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SI: Scheme of quantum gradient 

In order to obtain the gradient of the quantum circuit for the quantum cost function, we 

introduce the following quantum representation process. The calculation of quantum gradient 

has been applied in quantum generative adversarial networks (Ref. [44] in the main text) and 

quantum classifiers (Ref. [58] in the main text). Here, we modify the relevant theories and apply 

them in our scheme. The unitary transformation U  parameterized is expressed as 
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where    is the time-ordering operator, and the parameter vector    is the union of the 

parameter sub-vectors j . It is convenient to introduce the ordered notation according to the 

definition of U  
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where   is the anti-time ordering operator. Logically, we can denote :1( ) NU U =  and 

† †

1:( ) NU U = . 

We set that each ( )jjU   can be represented by a single qubit gate or a two-qubit gate, 



and that the parameter vectors of the quantum gate can be represented by ( ), , , ,...j    = . 

We define an initial state 0 , and the expectation value of the observable A  estimated by 

  is given by  
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Further, the gradient of Eq. (S4) relative to   can be written as 
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Figure S1. (a) Rapidly entangling eight-qubit circuit of depth 19, size 33. Horizontal wires correspond 

to qubits. All G j, j = 1, …, 33 are(parameterized) single-qubit quantum gates with trainable parameters. 

The G1, …, G8, G17, …, G24 and G33 are referred to as “local gates.” The remaining gates form two 

cycles of controlled gates that are known to affect the entanglement entropy of the quantum states they 

act upon. (b) A practical circuit ansatz for the generator G, the discriminator D and the classifier T 

composed of L layers acting on ν qubits. Each layer is composed of single-qubit X rotations parametrized 



by angles 
,1( ,...., )l l l

X X X   = ，
 followed by Z rotations parametrized by

,1( ,...., )l l l

Z Z Z   = ，
. A layer of 

two staggered sets of nearest-neighbor ZZ rotations parametrized by 
1,2 1( ,...., )l l l

ZZ     −= ，
 follows the 

single-qubit rotations. The quantum circuit is universal for quantum computing since it can generate 

arbitrary single-qubit gates as well as entangling two-qubit gates.  

 

In this paper, we apply the above conclusions to two special quantum gate circuits. In the 

section of Example, we use an entangling eight-qubit circuit which is composed of a single 

qubit gate and a two-qubit controlled gate in Fig. S1. (a) (Ref. [58] in the main text). The single 

qubit gate (both “local” and in controlled position) has the form 
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Then Eq. (S5) can be transformed into the form 
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where : 1 1:1
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cos( ) (0, / 2,0)U  = + , and ( ) sin( ) ( / 2,0, / 2)jU U      = + . In this case, we 

would run a quantum circuit for each term in Eq. (S6) separately and collect the sum of all 

terms using the classical method. We also note that, in addition to the one we are using here, 

there are other approaches (Ref. [62] in the main text) of calculating the gradient of a quantum 

circuit. 

 

In the next section SII, we use a practical circuit ansatz in Fig. S1(b) (Ref. [44] of the main 

text). We set that every quantum gate is generated by a Hamiltonian 
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j jH H= , and that every 
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following form 
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where […, …] is the commutator. We introduce the theory of quantum gradient circuit in Ref. 

[44] of the main text, and the corresponding gradient can be sampled from the expectation 

value of Pauli operator Z  such that 
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in which the subscript Grad represents the register (denoted by register Grad) where the 

operator Z   is sampled. When computing gradients, the operator A   corresponds to the 

operator Z   and the operator    . eext, we decomposed the generator Ĝ  , the 

discriminator D̂  , and the classifier T̂   into GN  , DN  , and TN   gates respectively, such 

that 
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We use Eq. (S8) and Eq. (S10) to represent the gradient of D̂ . This can be written as  
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According to the theory of quantum gradient circuit in Ref. [44] of the main text, by attaching 

appropriate the eOT gate X, 
0 1

1 0
X

 
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 

, the Hadamard gate H and the single-qubit W gate, 
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= . The quantum circuit of Eq. (S11) can be expressed in Fig. S2(a). Similarly, we can 

use the above gradient theory to obtain the gradient of the classifier. This is given by  

 

(

)

†

,1:

1

†

, 1: , : 1 , :1

( , , ) ( ( , ) )
2

[ , ] ,

s

T T

M
RG

G D T Gk k T j

kTj

T

T j N k k T N j j T j

i
V tr z U

M

U U H U

     


 

=

+ +


= +







 (S12) 

and the quantum circuit of Eq. (S12) is shown in Fig. S2(b). Further, the gradient of the 

generator can be expressed as 
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We set 
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obtain the gradient of 1( , )G DV    and 2 ( , )G TV    
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By attaching some appropriate quantum gates, we can obtain the quantum circuit shown in Fig. 

