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Abstract: For multi-class classification problems, a new kernel-free nonlinear classifier is presented,
called the hard quadratic surface least squares regression (HQSLSR). It combines the benefits of the
least squares loss function and quadratic kernel-free trick. The optimization problem of HQSLSR is
convex and unconstrained, making it easy to solve. Further, to improve the generalization ability of
HQSLSR, a softened version (SQSLSR) is proposed by introducing an ε-dragging technique, which
can enlarge the between-class distance. The optimization problem of SQSLSR is solved by designing
an alteration iteration algorithm. The convergence, interpretability and computational complexity
of our methods are addressed in a theoretical analysis. The visualization results on five artificial
datasets demonstrate that the obtained regression function in each category has geometric diversity
and the advantage of the ε-dragging technique. Furthermore, experimental results on benchmark
datasets show that our methods perform comparably to some state-of-the-art classifiers.

Keywords: multi-class classification; least squares regression; quadratic surface; kernel-free trick;
ε-dragging technique

1. Introduction

Consider a training set:

T1= {(xi, yi)}n
i=1, (1)

comprising n samples, each represented by a d-dimensional vector xi ∈ Rd, and a corre-
sponding label yi ∈ {1, 2, · · · , K}, indicating the class of sample in K classes.

For multi-class classification, one popular strategy is to encode each label using one-
hot encoding. Consequently, the original training set: T1 (1) is transformed into a new
training set

T2 = {(xi, yi)}
n
i=1, (2)

where each sample corresponds to a label vector yi = one-hot(yi) (Definition 3). Our
goal is to find K functions fk(x), k = 1, 2, . . . , K that satisfy f (xi) ≈ yi, where f (xi) =
( f1(xi), f2(xi), · · · , fK(xi))

T for i = 1, 2, · · · , n. Once these K functions are determined, a
new sample x can be classified using the decision rule

g(x) = arg max
k=1,2,···K

fk(x). (3)

In recent years, numerous studies have focused on the multi-class classification prob-
lem. In 1994, Imran Naseem et al. [1,2] proposed the original least square regression
classifier (LSR) based on the label vectors. This method assigns input samples to the class
represented by the label vector closest to the predicted vector. To improve the accuracy of
LSR, Xian et al. [3] introduced the ε-dragging technique to expand the interval between
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different classes, creating a discriminative LSR (DLSR). Zhang et al. [4] proposed a retar-
geted LSR (ReLSR) which learns soft labels with large margin constraints directly from
training data. Wen et al. [5] proposed an inter-class sparsity DLSR (ICS_DLSR) by intro-
ducing inter-class sparsity constraints. Wang et al. [6] proposed a relaxed group low-rank
regression model (RGLRR) that incorporates sparsity consistency and graph embedding
into the group low-rank regression model. Recently, scholars have proposed several meth-
ods to improve the classification accuracy of DLSR, including the margin scalable DLSR
(MSDLSR) [7], the robust DLSR (RODLSR) [8], regularized label relaxation linear regression
(RLRLR) [9], low-rank DLSR (LRDLSR) [10], and discriminative least squares regression
based on within-class scatter minimization (WSCDLSR) [11]. To improve the classification
accuracy of ReLSR, Zhang et al. [12] introduced the intra-class compactness graph into
ReLSR, proposing the discriminative marginalized LSR (DMLSR). Additionally, LSR has
been extended for feature selection by Zhang et al. [13] and Zhao et al. [14]. All of the
above methods are linear classification models, which have less computation time but have
difficulty handling nonlinearly separable data. The kernel ridge regression classifier (KRR)
was proposed to address the defects previously mentioned, using the kernel trick [15,16].
However, it is challenging to select the appropriate kernel function and kernel parameter.

In 2008, the quadratic surface SVM (QSSVM) [17] was proposed to address the issue
of excessive kernel parameter selection in SVM [18], utilizing a kernel-free technique.
Later, Luo et al. [19] introduced the soft margin quadratic SVM (SQSSVC). Subsequently,
further studies have been conducted, including classification problems [20–23], regression
problems [24], clustering problems [25], and applications [26–29].

In this paper, we propose two nonlinear classification models, the hard quadratic sur-
face least squares regression (HQSLSR) and its softened version, the soft quadratic surface
least squares regression (SQSLSR). The main contributions of this work are summarized
as follows:

(1) We propose a novel nonlinear model (HQSLSR), by utilizing a kernel-free trick,
which avoids the difficulty of selecting the appropriate kernel functions and corresponding
parameters and maintains good interpretability. Moreover, a softened version (SQSLSR) is
developed, which employs the ε-dragging technique to enlarge inter-class distances so that
its discriminant ability is improved further.

(2) The proposed HQSLSR yields a convex optimization problem without constraints,
which can be directly solved. An alteration iteration algorithm is designed for SQLSR,
which involves only the convex optimization problem and leads to quick convergence.
Additionally, the computational complexity and interpretability of our methods are also
discussed.

(3) In numerical experiments, the geometric intuition and advantage of the ε-dragging
technique for our methods on artificial datasets are demonstrated. The experimental results
over benchmark datasets exhibit that our methods achieve comparable accuracy to other
nonlinear classifiers while requiring less computational time cost.

This paper is organized as follows. Section 2 briefly describes related work. Section 3
presents the proposed HQSLSR and SQSLSR models and their respective algorithms.
Section 4 discusses relevant characteristics. Section 5 presents experimental results, and
finally, we conclude in Section 6.

2. Related Works

In this section, following the presentation of notations, we provide a concise intro-
duction to two fundamental approaches: least squares regression classifiers (LSR) [1] and
discriminative least squares regression classifiers (DLSR) [3].

2.1. Notations

We begin by presenting the notations employed in this paper. Lowercase boldface
and uppercase boldface fonts represent vectors and matrices, respectively. The vector
(1, 1, · · · , 1)T ∈ Rn is represented by 1n. Define the zero vector and null matrix as 0 and O,
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respectively. For a matrix W = (wij)d×K, its i-th column is denoted as wi. In addition, we
give the following three definitions.

Definition 1. For any real symmetric matrix A = (aij)d×d ∈ Sd, its half-vectorization operator
can be defined as follows:

hvec(A) = (a11, a12, · · · , a1d, a22, · · · , a2d, · · · , add)
T ∈ R

d2+d
2 .

Definition 2. For any vector x = (x1, x2, · · · , xd)
T, its quadratic vector with cross terms can be

defined as follows:

lvec(x) = (
1
2

x2
1, x1x2, · · · , x1xd,

1
2

x2
2, x2x3, · · · ,

1
2

x2
d)

T ∈ R
d2+d

2 .

