radon flux stations

Figure 1. (Left panel): map of Italian regions (study area in orange). (Middle panel): Veneto
Provinces. (Right panel): location map of meteorological and radon sample points over the study
area.

Veneto’s geomorphology setting is very composite: 57% of its surface is covered by
plain, 29% is mountainous (i.e., the Carnic Alps, eastern Dolomites and Venetian Prealps,
in the northern zone), and the remaining 14% is constituted by hills. The Veneto Region is
crossed by several of the most important rivers in Italy (i.e., the Adige, Brenta, Piave, Po
and Tagliamento) and it possesses the eastern shore of the Lake Garda. The permeability
of the lithologies varies from low and moderately low in the plain area, characterized by
sandy and silty-clay deposits, to moderately high and high in the south-west and north
of the region, due to the presence of limestone, sandstone and calcarenite soils. Finally,
the large number of faults indicates intense tectonic activity in the region.

Figure 1. (Left panel): map of Italian regions (study area in orange). (Middle panel): Veneto
Provinces. (Right panel): location map of meteorological and radon sample points over the
study area.

Veneto’s geomorphology setting is very composite: 57% of its surface is covered by
plain, 29% is mountainous (i.e., the Carnic Alps, eastern Dolomites and Venetian Prealps,
in the northern zone), and the remaining 14% is constituted by hills. The Veneto Region is
crossed by several of the most important rivers in Italy (i.e., the Adige, Brenta, Piave, Po
and Tagliamento) and it possesses the eastern shore of the Lake Garda. The permeability
of the lithologies varies from low and moderately low in the plain area, characterized by
sandy and silty-clay deposits, to moderately high and high in the south-west and north
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of the region, due to the presence of limestone, sandstone and calcarenite soils. Finally,
the large number of faults indicates intense tectonic activity in the region.

With regards to the climate, in Veneto two climatic zones can be detected: the Alpine
region, which is characterized by mild summers and cold temperatures in winter with
frequent snowfalls, on the other hand hilly and plain areas have a continental climate,
with hot summers and very cold winters.

A wide variety of geological features and meteorological conditions which charac-
terize the Veneto Region, strongly contribute to the exhalation of the radon from the soil,
hence studies of radon flux over this region might be very interesting. To the best of our
knowledge, up to now only few studies have referred to indoor radon concentrations in
Veneto [58–60], based on the monitoring campaigns conducted starting from 1989, with the
aim of assessing human health risks. However, these monitoring campaigns were discon-
tinuous over time, and mainly regarded the risk areas identified in 1989 and only a few
buildings. Although atmospheric radon flux does not represent a health risk, for smaller
magnitudes than those of indoor radon, an accurate evaluation of its exhalation rate could
be relevant for epidemiological studies and to determine emission strategies of greenhouse
gases. Furthermore, outdoor radon and radon flux represent an important factor for the
correction of indoor values [1,2].

In the present paper, a geostatistical analysis of the spatio-temporal behavior of radon
flux jointly with three meteorological variables, which affect the gas dispersion [61,62], has
been proposed. As pointed out in [63,64], many meteorological variables can affect radon
exhalation from soil; for this reason, the average air temperature, minimum humidity and
evapotranspiration have been considered. In the following spatio-temporal multivariate
analysis of radon flux, the prediction maps of environmental radioactivity over the Veneto
Region might contribute to an accurate assessment of the indoor radon levels, as well as
to the identification of radon priority areas [1,2] and might be used by local or regional
authorities for land-use planning and urban development. The latter aspect is very impor-
tant especially considering that, ranking fourth in Italy, Veneto has a population of over
4.8 million inhabitants, with a yearly increase in population growth rate of 0.6‰ (higher
with respect to the Italian population growth rate equal to 0.4‰).

5.2. Spatio-Temporal Multivariate Data Set

The multivariate spatio-temporal data set involves monthly values of radon flux
(Rn flux, in KBqm−2 s−1), which is a measure of radon exhaled per surface unit and per
time unit, as well as monthly averages of evapotranspiration (ET0, in mm), minimum
humidity (Hm, in %) and mean temperature (TM, in ◦C) observed over Veneto Region
(Italy), from January 2006 to April 2022 (i.e., 196 temporal observations). As can be seen
in Figure 1, the meteorological variables (TM, Hm and ET0) were measured at 72 survey
stations belonging to the agency for environmental protection and downloaded from https:
//www.arpa.veneto.it/ ((accessed on 25 June 2023). On the other hand, the monthly Rn
flux data referred to 69 spatial points regularly distributed over a grid with 15 km × 15 km
cell size. It is worth noting that the Rn exhalation rate is freely downloadable from https:
//meta.icos-cp.eu/objects/5-Z-zRaqFgddALv0ohLonzWD (accessed on 25 June 2023)
for the whole European land surface. Rn flux data have been computed by using the
measurements of soil properties, uranium content as well as model-derived soil moisture
and water-table depth, as described in [65].

