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Abstract: Adversarial transfer learning is a machine learning method that employs an adversarial
training process to learn the datasets of different domains. Recently, this method has attracted
attention because it can efficiently decouple the requirements of tasks from insufficient target data.
In this study, we introduce the notion of quantum adversarial transfer learning, where data are
completely encoded by quantum states. A measurement-based judgment of the data label and a
quantum subroutine to compute the gradients are discussed in detail. We also prove that our proposal
has an exponential advantage over its classical counterparts in terms of computing resources such as
the gate number of the circuits and the size of the storage required for the generated data. Finally,
numerical experiments demonstrate that our model can be successfully trained, achieving high
accuracy on certain datasets.

Keywords: quantum transfer learning; quantum generative adversarial network; quantum machine
learning; quantum computation

1. Introduction

Machine learning (ML) methods have successfully been applied to various fields such
as speech recognition, visual object recognition, and object detection [1,2]. In recent years,
ML research has been extended to applications in more complicated but ordinary scenarios,
such as situations involving datasets belonging to different domains. The predicament in
these scenarios is that the ML model trained on a dataset in one domain does not often
work for tasks in a different domain of interest. One resource-consuming strategy used
to solve the above issue is transfer learning (TL) [3–8], which estimates the usefulness of
the knowledge learned in a source domain and transfers it to help the learning task in a
target domain. However, conventional TL usually lacks efficiency when the distribution
of the target domain data is completely different from the source domain. Recently, an
adversarial transfer learning (ATL) method has been proposed to solve the issue. Such an
ML scheme has the potential for a broad range of applications; it has been proven to be
beneficial in areas such as natural language processing, autonomous cars, robotics, and
image understanding [9–19].

The basic idea of the ATL method is to introduce generative models to bridge the
gap between the datasets of different domains. This method is a new version of ML and
cannot be provided by simply combining methods such as generative adversarial networks
(GANs) [20–22] and TL. As schematically shown in Figure 1a, ATL controls the samples
of a given source domain dataset and a target domain dataset, denoted as XRs and XRt ,
respectively. A generator G is employed to produce a fake sample XG using XRs and a
noise vector

→
z . XG and XRt are then sent to a discriminator D to judge the probabilistic

likelihood. The general purpose of training G and D is an adversarial game. Generator
G is required to generate XG as close as possible to the target data sample XRt , cheating
the discriminator D. Discriminator D attempts to accurately distinguish XG from XRt

and avoid being cheated. The game finally reaches the Nash equilibrium [23] after the

Entropy 2023, 25, 1090. https://doi.org/10.3390/e25071090 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25071090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4935-630X
https://doi.org/10.3390/e25071090
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25071090?type=check_update&version=1


Entropy 2023, 25, 1090 2 of 11

parameters of the model are optimized. In cases of classification, a classifier T is correctly
applied to label XG according to the label of XRs . In certain cases, the source domain dataset
is also employed as the input of T, which increases the efficiency of the training. The key
ingredient in such a scheme is the cost function of the model, which finally converges to an
equilibrium point.

Figure 1. (a) Model architecture of ATL. The generator G produces a data sample XG on a source data
sample XRs and a noise vector

→
z . The discriminator D distinguishes XG from the target data sample

XRt , assigning the judgement as “real” or “fake”. The classifier T assigns task-specific labels {λ} to
fake data sample XG. Note that source data sample XRs is only accepted into the next step when
the efficiency of the training is increased, as marked by the dashed arrow. (b) The corresponding
QATL scheme. The data samples (XRs s, XRt , and XG ) are encoded by the quantum state XRs (ρRs ,
ρRt , and ρG ), respectively. The functioning of G, D, and T is implemented by the quantum operators
Ĝ, D̂, and T̂, respectively. The judgement of D̂ is given by a quantum state (|real〉 or | f ake〉 ) and the
label is also encoded by |λ〉. (c) The quantum circuit of QATL. The qubit numbers of the registers
Bath D, Out G|Rt|s, and Bath T are d, n, and p, respectively. The registers Out D and Test both
contain one qubit. Their qubits are initialized as |0〉. The register Bath G stores an m-qubit random
state |z〉 generated by the environmental coupling. The register Label has the initial state |λ〉. R̂t, R̂s,

Ĝ
(→

θ G

)
, D̂
(→

θ D

)
, and T̂

(→
θ T

)
represent the unitary operators. The dashed box marks an option of

applying two types of setups. H is the Hadamard gate. 〈ZoutD〉 is the expectation value of operator
Z, as defined in the main text.