Definition 3. For any given positive integer k ∈ {1, 2, · · · , K}, the one-hot encoding operator is
defined as follows:

one-hot(k) = ek,

where ek is the K-dimensional unit vector, with the k-th element 1.

2.2. Least Squares Regression Classifier

Given a training set T2 (2), the goal of LSR is to find the following K linear functions:

fk(x) = wT
k x + ck, k = 1, 2, · · · , K, (4)

where wk ∈ Rd, ck ∈ R, k = 1, 2, · · · , K.
To obtain the K linear functions (4), the following optimization problem is formu-

lated as

min
W ,c
‖XTW + 1ncT − Y‖2

F + λ‖W‖2
F, (5)

where the sample matrix X = (x1, x2, · · · , xn) ∈ Rd×n is formed by all the samples in the
training set T2 (2), the label matrix Y = (y1, y2, · · · , yn)

T ∈ Rn×K is formed by the label
vectors in T2 (2), and W =(w1, w2, · · · , wK) ∈ Rd×K, c =(c1, c2, · · · cK)

T∈ RK are formed
by the normal vectors and biases of the K linear functions (4), respectively.

Clearly, the optimization problem (5) is a convex optimization problem, and its solution
has the following form:

W =(XHXT+λI)−1XHY , c =
1
n

(
YT1n−WTX1n

)
,

where H = I − 1
n 1n1T

n . Thus, once the solutions W , c of the optimization problem (5) is
obtained, we can find the K linear functions.

For a new sample x ∈ Rd, its class is obtained by the following decision function:

g(x) = arg max
k=1,2,···K

wT
k x + ck. (6)

2.3. Discriminative Least Squares Regression Classifier

Xiang et al. [3] proposed the discriminative least squares regression classifier (DLSR)
to improve the classification performance of LSR.

For the training set T2 (2), we define the constant matrix B = (Bik)n×K as follows:

Bik =

{
+1, if yik = 1,
−1, otherwise,

(7)
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where yik represents the k-th component of the label vector yi of the i-th sample, the
optimization problem of DLSR is formulated as follows:

min
W ,c,E

‖XTW + 1ncT − Y − B� E‖2
F + λ‖W‖2

F,

s.t. E ≥ O,
(8)

where � is the Hadamard product of matrices. E = (εik)n×K is an ε-dragging matrix to be
found, and each of its non-negative elements εik is called the ε-dragging factor.

It is evident that DLSR takes into account the inter-class distance based on LSR.
Specifically, DLSR increases inter-class distances by introducing the ε-dragging technique,
causing different classes of regression targets to move in opposite directions.

3. Kernel-Free Nonlinear Least Squares Regression Classifiers

For multi-class classification problems with the training set T2 (2), we propose the
hard quadratic surface least squares regression classifier (HQSLSR) and its softened version
(SQSLSR). The relevant properties of our methods are also analyzed theoretically.

3.1. Hard Quadratic Surface Least Squares Regression Classifier

For the training set T2 (2), we aim to find K quadratic functions as follows:

fk(x) =
1
2

xT Akx + bT
k x + ck, k = 1, 2, · · · , K, (9)

where Ak ∈ Sd, bk ∈ Rd, ck ∈ R. If these K quadratic functions are found, the label of a new
sample x is determined by the following decision rule:

g(x) = arg max
k=1,2,···K

1
2

xT Akx + bT
k x + ck. (10)

In order to find the K quadratic functions (9), we construct the following optimization
problem:

min
Ak ,bk ,ck

n

∑
i=1

K

∑
k=1

(
1
2

xT
i Akxi + bT

k xi + ck − yik)
2
+ λ

K

∑
k=1

(‖hvec(Ak)‖2
2 + ‖bk‖2

2), (11)

where λ is the regularization parameter, hvec(Ak) is a vector by Definition 1, which is
constituted by the upper triangular elements of the symmetry matrix Ak, and yik indicates
the k-th component of the label vector yi of the i-th sample. For the objective function (11),
its first term minimizes the sum of the squares of the errors between the real and predicted
label; the second term is a regularization term about the model coefficients, which aims to
enhance the generalization ability of our model. It is worth noting that the upper triangular
elements of the matrix Ak instead of all elements are involved in the regularization term by
using the symmetry of the matrix.

For convenience, by using the symmetry of the matrix Ak and following Definitions 1 to 2,
the first term of the objective function in the optimization problem (11) is simplified
as follows:

n

∑
i=1

K

∑
k=1

(
1
2

xT
i Akxi + bT

k xi + ck − yik)
2

=
n

∑
i=1

K

∑
k=1

(hvec(Ak)
Tlvec(xi) + bT

k xi + ck − yik)
2 (12)

=
n

∑
i=1

K

∑
k=1

(wT
k zi + ck − yik)

2,
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where

wk = (hvec(Ak)
T, bT

k )
T, k = 1, · · · , K, (13)

zi = (lvec(xi)
T, xT

i )
T, i = 1, · · · , n. (14)

By Equation (13), minimizing ∑K
k=1(‖hvec(Ak)‖2

2 + ‖bk‖2
2) is equivalent to minimizing

∑K
k=1 ‖wk‖2

2. Furthermore, combining Equation (12), the optimization problem (11) is
further formulated as

min
W ,c

J1(W , c) =‖ ZTW + 1ncT − Y ‖2
F +λ ‖W ‖2

F, (15)

where Z = (z1, z2, · · · , zn) ∈ R d2+3d
2 ×n, W = (w1, w2, · · · , wK) ∈ R d2+3d

2 ×K,
c=(c1, c2, · · · , cK)

T ∈ RK.
Next, the solution of the optimization problem (15) is given by the following theorem.

Theorem 1. The optimal solution of the optimization problem (15) is as follows

W = (ZHZT + λI)−1ZHY , (16)

c =
1
n

(
YT1n −WTZ1n

)
, (17)

where H = I − 1
n 1n1T

n .

Proof. Obviously, Formula (15) is a convex optimization problem. According to the opti-
mality condition of the unconstrained optimization problem, we have

∇c J1(W , c) = WTZ1n+c1T
n1n−YT1n = 0, (18)

∇W J1(W , c)= ZZTW+Z1ncT−ZY+λW = 0. (19)

According to Equation (18), we obtain

c=
1
n

(
YT1n−WTZ1n

)
. (20)

By substituting Equation (20) into Equation (19), we have

W = (ZHZT + λI)−1ZHY , (21)

where H = I − 1
n 1n1T

n .