5.3. Exploratory Data Analysis

In Figure 2, the spatial representation of Rn flux and of the three meteorological
variables has been provided, by computing the monthly averages in January, April, July
and October for the analyzed 17-year span. The represented values for the fixed four
months can be considered representative of the behavior of the variables of interest over
the domain during the four seasons of a year.

https://www.arpa.veneto.it/
https://www.arpa.veneto.it/
https://meta.icos-cp.eu/objects/5-Z-zRaqFgddALv0ohLonzWD
https://meta.icos-cp.eu/objects/5-Z-zRaqFgddALv0ohLonzWD
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Figure 2. Colour maps of Rn flux (in KBqm−2 s−1), TM (in ◦C), Hm (in %) and ET0 (in mm) monthly
averages calculated for (a) January, (b) April, (c) July and (d) October.

The Rn flux areas with high gas exhalation rates, for the fixed four months, are located
in the Province of Belluno and in the west of Verona. Moreover, some isolated areas
with high radon levels have also been identified in the Province of Treviso, bordering
Friuli Venezia Giulia, and in the Province of Padua (i.e., the Euganean Hills area, which
is characterized by a complex geological context). Note that, as pointed out in [58,60] the
same areas are also characterized by high indoor radon concentrations. The highest average
values have been observed in July (mean and median equal to 22.10 and 23.62 KBqm−2 s−1,
respectively, and coefficient of variation equal to 53.86%). On the other hand, the lowest
values (from 0.18 to 20.56 KBqm−2 s−1) have been observed in January (mean and median
values equal to 11.53 and 12.21 KBqm−2 s−1, respectively, and coefficient of variation equal
to 40.01%). It is worth noting that the exhalation rates increase during the summer period,
when TM and ET0 increase and Hm decreases [2].

Regarding the meteorological variables (TM, Hm and ET0), Figure 2 shows their spatial
behavior that changes significantly from the plain to the mountains areas.

The differences in terms of TM between the high mountains and the plain and coastal
areas are quite large. The TM in January varies from 2.7 to 4.92 ◦C along the plain and

Figure 2. Colour maps of Rn flux (in KBqm−2 s−1), TM (in ◦C), Hm (in %) and ET0 (in mm) monthly
averages calculated for (a) January, (b) April, (c) July and (d) October.

The Rn flux areas with high gas exhalation rates, for the fixed four months, are located
in the Province of Belluno and in the west of Verona. Moreover, some isolated areas
with high radon levels have also been identified in the Province of Treviso, bordering
Friuli Venezia Giulia, and in the Province of Padua (i.e., the Euganean Hills area, which
is characterized by a complex geological context). Note that, as pointed out in [58,60] the
same areas are also characterized by high indoor radon concentrations. The highest average
values have been observed in July (mean and median equal to 22.10 and 23.62 KBqm−2 s−1,
respectively, and coefficient of variation equal to 53.86%). On the other hand, the lowest
values (from 0.18 to 20.56 KBqm−2 s−1) have been observed in January (mean and median
values equal to 11.53 and 12.21 KBqm−2 s−1, respectively, and coefficient of variation equal
to 40.01%). It is worth noting that the exhalation rates increase during the summer period,
when TM and ET0 increase and Hm decreases [2].

Regarding the meteorological variables (TM, Hm and ET0), Figure 2 shows their spatial
behavior that changes significantly from the plain to the mountains areas.

The differences in terms of TM between the high mountains and the plain and coastal
areas are quite large. The TM in January varies from 2.7 to 4.92 ◦C along the plain and
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coast, while in the mountainous zones it can be very low during winters (from −6.19 to
−3.97 ◦C); wider differences are also evident in July.

The Veneto Region climate is characterized by high humidity levels, indeed the per-
centage of Hm is very high in the 73 monitoring stations, especially in January and October,
with a minimum percentage between 38.38 and 48.61, respectively, and maximum percent-
age ranging between 64.88 (in October) and 75.36 (in January).