Despite the success of the above-mentioned method, the increasing requirements of
data processing present a significant challenge to all computing strategies, including ML.
As quantum computing provides an opportunity to overcome this challenge, researchers
have considered addressing ML tasks using quantum machines [24–57]. Proposed quantum
machine learning algorithms include quantum support vector machines [29,30], quantum
deep learning [32–38], quantum Boltzmann machines [39,40], quantum generative adversar-
ial learning [41–45], and quantum transfer learning (QTL) [47–51]. A quantum counterpart
of ATL has not yet been provided; this could exhibit an advantageous performance in
cross-domain learning tasks. To propose such a counterpart is complex because a suitable
quantum cost function must be established so that the quantum adversarial game for
knowledge transfer can finally converge to an equivalent point, as in classical cases. How
to develop such a function in the quantum regime and how to obtain a quantum version of
ATL remain unknown.

In this paper, we demonstrate how we solved the above problem, and we propose
quantum adversarial transfer learning (QATL) schemes. The training process of our QATL
was equivalent to an adversarial game of a quantum generator and a quantum discriminator,
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and we demonstrate that an equilibrium point also existed in the model. Specifically, a
quantum cost function for adversarial training is provided; a measurement-based judgment
of the data label and a quantum subroutine to compute the gradients are also discussed in
detail. We prove that our proposal has an exponential advantage over classical counterparts
in terms of computing resources such as the gate number of the circuits and the size of the
storage for the generated data. This is of benefit to the transfer of complicated knowledge,
during which a module is extensively called upon and a large amount of data are generated.
We applied this scheme to a classification task based on the Iris dataset and the states on
a Bloch sphere to prove that an extremely high classification accuracy could be achieved
using this method.

2. Materials and Methods

Our QATL scheme is shown in Figure 1b. Here, the density matrix of the state that
encodes a source (target) domain data sample is denoted by ρRs (ρRt ). A unitary operator
is employed as the quantum generator Ĝ, whose parameters are denoted by a vector
→
θ G. It operates on the state ρRs and a quantum noise state |z〉〈z|, outputting a fake data

sample ρG. Another unitary operator, parameterized by vector
→
θ D, is used as the quantum

discriminator D̂. It operates on the state ρG generated by Ĝ and the state ρRt ; it then
outputs the state |real〉〈real|. If it operates on ρG, the state is | f ake〉〈 f ake|. As with ATL,
the general training purpose of QATL is to maximize the probability of ρG passing the test
of discriminator D̂, simultaneously minimizing the probability of D̂ being cheated if ρG

is fake. The optimization of the parameters
→
θ G and

→
θ D are addressed when the above

quantum adversarial game reaches the Nash equilibrium. We considered the classification

task and applied a unitary operator parameterized by
→
θ T as a quantum classifier T̂ [58–61].

This provided a mapping of the data sample (ρG or ρRs ) to a label state L = |λ′〉〈λ′|;
→
θ T

was updated during the training.
Next, we discuss the state evolution of the above scheme on a circuit and demonstrate

how an equilibrium point of the game was reached. The quantum circuit of Figure 1b is
displayed in Figure 1c. The whole circuit ran on seven quantum registers. The register Out
G|Rt|s containing n qubits encoded the target data, source data, or the generated data. The
encoding of the target (source) data was described by the operator R̂t (R̂s), which acted on
the register Out G|Rt|s. The register Bath G, containing m qubits, encoded the quantum

noise state |z〉〈z|. The generator Ĝ
(→

θ G

)
operated on Out G|Rt|s and Bath G, producing

the generated data. The register Bath D, containing d qubits, was employed as the internal
workspace of the discriminator D̂, whose outputs (|real〉〈real| or | f ake〉〈 f ake|) were stored
by the register Out D. The register Bath T contained p qubits and was employed as the
workspace of the classifier T̂. The label state |λ′〉 outputted by T̂ was compared with
the single qubit label state |λ〉 stored by the register Label. The register Test was used
to perform the estimation of the likelihood of |λ′〉 and |λ〉, so that ρG could be properly
labeled. All qubits were initialized to be |0〉, except for those in Bath G and Label. The
initial state of the quantum circuit shown in Figure 1c could then be denoted by