After solving the optimization problem (15) from Theorem 1, wk and ck are obtained
by the k-th column of matrix W and the k-th component of vector c, respectively. Then, Ak
and bk can be obtained by Equation (13). Therefore, the decision function in Equation (10)
can be established.

3.2. Soft Quadratic Surface Least Squares Regression Classifier

In this subsection, we propose the SQSLSR by introducing the ε-dragging factor into
the HQSLSR. For the training set T2 (2), the following optimization problem is constructed:

min
n

∑
i=1

K

∑
k=1

(1
2

xT
i Akxi +bT

k xi+ck−(yik+Bikεik)
)2
+ λ

K

∑
k=1

(‖hvec(Ak)‖2
2 + ‖bk‖2

2),

s.t. εik ≥ 0, i = 1, 2, · · · , n, k = 1, 2, · · · , K,

(22)

where Ak, bk, ck, εik, i = 1, 2, · · · , n, k = 1, 2, · · · , K are variables to be found, respectively.
εik ≥ 0 is the ε-dragging factor, and the constant Bik is defined in detail in Equation (7). The
distance between the label vectors of different classes is expanded by using the ε-dragging
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factor. Therefore, compared with the HQSLSR model, the SQSLSR model distinguishes
samples from different classes more easily.

For simplicity, by defining the ε-dragging matrix E as being similar to the transfor-
mation of the optimization problem (11), the optimization problem (22) is equivalently
expressed as follows:

min
W ,c,E

J2(W , c,E) =‖ ZTW + 1ncT − (Y + B� E) ‖2
F +λ ‖W ‖2

F,

s.t.E ≥ O,
(23)

where E ≥ O means that the elements of the matrix E are non-negative. To solve the
optimization problem (23), we use the alternating iteration method.

First, update W and c. By fixing the dragging matrix E and letting Ỹ = Y + B� E ,
the optimization problem (23) is simplified as follows:

min
W ,c
‖ ZTW + 1ncT − Ỹ ‖2

F +λ ‖W ‖2
F . (24)

Similar to the solution of the optimization problem (15), the iterative equation for the
optimization problem (24) with respect to W and c is as follows:

W = (ZHZT + λI)−1ZHỸ , (25)

c =
1
n

(
Ỹ

T
1n −WTZ1n

)
, (26)

where H = I − 1
n 1n1T

n .
Then, update the draggings matrix E . By fixing W , c and letting the residual matrix

R = ZTW + 1ncT − Y , the optimization problem (23) is transformed into

min
E
‖ R− B� E ‖2

F,

s.t. E ≥ O.
(27)

The solution to the optimization problem (27) can be obtained by the following equation:

E = max(B� R, O). (28)

Specifically, according to the definition of the Frobenius norm, solving the optimization
problem (27) is equivalent to solving the following n×K subproblems:

min
εik

(Rik − Bikεik)
2,

s.t. εik ≥ 0, i = 1, 2, . . . , n, k = 1, 2, . . . , K,
(29)

where Rik is the element of the i-th row and k-th column of the matrix R. Since B2
ik = 1, we

have (Rik − Bikεik)
2 = (BikRik − εik)

2. Then the solution to the optimization problem (29) is
εik = max(BikRik, 0). Thus, Equation (28) is the solution to the optimization problem (27).

Through the above solution process, we briefly summarize the algorithm of the
optimization problem (23) as follows:

After obtaining Ak, bk, ck, k = 1, 2, . . . , K by Algorithm 1, the corresponding decision
function (10) can also be constructed.
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Algorithm 1 SQSLSR

Input: Training set T2 = {(xi, yi) | xi ∈ Rd, yi ∈ RK}, maximum iteration number T = 20,
parameter λ

1: Define the matrix E , W , W0 and vector c, c0
2: Initialize E = O, W0 = O, c0 = 0
3: Transform zi i = 1, 2, . . . , n, by (14)
4: Construct the matrix Z = (z1, z2, · · · , zn) and Y = (y1, y2, · · · , yn)

T

5: Calculate H = I − 1
n 1n1T

n and V = (ZHZT + λI)−1ZH
6: for t = 1 : T do
7: Ỹ = Y + B� E
8: Calculate W = VỸ
9: Calculate c by (26)

10: Calculate E by (28)
11: if ‖W −W0 ‖2

F + ‖ c− c0 ‖2
2≤ 10−3 then

12: stop
13: end if
14: W0 = W , c0 = c
15: end for
16: Calculate Ak, bk and ck by the inverse operation of wk = (hvec(Ak)

T, bT
k )

T, where k =
1, 2, · · · , K, W0 = (w1, w2, · · · , wK), and c0 = (c1, c2, · · · , cK)

T

Output: Ak, bk, ck, k = 1, 2, . . . , K.

4. Discussion

In this section, we first discuss the convergence of Algorithm 1. Then, we discuss the
computational complexities of HQSLSR and SQSLSR, respectively. Lastly, we analyze their
interpretability.

4.1. Convergence Analysis

Since Algorithm 1 adopts an iterative method to solve the optimization problem (23),
its convergence is discussed in this subsection.

Theorem 2. If the sequence of iterations {W t, ct,E t} can be obtained by Algorithm 1, then the
objective function J2(W t, ct,E t) of the optimization problem (23) is monotonically decreasing.

Proof. First, let t be the number of current iterations. Then, we define the value of the
objective function of the optimization problem (23) as J2(W t, ct,E t).

By the strong convexity of the optimization problem, given E t, W t+1 and ct+1 can be
obtained from Equations (25) and (26), respectively, and have the following inequality:

J2(W t+1, ct+1,E t) ≤ J2(W t, ct,E t). (30)

Then, fixing W t+1 and ct+1, E t+1 can be obtained from Equation (28), and with the
following inequality:

J2(W t+1, ct+1,E t+1) ≤ J2(W t+1, ct+1,E t). (31)

Combining the inequalities (30) and (31), we have the following inequality:

J2(W t+1, ct+1,E t+1) ≤ J2(W t, ct,E t), (32)

Thus, the proof is complete.

4.2. Computational Complexity

In this subsection, we provide a detailed analysis of the computational complexities
of our methods. Here, n, d, and K represent the number of samples, features, and classes,
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respectively. From Definition 1, Definition 2, and Equation (12), it can be observed that
our methods aim to transform the feature dimension of the sample from a d-dimensional
space to an l = d2+3d

2 -dimensional space. For simplicity, we ignore the computational cost
of addition and subtraction.