Looking at the colour maps of the ET0 (Figure 2), which represents a combination
of evaporation and transpiration processes of water from the soil to the air, low levels
have been observed in the northern and north-eastern part of the Veneto Region and
high in the plain. In January, the values vary from 0.29 mm on the mountainous interior
zones to 0.62 mm in the Treviso Province. On the other hand, in July the ET0 levels are
high all over the domain with peaks in the central part (plain areas). Moreover, the well-
known positive correlation between air temperature and evapotranspiration, as well as the
negative correlation between air temperature (or evapotranspiration) and humidity were
confirmed via the spatial profile analyses. In addition, in the central part of the study area
the geological characteristics of the soil as well as meteorological and climatic condition
affect Rn exhalations from the soil to the atmosphere.

The temporal profiles of the analyzed variables have been evaluated through box
plots of the monthly values at the sample points (Figure 3a–d). All the four variables
exhibit a seasonal behavior: Rn flux, TM and ET0 are characterized by increasing values
during the spring and summer periods, on the other hand the Hm denotes an opposite
behavior, with increasing values during autumn/winter and decreasing values during
spring/summer. Moreover, as previously pointed out for the spatial profile analyses, it is
evident that low (high) values of Rn flux are associated to low (high) values of the TM and
ET0 and to high (low) Hm [2].

Since the time series of the analyzed variables exhibit a seasonal component, the twelve-
month averages have been computed for each station and the periodic component of
each variable has been removed from the monthly values by subtracting the average
seasonality. In Figure 3e–h the deseasonalized values of the four variables, grouped by
months, are shown.

Then, as described in Section 6, the spatio-temporal direct and cross-covariance func-
tions of the residuals of Rn flux, TM, Hm and ET0 were analyzed and an appropriate
ST-LCM was selected.

Space–time modeling and prediction techniques were applied in order to forecast the
Rn flux values over the area of interest for the period May–December 2022 (i.e., the months
after the last available time point in the analyzed data set). In particular, the following
aspects were considered:

(1) estimating and modeling space–time correlation among the residuals’ variables; in
the ST-LCM fitting stage the procedure proposed in [30] and based on the joint diag-
onalization of several sample covariance matrices was performed and the most apt
covariance model [66] was fitted for each basic component;

(2) predicting Rn flux during the period May–December 2022 by using spatio-temporal
cokriging based on the estimated ST-LCM;

(3) producing risk maps showing the probability that Rn flux in a summer month exceeds
the value of some chosen statistics, by using indicator kriging [67].
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Figure 3. Box and whisker plots showing (a) Rn flux (in KBqm−2 s−1), (b) TM (in ◦C), (c) Hm (in %)
and (d) ET0 (in mm) and their corresponding residual values (e–h), grouped by month. The symbol ◦
indicates values which lie more than 1.5 times the interquartile range from the first and third quartile.

6. Modeling the ST-LCM for the Study Variables

Modeling the spatio-temporal correlation among the variables under study by using
the ST-LCM, requires first checking the adequacy of such a model. In particular, the symme-
try assumption was checked by using the methodology proposed by [24] and mentioned in
Section 3.1. Therefore, after selecting three pairs of spatial points and the temporal lag equal
to 1 month, which is the lag corresponding to the largest empirical cross-correlations for
all variables combinations, the test statistic TS (6) was equal to 0.34 with a corresponding
p-value equal to 0.99. On the basis of this result, it is reasonable to consider the ST-LCM a
suitable model for the data set under study.

Through the fitting procedure developed by [33] and starting from the estimation of
the sample covariance matrices computed for a set of spatio-temporal lags and by using
the outputs from the joint diagonalization of these covariance matrices, the uncorrelated
basic components underlying the investigated phenomenon were identified. In the present
case study, according to the geometry of the spatio-temporal domain, 8 spatial lags and
15 temporal lags for a total of 120 spatio-temporal lags, were fixed to estimate the 4 direct

Figure 3. Box and whisker plots showing (a) Rn flux (in KBqm−2 s−1), (b) TM (in ◦C), (c) Hm (in %)
and (d) ET0 (in mm) and their corresponding residual values (e–h), grouped by month. The symbol ◦
indicates values which lie more than 1.5 times the interquartile range from the first and third quartile.