S2(c) and (d). 

 

 



 

 

Figure S2. (a) Quantum circuit used to measure the gradient of the discriminator. (b) Quantum circuit 

for measuring the gradient of the classifier. (c) Quantum circuit used to measure the gradient of 

1( , )G DV    in the generator. (d) Quantum circuit used to measure the gradient of 2 ( , )G TV    in the 

generator. 

 

eext, we discuss the complexity of the quantum circuit of gradients. In the first case, we 

apply the properties of the scheme to Eq. (S7), ( )
j
U


  can be expressed by some linear 

combination of ( )O N   unitary quantum circuits with the same structure. Then, we run a 

quantum circuit for each item in Eq. (S7), and its complexity is 2( )O N .  In the second case, 

our quantum scheme adds a single qubit register Grad to the quantum circuit in Fig. S1(c). For 

the gradient of each parameter, we can use ( )O N   unitary quantum circuits with the same 

architecture to realize it.  

 

SII: Numerical simulation of a toy example  

In this scenario, we perform a binary classification task of the states on a Bloch sphere, 

that is, to classify which quadrant the states on the Bloch sphere belong to. We select data 

samples on the equatorial plane of the Bloch sphere, that is, the states whose angle relative to 



the z-axis is 2 . On the equatorial plane, starting from the positive direction of the x-axis, 

one data point is selected for each radian of the interval 100 , so that we can get a total of 

200 data samples. We use the strategy of amplitude coding to represent 200 data samples in the 

form of density matrix. Then, we start from the positive x-axis and divide the coordinate system 

into the first, second, third, and fourth quadrants in the counterclockwise direction. We label 

the density matrices of the first quadrant with 0 0 , and the density matrices of the third 

quadrant with 1 1 . We call the set of density matrix and corresponding labels in the first 

and third quadrants the source domain dataset. The set of density matrices in the second and 

fourth quadrants is called the target domain dataset. Each dataset has 100 data samples. Based 

on the above datasets, we use the quantum circuit in Ref. [44] of the main text to implement 

ˆ ( )GG   , ˆ ( )DD    and ˆ( )TT   , respectively. We optimize the quantum cost function by 

adjusting the parameters G , D  and T  in each circuit, and use this to verify our scheme.  

 

 

Figure S3 The values of quantum cost functions as a function of training step on Iris dataset. The V  

is the total cost function. The 
MLV , 

GANV , 
DGV  and 

DRV  represent various components of the 

cost function. 

 

In this task, the register Out G|Rt|s requires one qubit. Since the data sample is encoded by 

a pure state, the Bath G does not need to generate entropy. The generator ˆ ( )GG   involving 

4 variational parameters can generate the data for this task. The register Bath D is at least one 

qubit here. Therefore, ˆ ( )DD  , involving 32 variational parameters, operates on three qubits: 



one qubit severs as the Out D, one qubit severs as the Bath D, the another one belongs to Out 

G|Rt|s. For the classifier ˆ( )TT  , we find that Bath T need one qubit here. Thus, ˆ( )TT  , 

which has 10 variational parameters, operates on two qubits: one qubit severs as the Bath T, 

the other one belongs to Out G|Rt|s. The register Label and Test here requires only one qubit 

respectively. An additional qubit is employed to store the information of gradient. Therefore, 

the workspace of the whole scheme is composed of seven qubits in total. 

In this scenario, we train 10,000 gradient steps for this scheme according to the update 

rules of Eq. (S17). We also adopt RMSProp to update the learning rate. The initial learning rates 

of Ĝ , D̂  and T̂   were set to 0.001, 0.0005 and 0.001, respectively. As shown in Fig. S3, 

we also plot the cost function V  and its components, which are defined in the first example. 

We find that the discriminator D̂  finally cannot determine whether the given data is fake data 

from the generator or data from the target domain, that is, GANV  is stable at 1 2 . The 

classifier T is well trained, and the probability that the data obtains the correct label, MLV , 

reaches -0.953. Finally, we select the data sample every interval 240  in the second and 

fourth quadrants, and a total of 240 data samples are selected as the test data. Our classification 

accuracy reaches 100%. The results show that an equilibrium point exists for the cost function 

we propose. Meanwhile, the gap for knowledge transfer between the differently distributed 

datasets is effectively bridged, which shows that our scheme can effectively transfer knowledge 

with the generative model and adversarial training. 