The HQSLSR classifier is solved by Equations (16) and (17), which involve matrix
inversion and multiplication. Therefore, the computational complexity of the HQSLSR
classifier is about O(l3 + nl2 + (n2 + nK)l).

According to Algorithm 1, we briefly analyze the computational complexity of SQSLSR.
The computational complexity of SQSLSR is mainly concentrated on steps 5, 8, 9, and 10 of
Algorithm 1. Step 5 involves matrix inversion and multiplication, and its computational
complexity is O(l3 + nl2 + n2l). Steps 8, 9, and 10 involve only matrix multiplication, so the
computational complexity of each iteration is about O(nKl + nK). In summary, the total
computational complexity of SQSLSR is about O(l3 + nl2 + n2l + t(nKl + nK)), where t is
the number of iterations.

4.3. Interpretability

Although HQSLSR and SQSLSR are kernel-free, they can achieve the goal of nonlinear
separation and retain interpretability. Therefore, we further elaborate on their interpretability.

Note that the decision functions of our methods are constructed by the separation
quadratic function

h(x) =
1
2

xT Ax + bTx + c =
1
2

d

∑
i=1

d

∑
j=1

aijxixj +
d

∑
i=1

bixi + c, (33)

where xi is the i-th feature of the vector x ∈ Rd, aij is the element of the i-th row and j-th
column of the symmetry matrix A ∈ Sd, and bi is the i-th component of the vector b ∈ Rd,
c ∈ R. From the quadratic function (33), we can see that the values of bi, aii(i = j), and
aij (i 6= j) determine the contributions of the first order term and the second order term
of the i-th feature xi, and the cross term of xi and xj, respectively. Roughly speaking, let
θi,h(x) = |aii|+ |aij|+ |bi| (j = 1, 2, · · · , d, j 6= i), the higher the value of θi,h(x), the more the
i-th feature xi contributes to the quadratic function (33).

For K quadratic functions fk(x), k = 1, · · · , K as shown in Equation (10), let θi,k = θi, fk(x)
represents the contribution of the i-th feature to the k-th quadratic function fk(x),

k = 1, · · · , K. Let θi =
K
∑

k=1
θi,k, i = 1, · · · d. The larger θi is, the more important the

i-th feature is to the decision function (10). In particular, when θi = 0, the i-th feature of x
does not work. Therefore, our methods have a certain interpretability.

5. Numerical Experiments

In this section, we first implement our SQSLSR and HQSLSR on five artificial datasets
to show their geometric meaning and compare them with LSR and DLSR. We also carry
out our SQSLSR and HQSLSR on 16 UCI benchmark datasets, and compare their accuracy
with LSR, DLSR, LRDLSR, WCSDLSR, linear discriminant analysis(LDA), QSSVM, reg-
LSDWPTSVM [22], SVM, and KRR. For convenience, SVMs with a linear kernel and
rbf kernel are denoted by SVM-L and SVM-R, respectively. KRRs with an RBF kernel
and polynomial kernel are denoted as KRR-R and KRR-P, respectively. Remarkably, on
multi-class classification datasets, the SVM and QSSVM methods use the one-against-rest
strategy [30]. We adopt the five-fold cross-validation to select the parameters in these
methods. The regularization parameters of SQSLSR and other methods are selected from the
set {2−8, 2−7, · · · , 28}. The parameters of the RBF kernel and polynomial kernel are selected
from the set {2−6, 2−4, · · · , 26}. All numerical experiments are executed using MATLAB
R2020(b) on a computer with a 2.80 GHz (I7-1165G7) CPU and 16 G available memory.
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5.1. Experimental Results on Artificial Datasets

We construct five artificial datasets to demonstrate the geometric meaning of our
methods and the advantage of the ε-dragging technique. Datasets I-IV are binary classi-
fications, where each dataset contains 300 points, and each class has 150 points. Dataset
V has three classifications, and each class has 20 points. As the decision functions of our
proposed HQSLSR and SQSLSR methods, as well as the comparison methods LSR and
DLSR, are all composed of K regression functions, we present K pairs of regression curves
fk(x) = 0 and 1, k = 1, 2 to display their classification results. Here, fk(x) = 1 is the
regression curve of the k-th class, fk(x) = 0 is the regression curve of samples other than
class k, k = 1, 2.

The first-class samples, f1(x) = 1 and f1(x) = 0 are indicated by the blue “+”, blue
line and blue dotted line, respectively. The second-class samples, f2(x) = 1 and f2(x) = 0
are represented by the red “◦” , red line and red dotted line, respectively. The accuracy of
each method on the artificial dataset is shown in the top right corner.

The artificial dataset I is linearly separable. Figure 1 shows the results of the four
methods, including LSR, DLSR, HQSLSR, and SQSLSR. It can be observed that f1(x)=1
and f2(x)=0 coincide; f2(x)=1 and f1(x)=0 coincide too. The samples of each class come
close to the corresponding regression curve, and stay away from the regression curves of
the other classes. In addition, the four methods can correctly classify the samples on this
linear separable artificial dataset I.
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Figure 1. Classification results of the artificial dataset I.

As shown in Figure 2, the artificial dataset II includes some intersecting samples.
Our methods outperform LSR and DLSR in terms of classification accuracy, because our
HQSLSR and SQSLSR can obtain two pairs of regression curves, while LSR and DLSR can
only obtain two pairs of straight regression lines. It is worth noting that the accuracy of
SQSLSR is slightly higher than that of HQSLSR, because the SQSLSR uses the ε-dragging
technique to relax the binary labels into continuous real values, which enlarges the distances
between different classes and makes the discrimination better.

Figure 3 shows the visualization results of the artificial dataset III, which is sampled
from two parabolas. Note that our HQSLSR and SQSLSR can obtain parabolic-type regres-
sion curves while LSR and DLSR can only obtain straight regression lines, so our methods
are more suitable for this nonlinearly separable dataset.
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Figure 2. Classification results of the artificial dataset II.
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Figure 3. Classification results of the artificial dataset III.

The results of the artificial dataset IV are shown in Figure 4. The nonlinearly separable
dataset IV is obtained by sampling from two concentric circles. Obviously, our HQSLSR and
SQSLSR have higher accuracy for this classification task, as shown in Figure 4. However,
from the first two subfigures, it is not difficult to find that samples of these two classes are
far away from their respective regression curves, resulting in poor results of LSR and DLSR.
Note that f1(x) = 0 and f2(x) = 1 coincide and lie at the center of the concentric circles,
which are not easy to observe. Thus we only display f1(x) = 0.1 and f2(x) = 0.9, as shown
in last two subfigures.
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Figure 4. Classification results of the artificial dataset IV.