6. Modeling the ST-LCM for the Study Variables

Modeling the spatio-temporal correlation among the variables under study by using
the ST-LCM, requires first checking the adequacy of such a model. In particular, the symme-
try assumption was checked by using the methodology proposed by [24] and mentioned in
Section 3.1. Therefore, after selecting three pairs of spatial points and the temporal lag equal
to 1 month, which is the lag corresponding to the largest empirical cross-correlations for
all variables combinations, the test statistic TS (6) was equal to 0.34 with a corresponding
p-value equal to 0.99. On the basis of this result, it is reasonable to consider the ST-LCM a
suitable model for the data set under study.

Through the fitting procedure developed by [33] and starting from the estimation of
the sample covariance matrices computed for a set of spatio-temporal lags and by using
the outputs from the joint diagonalization of these covariance matrices, the uncorrelated
basic components underlying the investigated phenomenon were identified. In the present
case study, according to the geometry of the spatio-temporal domain, 8 spatial lags and
15 temporal lags for a total of 120 spatio-temporal lags, were fixed to estimate the 4 direct
covariance functions and 6 cross-covariance functions, whose surfaces are shown in Figure 4.
Note that all the empirical direct covariance surfaces show a strong linear relationship for
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short and medium lags in space–time, while decaying otherwise; from the empirical cross-
covariance surfaces, it is evident the presence of a negative linear relationship between
Rn flux and Hm for short and medium lags as well as between Hm and ET0 for short lags,
while it is positive in the other cases, as can be reasonably justified from their natural
characteristics.
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Figure 4. Sample space–time direct covariance surfaces for the residuals of (a) Rn flux, (e) TM, (h) Hm

and (j) ET0 together with the cross-covariance surfaces of (b) Rn flux vs. TM, (c) Rn flux vs. Hm, (d)
Rn flux vs. ET0, (f) TM vs. Hm, (g) TM vs. ET0, (h) Hm and (i) Hm vs. ET0, computed on the basis of
the estimator in (4).

Successively, the 120 symmetric matrices of the sample direct and cross-covariances
(matrices with dimension 4× 4) have been jointly diagonalized (as previously mentioned,
the diagonalization was carried out using the R package JADE) and 120 diagonal matrices
plus the following orthogonal matrix Ψ were found out

Ψ =




0.92644863 −0.34811734 0.14315315 0.003798338
0.36544978 0.91846172 −0.12952119 −0.078094773
−0.08630179 0.17383656 0.98088864 0.013795947
0.02629437 0.07087482 −0.02426757 0.996843243


.

From the obtained 120 diagonal matrices, the sample basic uncorrelated components
ĉl , which correspond to the estimates of cl (l = 1, . . . , 4), were determined by extracting all
the diagonal entries across the 120 matrices. Through a graphical check of the ĉl surfaces
(the 3D plots shown in Figure 5), the following distinct scales of spatio-temporal variability,
i.e., the distance in space and time at which the surface decays, have been detected:

Figure 4. Sample space–time direct covariance surfaces for the residuals of (a) Rn flux, (e) TM, (h) Hm

and (j) ET0 together with the cross-covariance surfaces of (b) Rn flux vs. TM, (c) Rn flux vs. Hm,
(d) Rn flux vs. ET0, (f) TM vs. Hm, (g) TM vs. ET0, (h) Hm and (i) Hm vs. ET0, computed on the basis
of the estimator in (4).

Successively, the 120 symmetric matrices of the sample direct and cross-covariances
(matrices with dimension 4× 4) have been jointly diagonalized (as previously mentioned,
the diagonalization was carried out using the R package JADE) and 120 diagonal matrices
plus the following orthogonal matrix Ψ were found out

Ψ =




0.92644863 −0.34811734 0.14315315 0.003798338
0.36544978 0.91846172 −0.12952119 −0.078094773
−0.08630179 0.17383656 0.98088864 0.013795947
0.02629437 0.07087482 −0.02426757 0.996843243


.

From the obtained 120 diagonal matrices, the sample basic uncorrelated components
ĉl , which correspond to the estimates of cl (l = 1, . . . , 4), were determined by extracting all
the diagonal entries across the 120 matrices. Through a graphical check of the ĉl surfaces
(the 3D plots shown in Figure 5), the following distinct scales of spatio-temporal variability,
i.e., the distance in space and time at which the surface decays, have been detected:

• 20 km in space and 2 months in time (very small scale),
• 30 km in space and 3 months in time (small scale),
• 55 km in space and 7 months in time (medium scale),
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• 120 km in space and 12 months in time (large scale).
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Figure 5. Sample spatio-temporal covariance surfaces (on the left) and fitted models (on the right),
for the basic components at (a) very small, (b) small, (c) medium and (d) large scale of spatio-
temporal variability.