ρin(z) = |0〉〈0|⊗(1+d+n) ⊗ |z〉〈z| ⊗ |0〉〈0|⊗p ⊗ |λ〉〈λ| ⊗ |0〉〈0|, (1)

where ⊗ is the tensor product and |0〉〈0|⊗p is the tensor product of p |0〉〈0|s; this was
also applicable for other similar terms. The unitary operators of such a state encoding the
source domain data, target domain data, and generated data were denoted by URs , URt ,

and UG

(→
θ G

)
, respectively. They were given by

URs = I⊗(1+d) ⊗ R̂s ⊗ I⊗(m+p+s+1), (2)
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URt = I⊗(1+d) ⊗ R̂t ⊗ I⊗(m+p+s+1), (3)

UG

(→
θ G

)
= I⊗(1+d) ⊗ Ĝ

(→
θ G

)
⊗ I⊗(p+s+1) (4)

where I represents the 2× 2 identity matrix. The states ρRs and ρRt were then given by

ρRs = URs ρin(0)U†
Rs

, (5)

ρRt = URt ρ
in(0)U†

Rt
. (6)

We set Bath G to be |0〉⊗m instead of rotating it to a random quantum state with extra
control. A random quantum state can naturally be generated by the entanglement of the
register state and environmental degrees [44]. After |z〉〈z| was generated according to the
requirements, the state ρG could be expressed by

ρG = UG

(→
θ G

)
ρRs U†

G

(→
θ G

)
. (7)

The discriminator D̂
(→

θ D

)
was applied to estimate the likelihood of ρG and ρRt . The

unitary operator of D̂
(→

θ D

)
was given by

UD

(→
θ D

)
= D̂

(→
θ D

)
⊗ I⊗(m+p+s+1). (8)

Therefore, the resultant states of ρRt and ρG after being operated by UD

(→
θ D

)
were given by

ρDRt

(→
θ D

)
= UD

(→
θ D

)
· ρRt ·U†

D

(→
θ D

)
, (9)

ρDG
(→

θ D,
→
θ G, z

)
= UD

(→
θ D

)
· ρG

(→
θ G, z

)
·U†

D

(→
θ D

)
. (10)

The expectation value of operator Z ≡ |real〉〈real| − | f ake〉〈 f ake| could be measured on the

register Out D. Such a value was close to 1 when D̂
(→

θ D

)
generated the state |real〉〈real|;

it was close to −1 when D̂
(→

θ D

)
outputted the state | f ake〉〈 f ake|.

The quantum classifier T̂ we considered was forced to output the label of ρG according
to its closeness to ρRs . We also introduced this method to judge whether the label was
correct. The unitary operator of T̂ was defined by

UT

(→
θ T

)
= I⊗(1+d) ⊗ T̂1

(→
θ T1

)
⊗ I⊗m ⊗ T̂2

(→
θ T2

)
⊗ I⊗(1+s) (11)

where T̂1 and T̂2 are two unitary operators on Out G|Rt|s and Bath T, respectively. Their

parameters were denoted by
→
θ T1 and

→
θ T2 correspondingly. Thus,

→
θ T =

(→
θ T1 ,

→
θ T2

)
. The

resultant states of ρRs and ρG after being operated by UT

(→
θ T

)
were given by

ρTRs

(→
θ T ,

→
θ D, z

)
= UT

(→
θ T

)
· ρRs

(→
θ G, z

)
·U†

T

(→
θ T

)
, (12)
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ρTG
(→

θ T ,
→
θ D, z

)
= UT

(→
θ T

)
· ρG

(→
θ G, z

)
·U†

T

(→
θ T

)
. (13)