We conducted experiments on the artificial dataset V to investigate the influence of
the ε-dragging technique. The dataset consists of 60 samples from three classes, with
20 samples from each class arranged in three groups: left, middle, and right. By solving the
optimization problems of HQSLSR (15) and SQSLSR (23) on dataset V, we obtained the corre-
sponding regression labels f̃ (x) = ( f̃1(x), f̃2(x), f̃3(x))T and f (x) = ( f1(x), f2(x), f3(x))T,
where f̃k(x), fk(x), k = 1, 2, 3 represent the three regression functions solved by HQSLSR
and SQSLSR, respectively. The difference caused by the ε-dragging technique is represented
by D = ( f (x)− f̃ (x)), which includes three components related to the corresponding three
classes. Figure 5 illustrates the relationship between the index of training samples and the
three components of the difference D.
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Figure 5. Training samples and the differences caused by ε-dragging technique: (a) sixty training
samples in three classes; (b) the first component of the difference D; (c) the second component of the
difference D; and (d) the third component of the difference D.
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According to the results presented in Figure 5b, the first component of the difference
matrix D exhibits positive values for the first 20 samples, while negative values are observed
for the last 40 samples. This observation suggests that the introduction of the ε-dragging
technique has effectively increased the gap in the first component of the difference matrix
D between the first class and the remaining classes. Additionally, Figure 5c,d demonstrate
that the second and third components of the difference matrix D highlight the second and
third classes of samples, respectively. Therefore, the ε-dragging technique has successfully
enlarged the differences in regression labels among samples from different classes, thereby
enhancing the robustness of the model.

Based on the experimental results presented above, it can be concluded that the
regression curve fk(x) = 1, k = 1, 2, · · · , K should be close to the samples from the k-th
class while being distant from the samples of other classes. The K pairs of regression
curves can be modeled as arbitrary quadratic surfaces in the plane. This approach enables
HQSLSR and its softened version (SQSLSR) to achieve higher accuracy. SQSLSR utilizes
the ε-dragging technique to relax the labels, which forces the regression labels of different
classes to move in opposite directions, thereby increasing the distances between classes.
Consequently, SQSLSR exhibits better discriminative ability than HQSLSR.

5.2. Experimental Results on Benchmark Datasets

In order to validate the performances of our HQSLSR and SQSLSR, we compare
them with linear methods LSR, DLSR, LDA, SVM-L, LRDLSR, WCSDLSR, and nonlin-
ear methods QSSVM, SVM-R, KRR-R, KRR-P, and reg-LSDWPTSVM. These methods
are implemented on 16 UCI benchmark datasets. Numerical results are obtained by
repeating five-fold cross-validation five times, including average accuracy (Acc), stan-
dard deviation (Std), and computing time (Time). The best results are highlighted in
boldface. Lastly, we also calculated the sensitivity and specificity of each method on six
datasets to further evaluate their classification performances. Table 1 summarizes the
basic information about the 16 UCI benchmark datasets, which are taken from the website
https://archive.ics.uci.edu/ml/index.php (the above datasets accessed on 18 August 2021).

Table 1. Basic information of benchmark datasets.

Datasets Samples Attributes Class

Haberman 306 3 2
Appendicitis 106 7 2
Monk-2 432 6 2
Breast 277 9 2
Seeds 210 7 3
Iris 150 4 3
Contraceptive 1473 9 3
Balance 625 4 3
Vehicle 846 18 4
X8D5K 1000 8 5
Vowel 990 13 6
Ecoli 366 7 6
Segmentationation 2310 19 7
Zoo 101 16 7
Yeast 1484 8 10
Led7digit 500 7 11

In Table 2, we show the experimental results of the above 13 methods on the 16 bench-
mark datasets. It is obvious from Table 2 that our HQSLSR and SQSLSR outperform linear
methods LSR, LDA, DLSR, LRDLSR, WCSDLSR, and SVM-L in terms of classification
accuracy on almost all datasets. Moreover, the accuracy of our HQSLSR and SQSLSR are
similar to other nonlinear classification methods: SVM-R, SVM-P, KRR-R, KRR-P, QSSVM,
and reg-LSDWPTSVM. Note that our SQSLSR has the highest classification accuracy on

https://archive.ics.uci.edu/ml/index.php
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most datasets. In addition, in terms of computation time, our methods not only have less
time cost than the compared nonlinear methods, but also have a narrow gap with the fastest
linear method LSR. In general, our HQSLSR and SQSLSR can achieve higher accuracy
without increasing the time cost too much, and the generalization ability of SQSLSR in
particular is better.

To further evaluate the classification performances of these 13 methods, we show the
specificity and sensitivity of the 13 methods on the datasets in Table 3. It can be seen from
Table 3, our HQSLSR and SQSLSR perform well in terms of specificity and sensitivity on
most of the benchmark datasets.

5.3. Convergence Analysis

In this subsection, we experimentally validate the convergence of Algorithm 1. As
shown in Figure 6, the value of the objective function monotonically decreases with the in-
creasing number of iterations in six benchmark datasets. Moreover, our SQSLSR converges
within five steps on most of the datasets, which indicates Algorithm 1 converges quickly.
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Figure 6. Convergence of SQSLSR.
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Table 2. Classification results on the 16 benchmark datasets.