The different behaviors in space and time of the basic components have suggested to
retain all of them and proceed to construct the ST-LCM with four uncorrelated components,
as follows:

C(h) = B1 c1(h) + B2 c2(h) + B3 c3(h) + B4 c4(h), (11)

Figure 5. Sample spatio-temporal covariance surfaces (on the left) and fitted models (on the right),
for the basic components at (a) very small, (b) small, (c) medium and (d) large scale of spatio-
temporal variability.

The different behaviors in space and time of the basic components have suggested to
retain all of them and proceed to construct the ST-LCM with four uncorrelated components,
as follows:

C(h) = B1 c1(h) + B2 c2(h) + B3 c3(h) + B4 c4(h), (11)

where the coregionalization matrices Bl , l = 1, . . . , 4, have to be computed as indicated
in (8) and the basic components cl(h), l = 1, . . . , 4, have to be modelled after identifying
the most apt class of covariance models with respect to some features (full symmetry, non-
separability and type of non-separability) of the sample basic covariance surfaces. For this
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last aim, the statistical tests for symmetry and separability, based on the asymptotic joint
normality of the sample space–time covariance estimators [68], were carried out according
to the procedure in [48,49], for each basic component. In the same papers, the details on
the test statistics, denoted by TS1 and TS2, and the corresponding probability distribution
were given.

From these tests’ results, it was possible to conclude that at 5% significance level,
the null hypothesis of full symmetry cannot be rejected for all basic components and the null
hypothesis of separability can be rejected for all basic components. With regard to the type
of non-separability, the non-separability ratios, defined in [14], have been calculated for
the spatial and temporal lags for which correlation in space and time is stronger, and the
corresponding values have been summarized through the box and whisker plots shown
in Figure 6. These graphs are very useful tools to establish the type of non-separability:
in this case study the non-separability ratios grouped by spatial and temporal lags have
been always smaller than one, hence a uniform negative non-separability assumption is
reasonable for the four basic components.
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Figure 6. Box and whisker plots of sample non-separability ratios classified by spatial (on the left)
and temporal (on the right) lags, computed for the basic components at (a) very small (b) small,
(c) medium and (d) large scale of spatio-temporal variability. The symbol ∗ indicates values which lie
more than 1.5 times the interquartile range from the first and third quartile.

Figure 6. Box and whisker plots of sample non-separability ratios classified by spatial (on the left)
and temporal (on the right) lags, computed for the basic components at (a) very small (b) small,
(c) medium and (d) large scale of spatio-temporal variability. The symbol ∗ indicates values which lie
more than 1.5 times the interquartile range from the first and third quartile.
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From the obtained results, the class of fully symmetric and uniform negative non-
separable covariance models has been the most appropriate class of models for each cl . In
particular, the product–sum covariance function has been adopted, i.e.,

cl(hs, ht) = k1l Csl (hs)Ctl (ht) + k2l Csl (hs) + k3l Ctl (ht), l = 1, . . . , 4, (12)

with Csl = Exp(||hs||; al) the spatial exponential covariance model in Rd with practical
range al , Ctl = Exp(|ht|; bl) the temporal exponential covariance model in R, with practical
range bl , and parameters k1l , k2l and k3l , l = 1, . . . , 4, as reported in Table 1. This kind
of covariance model is widely used not only in environmental sciences but also in other
scientific fields, such as in Demography [69]. These estimates ensure the strict positive
definiteness of the basic models [70].

Table 1. Covariance model parameters estimated for basic components in (12).

l = 1 l = 2 l = 3 l = 4

k11 = 0.0047 k12 = 15.0756 k13 = 15.1367 k14 = 0.01
k21 = 0.0358 k22 = 10.6321 k23 = 30.703 k24 = 17.0644
k31 = 0.0081 k32 = 33.4605 k33 = 0.01 k34 = 2.9732
a1 = 20 km a2 = 30 km a3 = 55 km a4 = 120 km
b1 = 2 months b2 = 3 months b3 = 7 months b4 = 12 months

Finally, the matrices Bl , l = 1, . . . , 4, whose entries were computed by the expression
in (8), include the following:

B1 =




663.8366 86.7824 −121.4861 8.5663
86.7824 109.8702 −89.6217 9.3176
−121.4861 −89.6217 1214.1283 −21.6994

8.5663 9.3176 −21.6994 1.8972


,

B2 =




0.1100 0.0236 −0.0443 0.0029
0.0236 0.0380 0.0057 0.0037
−0.0443 0.0057 0.0601 −0.0005
0.0029 0.0037 −0.0005 0.0004


,

B3 =




0.2043 0.0537 −0.0640 0.0012
0.0537 0.0485 0.0156 0.0029
−0.0640 0.0156 0.0520 0.0020
0.0012 0.0029 0.0020 0.0040


,

B4 =




0.4020 −0.2880 −0.1704 −0.0200
−0.2880 0.5900 0.2110 0.0100
−0.1704 0.2110 0.4000 0.0116
−0.0200 0.0100 0.0116 0.0011


.

Note that the above coregionalization matrices are all positive definite, i.e., the correspond-
ing eigenvalues are non-negative, thus satisfying the admissibility condition for the fitted
ST-LCM.

In the next stage of the analysis, the adequacy of model (11) will be evaluated, and
then the same model will be used to produce spatio-temporal predictions of the Rn flux.

The detection of the uncorrelated components, the identification of an apt covariance
model for each component, as well as the computation of coregionalization matrices can be
realized in the R environment, recalling properly defined functions, which are available
upon request from the corresponding author.
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Adequacy of the Fitted Model

The suitability of the fitted ST-LCM was assessed using a three-fold procedure, i.e.,

(a) a comparative analysis with respect to the intrinsic coregionalization model, defined
from the ST-LCM by neglecting the presence of different scales of spatio-temporal
variability,

(b) the leave-one-out cross-validation technique and the computation of the linear correla-
tion coefficient among the available data for the Rn flux and their estimates,

(c) the jackknife prediction of Rn flux for the last four available months (January, February,
March and April 2022), whose data have not been used in the previous structural
analysis, and the comparison of the predicted values with respect to the true ones.

With regard to point (a), an intrinsic coregionalization model, namely an ST-LCM with
only one basic component, has been chosen as alternative contender model. In particular,
it has been assumed that the study data set did not present different scales of variability
in space and time, and only the basic component with the largest scale of spatio-temporal
variability (20 km in space and 12 months in time) was common to the investigated variables.
Hence, the following model has been considered:

C′(h) = B c(h), (13)

where the unique basic component has been modelled by the product–sum covariance func-
tion with a spatial exponential covariance model whose practical range is equal to 120 km,
a temporal exponential covariance model with practical range equal to 12 months, and the
parameter k1, k2 and k3 equal, respectively, to 0.010, 17.0644 and 2.9732. The following
coregionalization matrix

B =




2.8031 0.1150 −0.4013 0.0122
0.1150 1.0793 0.0464 0.0501
−0.4013 0.0464 3.2720 −0.0378
0.0122 0.0501 −0.0378 0.0160


,

has been estimated to complete the contender model in (13).
The fitting goodness of the two ST-LCM has been measured on the basis of the errors

between the sample covariance values and the theoretical ones, for the first 5 spatial lags
and 8 temporal lags, which represent the lags where the correlation is reasonably stronger.
In particular, the Root Average Error (RAE), defined by [71] as the square root of the ratio
between the sum of the squared errors and the sum of the squared sample values, as well
as the Relative Mean Absolute Error (RMAE), computed as the ratio between the sum of
the absolute errors and the sum of the absolute sample values, were produced and the
results are reported in Table 2.

Table 2. Statistics for models’ performance assessment.

ST-LCM with 4 Basic Models ST-LCM with 1 Basic Model
RAE RMAE RAE RMAE

Rn flux 0.156 0.152 0.839 1.018
Rn flux vs. TM 0.623 0.544 1.280 1.419
Rn flux vs. Hm 0.454 0.426 0.422 0.377
Rn flux vs. ET0 0.697 0.717 1.353 1.588
TM 0.304 0.223 0.641 0.637
TM vs. Hm 0.392 0.378 0.851 0.825
TM vs. ET0 0.495 0.497 0.154 0.130
Hm 0.857 0.886 1.572 2.219
Hm vs. ET0 0.916 0.898 2.249 2.377
ET0 0.969 0.748 2.110 2.302
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The error metrics’ values are almost always greater in the case of the model with
a unique basic component; these results have highlighted the adequacy of the ST-LCM
with four basic components, while model (13) has determined the worst fitting for the
study variables. In other words, the ST-LCM with four basic product–sum models has
better described the multivariate spatio–temporal correlation which characterized the
investigated phenomenon.