LSR DLSR SVM-L SVM-R QSSVM LDA KRR-R KRR-P LRDLSR WCSDLSR reg-LSDWPTSVM HQSLSR SQSLSR

Haberman Acc±Std 0.7049± 0.0345 0.7377± 0.0000 0.7091± 0.0383 0.7223± 0.0345 0.7158± 0.0390 0.6699± 0.0490 0.7148± 0.0206 0.7411± 0.0304 0.7129± 0.0135 0.7418± 0.0220 0.7158± 0, 0302 0.7443± 0.0245 0.7639± 0.00800.7639± 0.00800.7639± 0.0080
Time (s) 0.0004 0.00300.00300.0030 1.0636 1.1224 0.9023 0.0016 0.2093 0.2407 0.0685 0.0086 0.0369 0.0044 0.0048

Monk-2 Acc±Std 0.7763± 0.0131 0.7879± 0.0135 0.8057± 0.0316 0.9954± 0.01480.9954± 0.01480.9954± 0.0148 0.9839± 0.0213 0.7901± 0.0104 0.9424± 0.0026 0.9554± 0.0001 0.7970± 0.0396 0.7546± 0.0266 0.9930± 0.0104 0.9767± 0.0001 0.9770± 0.0001
Time (s) 0.00080.00080.0008 0.0030 1.4425 2.4677 1.8716 0.0716 0.4212 0.4564 0.0390 0.0184 0.7327 0.0082 0.0102

Appendicitis Acc±Std 0.8127± 0.0000 0.8286± 0.0380 0.8121± 0.0638 0.8965± 0.0125 0.8485± 0.0825 0.6892± 0.0534 0.8000± 0.0222 0.8667± 0.0356 0.8200± 0.0213 0.8108± 0.0493 0.8675± 0409 0.9048± 0.0052 0.9143± 0.02330.9143± 0.02330.9143± 0.0233
Time (s) 0.00100.00100.0010 0.0032 0.1221 0.1271 0.1310 0.0724 0.0380 0.0119 0.0405 0.0256 1.1540 0.0044 0.0044

Breast Acc±Std 0.7110± 0.0139 0.7201± 0.0021 0.7255± 0.0410 0.7440± 0.0432 0.6571± 0.0573 0.6785± 0.0418 0.7645± 0.0230 0.7174± 0.0244 0.7390± 0.0532 0.6819± 0.0632 0.0.6706± 0577 0.7646± 0.0182 0.7681± 0.01770.7681± 0.01770.7681± 0.0177
Time (s) 0.00090.00090.0009 0.0032 1.0349 0.8887 0.9383 0.0048 0.1807 0.1891 0.0389 0.0077 6.7008 0.0080 0.0086

Seeds Acc±Std 0.9429± 0.0117 0.9619± 0.0190 0.8667± 0.0614 0.9286± 0.0261 0.9143± 0.0190 0.9667± 0.0117 0.9571± 0.0178 0.9762± 0.0150 0.9762± 0.0337 0.0.9524± 0.0238 0.0.9581± 0.0.0433 0.9810± 0.0095 0.9857± 0.01170.9857± 0.01170.9857± 0.0117
Time (s) 0.00270.00270.0027 0.0070 0.6734 0.9577 0.7920 0.0067 0.1166 0.1360 0.0393 0.0096 1.7335 0.0058 0.0474

Iris Acc±Std 0.8333± 0.0365 0.8400± 0.0249 0.7200± 0.0691 0.9667± 0.0298 0.9333± 0.0333 0.9467± 0.0163 0.9533± 0.0339 0.9662± 0.0163 0.8333± 0.0572 0.8133± 0.0298 0.9600± 0.0149 0.9733± 0.02490.9733± 0.02490.9733± 0.0249 0.9667± 0.0030
Time (s) 0.00400.00400.0040 0.0028 0.3334 0.4720 0.2308 0.0042 0.0590 0.0640 0.0400 0.0053 0.1385 0.0032 0.0032

Contraceptive Acc±Std 0.5031± 0.0172 0.5088± 0.0216 0.3508± 0.0246 0.5479± 0.0153 0.4379± 0.0425 0.5112± 0.0482 0.5427± 0.0185 0.5417± 0.0230 0.4939± 0.0268 0.4996± 0.0199 0.4773± 0.0321 0.5475± 0.01120.5475± 0.01120.5475± 0.0112 0.5448± 0.0171
Time (s) 0.00330.00330.0033 0.0340 50.5654 49.5618 152.4766 0.0197 5.6963 6.4789 0.0836 1.0946 39.7778 0.0478 0.4666

Balance Acc±Std 0.8592± 0.0099 0.8609± 0.0027 0.8384± 0.0391 0.9002± 0.0274 0.9440± 0.02360.9440± 0.02360.9440± 0.0236 0.6880± 0.0209 0.9121± 0.0073 0.9105± 0.0078 0.8739± 0.0146 0.0.8824± 0.0409 0.0.9056± 0.0215 0.9153± 0.0063 0.9162± 0.0062
Time (s) 0.00220.00220.0022 0.0100 0.8838 6.8447 1.8852 0.0050 1.0122 1.0689 0.0703 0.1482 0.1496 0.0122 0.6072

X8D5K Acc±Std 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 0.8750± 0.0040 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 0.9860± 0.0020 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000 1.0000± 0.00001.0000± 0.00001.0000± 0.0000
Time (s) 0.0134 0.00230.00230.0023 17.1786 19.3314 41.5740 0.0617 3.4147 3.7119 0.1361 0.4812 27.1015 0.0277 0.1834

Vehicle Acc±Std 0.7521± 0.0335 0.7686± 0.0238 0.6399± 0.0631 0.6661± 0.0374 0.7694± 0.0305 0.7694± 0.0375 0.7675± 0.0319 0.8287± 0.0328 0.7637± 0.0439 0.7471± 0.79 0.7494± 0.0148 0.8229± 0.0207 0.8321± 0.00660.8321± 0.00660.8321± 0.0066
Time (s) 0.00250.00250.0025 0.0356 21.2842 25.7992 414.1790 0.0737 2.4283 1.9887 0.0976 0.4068 4872.9805 0.0810 0.1314

Zoo Acc±Std 0.9328± 0.0249 0.9399± 0.0200 0.8910± 0.0306 0.9210± 0.0406 0.8819± 0.0481 0.8654± 0.0250 0.9299± 0.0302 0.9474± 0.0008 0.9437± 0.0598 0.0.9210± 0.0266 0.0.9505± 0.0354 0.9527± 0.0028 0.9600± 0.00200.9600± 0.00200.9600± 0.0020
Time (s) 0.0118 0.0179 0.6321 0.2503 2.3420 0.0358 0.1827 0.2904 0.0840 0.0161 3486.3605 0.00720.00720.0072 0.0540

Yeast Acc±Std 0.5508± 0.0161 0.5684± 0.0107 0.5162± 0.0373 0.6004± 0.0165 0.5596± 0.0055 0.5045± 0.0138 0.5926± 0.0202 0.6007± 0.0185 0.5354± 0.0210 0.0.5451± 0.0266 0.5445± 0.0145 0.6097± 0.0224 0.6154± 0.01830.6154± 0.01830.6154± 0.0183
Time (s) 0.00580.00580.0058 1.3578 145.6627 158.0168 109.6964 0.0837 12.8849 27.3849 0.2602 2.2958 132.7344 0.0452 1.6300