The second check of the suitability of the fitted model in (11), performed through
the leave-one-out cross-validation technique, required the computation of the cokriging
estimations for the Rn flux residuals. Spatio-temporal cokriging was implemented by alter-
natively using the ST-LCMs (11) and (13), and then calculating the correlation coefficients
between the Rn flux estimates and the recorded values. Thus, in the case of model (11) the
correlation coefficient was equal to 0.972 (significant at 1% level). On the other hand, for
the model (13) a correlation coefficient equal to 0.773 was found. Evidently, the adequacy
of the ST-LCM with four basic components fitted by the product–sum covariance models
was also confirmed by the cross-validation results.

Finally, the last procedure to assess the adequacy of the ST-LCM (11) was developed
in order to make jackknife predictions of the Rn flux levels in the last four months (January,
February, March and April 2022), where the available data have been used as a test set. The
predictions have been computed through, alternatively

• the spatio-temporal cokriging based on the ST-LCM in (11),
• the spatio-temporal cokriging based on the intrinsic coregionalization model in (13),
• the spatio-temporal kriging based on the product–sum covariance model of the Rn

flux residuals, already included in the ST-LCM (11).

Rn flux residuals were first obtained through the above interpolation techniques and,
successively, the Rn flux seasonal components were added to the forecasts.

On one hand, the final results were then compared on the basis of the correlation coeffi-
cient calculated among true values and predicted ones, and on the other hand, by the error
measures RAE and RMAE since they furnish a measure of the relative average discrepancy
between the true values of Rn flux and its predictions. In Table 3, all these statistics have
been summarized, from which it is evident the better performance of the cokriging based
on the ST-LCM (11) with respect to the other two proposed prediction techniques.

Table 3. Statistics of the performances of prediction methods.

Cokriging with Cokriging with Kriging
ST-LCM in (11) ST-LCM in (13)

Correlation coefficient 0.909 * 0.792 * 0.787 *
RAE 0.222 0.311 0.325
RMAE 0.124 0.246 0.145

* Correlation is significant at 1% level.

From the comparison with respect to the kriging results, it is clear that the direct and
cross-correlations of the primary and secondary variables contribute to enhance the weights
of the cokriging estimator and then to improve the predictions. In addition, the comparison
with respect to the use of the intrinsic coregionalization model has highlighted the positive
effect of retaining four scales of variability in the construction of the final ST-LCM and in
the production of better predictions. The suitability of the ST-LCM (11), confirmed by all
the procedures above discussed, has allowed the adoption of this model to predict Rn flux
values over the Veneto Region at unobserved time points, as detailed in the next section.

7. Rn Flux Prediction Maps

The fitted and validated model (11) has been considered to produce predictions of
the Rn flux from May 2022 (the month after the last one available in the data set) up to
December 2022, over the study area. For this aim, space–time cokriging has been applied,
by using the GSLib routine “COK2ST” [29] whose parameter file was implemented with
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all required information concerning, among others, the basic components’ models and the
neighbourhood of sample data to be used in the cokriging system for both the primary
variable (Rn flux) and the auxiliary variables (the three meteorological variables herein
analyzed). In this way, residuals of monthly Rn flux have been first predicted, then the
seasonal component, previously calculated point-by-point as described in Section 5.3, has
been added to predictions in order to obtain the Rn flux monthly forecasts. In Figure 7,
the contour maps of the predicted Rn flux values for May, August and November 2022 are
shown: such months selection is justified by the particular behavior of the Rn flux during
the year with the highest values during the summer time and the lowest ones during the
winter. Indeed, as highlighted in [72] and already discussed in Section 5.3, in general a
temperature increase favors the flux of radon from soil to atmosphere, therefore the Rn flux
tends to increase in the spring–summer season and to decrease in the winter, due to the
interaction with the meteorological conditions which characterize the study area during
the warmest and the coldest months of the year.