Ecoli Acc±Std 0.7136± 0.0135 0.7482± 0.0240 0.7469± 0.0418 0.8900± 0.0341 0.8007± 0.0271 0.8544± 0.0254 0.7317± 0.0200 0.8928± 0.01460.8928± 0.01460.8928± 0.0146 0.7977± 0.0265 0.0.8303± 0.0313 0.0.8720± 0.0523 0.8927± 0.0254 0.8751± 0.0172
Time (s) 0.00200.00200.0020 0.0518 4.3479 5.6260 5.8922 0.0037 2.2895 1.4722 0.1105 0.1738 8.5413 0.0088 0.0594

Led7digit Acc±Std 0.7177± 0.0261 0.7349± 0.0274 0.5420± 0.0105 0.6820± 0.0000 0.6660± 0.0543 0.7420± 0.0264 0.7331± 0.0374 0.7246± 0.0147 0.7138± 0.0497 0.7040± 0.0241 0.0.6960± 0.0456 0.7407± 0.0367 0.7412± 0.02360.7412± 0.02360.7412± 0.0236
Time (s) 0.00310.00310.0031 0.4414 14.8471 81.7604 29.9238 0.0072 1.3508 1.4445 0.1476 0.3050 0.25.4077 0.0116 0.4652

Vowel Acc±Std 0.4335± 0.0201 0.4354± 0.0312 0.4101± 0.0215 0.9848± 0.0090 0.8192± 0.0200 0.5722± 0.0232 0.9939± 0.00590.9939± 0.00590.9939± 0.0059 0.8131± 0.0209 0.4647± 0.0369 0.3979± 0.0438 0.9556± 0.0131 0.8202± 0.0336 0.8667± 0.0174
Time (s) 0.00390.00390.0039 0.2780 74.6948 81.7602 485.9184 0.1485 5.7673 11.1241 0.3047 2.0553 1044.9018 0.0434 3.1902

Segmentation Acc±Std 0.8403± 0.0025 0.8403± 0.0096 0.9307± 0.0071 0.9476± 0.0146 0.9392± 0.0114 0.9100± 0.0118 0.9420± 0.0068 0.8952± 0.0050 0.8666± 0.0112 0.8429± 0.0309 0.9221± 0.0592 0.9429± 0.0060 0.9483± 0.00000.9483± 0.00000.9483± 0.0000
Time (s) 0.00600.00600.0060 0.4242 299.6623 294.5338 3053.9000 0.3877 23.1303 20.1449 0.2635 6.6594 8310.9828 0.2028 3.9048
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Table 3. Specificity and sensitivity results of each method.

Dataset
Sensitivity Specificity

Appendicitis Haberman Contraceptive X8D5K Ecoli Yeast Appendicitis Haberman Contraceptive X8D5K Ecoli Yeast

LSR 0.2273 0.2143 0.4740 1.00001.00001.0000 0.7247 0.3986 0.9375 0.9551 0.7434 1.00001.00001.0000 0.9709 0.9389
DLSR 0.4400 0.2250 0.4788 1.00001.00001.0000 0.7167 0.3814 0.9647 0.9511 0.7422 1.00001.00001.0000 0.9704 0.9405
SVM(line) 0.4000 0.1875 0.4016 0.9910 0.8559 0.4677 0.9412 0.9200 0.6958 0.9977 0.9667 0.9357
SVM(rbf) 0.5000 0.3058 0.4755 1.00001.00001.0000 0.8476 0.5533 0.9294 0.8444 0.7403 1.00001.00001.0000 0.9655 0.9424
QSSVM 0.5142 0.2070 0.3530 0.9960 0.7014 0.4062 0.9412 0.9467 0.7424 1.00001.00001.0000 0.9659 0.9361
LDA 0.5633 0.52140.52140.5214 0.4871 1.00001.00001.0000 0.8223 0.5556 0.6592 0.7236 0.7584 1.00001.00001.0000 0.9609 0.9398
KRR-R 0.4521 0.2222 0.52800.52800.5280 1.00001.00001.0000 0.7139 0.5552 0.9306 0.9387 0.7626 1.00001.00001.0000 0.9705 0.94670.94670.9467
KRR-P 0.4948 0.3000 0.5234 1.00001.00001.0000 0.8536 0.5367 0.9640 0.9376 0.7635 1.00001.00001.0000 0.9717 0.9339
LRDLSR 0.400 0.2250 0.6128 1.00001.00001.0000 0.5317 0.3036 0.9333 0.9504 0.7439 1.00001.00001.0000 0.9662 0.9354
WCSDLSR 0.3333 0.3684 0.4653 1.00001.00001.0000 0.7854 0.3269 0.9444 0.9446 0.7370 1.00001.00001.0000 0.9630 0.9380
reg-DWPDSVM 0.4867 0.4111 0.4730 1.00001.00001.0000 0.8540 0.5248 0.9422 0.9149 0.7300 1.00001.00001.0000 0.9716 0.94511
HQSLSR 0.5700 0.3875 0.5249 1.00001.00001.0000 8581 0.5575 0.9647 0.9467 0.7671 1.00001.00001.0000 0.9765 0.9465
SQSLSR 0.68240.68240.6824 0.3176 0.5226 1.00001.00001.0000 0.86470.86470.8647 0.56290.56290.5629 0.96670.96670.9667 0.95110.95110.9511 0.77950.77950.7795 1.00001.00001.0000 0.97970.97970.9797 0.9460

5.4. Statistical Analysis

In this subsection, we use the Friedman test [31] and the Neymani test [32] to further
illustrate the differences between our two methods and other methods.

First, we carry out the Friedman test, where the original hypothesis is that all methods
have the same classification accuracy and computation time. We ranked these 13 methods
based on their accuracy and computation time on the 16 benchmark datasets and presented
the average rank ri (i = 1, 2, · · · , 13) for each algorithm in Tables 4 and 5. Let N and s
denote the number of datasets and algorithms, respectively. The relevant statistics are
obtained by

τχ2 =
12N

s(s + 1)
(

s

∑
i

r2
i −

s(s + 1)2

4
), (34)

τF =
(N − 1)τχ2

N(s− 1)− τχ2
, (35)

where τF follows an F-distribution with degrees of freedom s − 1 and (s − 1)(N − 1).
According to Equation (35), we obtain two Friedman statistics τF, which are = 12.6243 and
109.9785, and the critical value corresponding to α = 0.05 is Fα = 1.8063. Since τF > Fα, we
reject the original hypothesis.

Table 4. Ranks of accuracy.

Datasets LSR DLSR SVM-L SVM-R QSVM LDA KRR-R KRR-P LRDLSR WCSDLSR reg-LSDWPTSVM HQSLSR SQSLSR

Haberman 12 5 11 6 7.5 13 9 4 10 3 7.5 2 1
Monk-2 12 11 8 1 3 10 7 6 9 13 2 5 4

Appendicitis 9 7 10 3 6 13 12 5 8 11 4 2 1
Breast 9 7 6 4 13 11 3 8 5 10 12 2 1
Seeds 10 6 13 11 12 5 8 3.5 3.5 9 7 2 1

Iris 10.5 9 13 2.5 8 7 6 4 10.5 12 5 1 2.5
Contraceptive 8 7 13 1 12 6 4 5 10 9 11 2 3

Balance 11 10 12 7 1 3 4 5 9 8 6 3 2
X8D5K 6 6 13 6 12 6 6 6 6 6 6 6 6
Vehicle 9 6 13 12 4.5 4.5 7 2 8 11 10 3 1

Zoo 7 6 11 9.5 12 13 8 4 5 9.5 3 2 1
Yeast 8 6 12 4 7 13 5 3 11 9 10 2 1
Ecoli 13 10 11 3 8 6 12 1 9 7 5 2 4

Led7digit 7 4 13 11 12 1 5 6 8 9 10 3 2
Vowel 11 10 12 2 6 8 1 7 9 13 3 5 4

Segmentation 12.5 12.5 6 2 5 8 4 9 10 11 7 3 1

Average ranks 9.6875 7.65625 11.0625 5.3125 8.0625 8.59375 6.3125 4.9062 8.1875 9.40625 6.78125 2.8125 2.21875
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Table 5. Ranks of computation time.

Datasets LSR DLSR SVM-L SVM-R QSVM LDA KRR-R KRR-P LRDLSR WCSDLSR reg-LSDWPTSVM HQSLSR SQSLSR

Haberman 1 3 12 13 11 2 9 10 8 6 7 4 5
Monk-2 1 2 11 13 12 7 8 9 6 5 10 3 4

Appendicitis 1 2 10 11 12 9 7 5 8 6 13 3.5 3.5
Breast 1 2 12 10 11 3 8 9 7 4 13 5 6
Seeds 1 4 10 12 11 3 8 9 6 5 13 2 7

Iris 4 1 12 13 11 5 8 9 7 6 10 2.5 2.5
Contraceptive 1 3 12 11 13 2 8 9 5 7 10 4 6

Balance 1 3 9 13 12 2 10 11 5 6 7 4 8
X8D5K 2 1 10 11 13 4 8 9 5 7 12 3 6
Vehicle 1 2 10 11 12 3 9 8 5 7 13 4 6

Zoo 2 4 11 9 12 5 8 10 7 3 13 1 6
Yeast 1 5 12 13 10 3 8 9 4 7 11 2 6
Ecoli 1 4 10 11 12 2 9 8 6 7 13 3 5

Led7digit 1 6 10 13 12 2 8 9 4 5 11 3 7
Vowel 1 4 10 11 12 3 8 9 5 6 13 2 7

Segmentation 1 5 11 10 12 4 9 8 3 7 13 2 6

Average ranks 1.3125 3.1875 10.7500 11.5625 11.7500 3.6875 8.3125 8.8125 5.6875 5.8750 11.3750 3 5.6875

Rejection of the original hypothesis suggests that our HQSLSR, SQSLSR, and other
methods perform differently in terms of accuracy and computation time. To further distin-
guish these methods in terms of classification accuracy and computation time, a Nemenyi
test is further adopted, and the critical difference is calculated with the following equation:

CD = qα

√
s(s + 1)

6N
, (36)

when α = 0.05, qα = 3.313, we obtain CD = 4.5616 by Equation (36).
Figures 7 and 8 visually display the results of the Friedman test and the Nemenyi post

hoc test. The average rank of each method is marked along the axis. Groups of methods
that are not significantly different are connected by red lines.

On the one hand, our methods HQSLSR and SQSLSR are not very different from
SVM-R, KRR-R, and KRR-P and are significantly better than LSR, DLSR, LDA, SVM-L, and
QSSVM in terms of classification accuracy. On the other hand, our methods HQSLSR and
SQSLSR are not very different from LSR, DLSR, and LDA and are significantly better than
WCSDLSR, KRR-R, KRR-P, SVM-L, reg-LSDWPTSVM, SVM-R, and QSSVM in terms of
computation time. In general, our HQSLSR and SQSLSR can achieve higher accuracy while
maintaining relatively small computation time.

Critical Distance=4.5616

13 12 11 10 9 8 7 6 5 4 3 2 1

SQSLSR

HQSLSR

KRR-P

SVM-R

KRR-R

reg-LSDWPTSVM

DLSR

QSSVM

LRDLSR

LDA

WCSDLSR

LSR

SVM-L

Figure 7. Friedman test and Nemenyi post hoc test of accuracy.
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Critical Distance=4.5616

13 12 11 10 9 8 7 6 5 4 3 2 1

LSR

HQSLSR

DLSR

LDA

LRDLSR

SQSLSR

WCSDLSR

KRR-R

KRR-P

SVM-L

reg-LSDWPTSVM

SVM-R

QSSVM

Figure 8. Friedman test and the Nemenyi post hoc test of computation time.

6. Conclusions

In this paper, utilizing the kernel-free trick and ε-dragging technique, we propose two
classifiers, HQSLSR and its softened version (SQSLSR). On the one hand, the quadratic sur-
face kernel-free trick is introduced, which avoids the difficulty of selecting the appropriate
kernel functions and corresponding parameters while maintaining good interpretability.
On the other hand, utilizing the ε-dragging technique makes the labels more flexible and
enhances the generalization ability of SQSLSR. Our HQSLSR can be solved directly, while
SQSLSR is solved by an alternating iteration algorithm which we designed. Additionally,
the computational complexity, convergence analysis, and interpretability of our methods
are also addressed. The experimental results on artificial and benchmark datasets confirm
the feasibility and effectiveness of our proposed methods.

In future work, we aim to address several challenges to extend the HQSLSR and
SQSLSR models. Specifically, we plan to simplify the quadratic surface to enable our
approaches to process high-dimensional data, such as image data. Moreover, we intend to
incorporate suitable sparse regularization terms to achieve feature selection.
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