On the other hand, regarding the spatial profile, the prediction maps clearly show
those territories with a very high exposure to Rn exhalation from the ground (Figure 7).
In particular, the territories located in the north-eastern part of the Veneto Region, namely
in the Province of Treviso and Belluno, in the center part belonging to the Province of Padua
and in the eastern one of the Region over the Province of Verona. This portion of land,
which crosses the study area from northeast to southwest, is characterized by complex
geo-lithological conditions which may favor the exhalation of Rn gas from the soil, as was
pointed out in previous research [58,60,72] that focused on the investigation of Rn outdoor
and indoor concentrations over the Veneto Region.

Figure 7. Prediction maps of Rn flux (in KBqm−2 s−1) monthly averages for (a) May, (b) August and
(c) November 2022.

8. Rn Flux Risk Maps

Risk assessment maps have been associated to the prediction maps. Indicator kriging
has been applied to assess the probability that Rn flux predictions for August 2022 exceed,
alternatively,

(a) the 25th percentile (19.326 KBqm2s−1),
(b) the average value (22.75 KBqm2s−1),
(c) the median (23.994 KBqm2s−1)

of the distribution of the historical data measured in August from 2006 to 2021 at all
spatial points. The choice of this month has been justified by the need to investigate the risk
of radon exhalation when warmer climatic conditions in the study area favor the increase
of Rn flux. Thus, three threshold values z1 = 19.326, z2 = 22.75 and z3 = 23.994 have been
considered as the target thresholds in order to define the following indicator variables
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I1(s, t; z1) =





1 if Rn > z1,

0 otherwise,
I2(s, t; z2) =





1 if Rn > z2,

0 otherwise,
(14)

I3(s, t; z3) =





1 if Rn > z3,

0 otherwise,

where s ∈ D, t ∈ T, and z1, z2, z3 represent the thresholds above listed.
Successively, three spatio-temporal indicator kriging procedures were conducted to

obtain the risk maps (Figure 8), referred to August 2022, of the exceeding the chosen Rn
flux threshold levels over the study area [73]. Note that these probability maps have been
produced by considering only the variable Rn flux, taking into account that the kriging
performance in Table 3 was satisfactory. However, the multivariate indicator approach
might be also used in order to include the behavior of the meteorological conditions.

All maps have highlighted the presence of hazardous areas in the south-western
part of the Veneto Region over the Province of Verona, as well as in the north-eastern
sub-area inside the Province of Treviso, where there is a very high probability level that
even the largest fixed threshold (the median) is overcome. Apart from the map in Figure 8a
constructed for a moderate threshold value, it is important to highlight that the risk areas
emerging in the last two maps (red territories in Figure 8b,c) include several districts that
are among the most populated ones in the region. Therefore, any possible plans of urban
expansion will require an accurate evaluation taking into account the high risk of Rn gas
exhalation from the soil.

In conclusion, the obtained probability maps represent very useful tools for detecting
areas in need of strong controls, especially under the consideration that Rn flux measure-
ments could be a fine proxy of outdoor and indoor Rn concentrations which have been
proved to be highly dangerous to human health.

Figure 8. Risk maps of the probability that Rn flux predicted in August 2022 exceeds (a) the 25th
percentile (z1 = 19.326 KBqm2s−1), (b) the mean (z2 = 22.75 KBqm2s−1), (c) the median value
(z3 = 23.994 KBqm2s−1) of the corresponding historical measurements.

9. Summary

In the present paper, a critical review of the tools of the multivariate geostatistics for
spatio-temporal modeling and predictions was provided. In addition, the ST-LCM fitting
procedure, based on the joint diagonalization of the sample covariance matrices computed
at different lags, was applied to describe the spatio-temporal correlation among Rn flux
and some meteo-climatic monthly conditions (mean air temperature, minimum humidity
and evapotranspiration) measured over the Veneto Region from 2006 to 2022. After model
validation, a comparative analysis of the prediction performances obtained from the use
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of cokriging based on an alternative multivariate model and of kriging based only on the
product–sum fitted exclusively for the Rn flux, confirmed the superiority of the ST-LCM.
Thus, the proposed analysis pointed out that the efforts required for the identification of
the multivariate spatio-temporal correlation model are crucial for the final results and are
rewarded with reliable estimations.

In conclusion, the results obtained in this paper can be considered particularly impor-
tant since they might contribute to an accurate assessment of indoor radon levels, as well as
to the identification of radon priority areas. These might then be used by local or regional
authorities for land-use planning and urban development. In the future, other multivariate
approaches can be used for comparative purposes [74].
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