One qubit of the above output state was the predicted label |λ′〉 by T̂. When comparing it
with the label |λ〉 of the input ρRs by the swap test circuit [62] (which was composed of two
Hadamard gates and one Fredkin gate, as shown in Figure 1c), the label of ρG was set to be
|λ〉 if |λ′〉 and |λ〉 were close enough. The closeness of |λ′〉 and |λ〉 could be estimated by
the measurement of the register Test. The probability of the register Test being in state |0〉
was given by

P0 =
1
2
(1 + Pc) (14)

where Pc is the overlap of |λ′〉 and |λ〉, defined by Pc = Tr
{
|λ〉〈λ|L

(→
θ T ,

→
θ G, z

)}
. There-

fore, Pc could be estimated by Pc = 2P0 − 1. In specific cases, we could set a suitable
boundary for accepting |λ〉 to be the label of ρG (see the example below). Finally, the
training of the quantum model could be performed by finding the following minimax point

of the quantum cost function V
(→

θ G,
→
θ D,

→
θ T

)
, given by

Ṽ
(
~θG,~θD,~θT

)
=

1
M

M

∑
k=1

[
1
2
+

1
2

cos2 φ Tr
{

ZρDRt
k

(
~θD

)}
− 1

2
sin2 φ Tr

{
ZρDG

k

(
~θD,~θG, z

)}
−Tr

{
|λk〉〈λk|

[
Lk

(
~θT ,~θG, z

)
+ LRs

k

(
~θT

)]}]
.

(15)

The minimax point of Ṽ
(→

θ G,
→
θ D,

→
θ T

)
was obtained by tuning

→
θ G and

→
θ T to the minimum

and tuning
→
θ D to the maximum. The subscript k represents the different samples fed into

the model. The number of the samples is denoted by M. LRs
k

(→
θ T

)
is the label state

outputted by T̂ when the input was the source domain data sample ρRs
k . Such a term

provides a bias; this could increase the training efficiency. The angle φ is the parameter
used to adjust the weight of the target domain data and the generated data in the cost
function, and it could be set according to the requirements of the specific tasks. A usual
form was given by considering that they were equally weighted. By setting φ = π/4,
we obtained

V
(
~θG,~θD,~θT

)
=

1
M

M

∑
k=1

[
1
2
+

1
4

Tr
{

ZρDRt
k

(
~θD

)}
− 1

4
Tr
{

ZρDG
k

(
~θD,~θG, z

)}
−Tr

{
|λk〉〈λk|

[
Lk

(
~θT ,~θG, z

)
+ LRs

k

(
~θT

)]}]
.

(16)

The minimax optimization problem of Equation (16) was implemented by alternating
between two steps. In the first step, we updated the discriminator and the classifier

parameters
→
θ D and

→
θ T whilst keeping the generator parameter

→
θ G fixed. In the second

step, we fixed
→
θ D and

→
θ T and updated

→
θ G. We used the gradient descent method to

update parameters
→
θ G,

→
θ D, and

→
θ T , respectively. The values of

→
θ G,

→
θ D, and

→
θ T given by

the lth update were denoted by
→
θ l

G,
→
θ l

D, and
→
θ l

T , respectively, with integer l = 1, 2, . . .;
→
θ 0

G,
→
θ 0

D, and
→
θ 0

T as the initial values. Hence, the update rule was expressed by
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~θl+1
G = ~θl

G − χl
G∇~θG

V
(
~θG,~θD,~θT

)
,

~θl+1
D = ~θl

D − χl
D∇~θD

V
(
~θG,~θD,~θT

)
,

~θl+1
T = ~θl

T − χl
T∇~θT

V
(
~θG,~θD,~θT

)
,

(17)

where χl
G, χl

D, and χl
T are the learning rates. In the above scheme, we used the

variational quantum circuit in [44] and [58] to implement the generator Ĝ, the discriminator
D̂, and the classifier T̂, as shown in Figure 1c. In [44], each quantum gate of a quantum
circuit corresponded with a parameter of the quantum circuit. The number of quantum
gates was polynomial in the number of qubits; that is, 3/2Lq. L was the number of layers of
quantum circuits and q was the number of qubits. Therefore, the number of parameters was
also 3/2Lq. In [58], each quantum gate of the circuit had three parameters. The number of
quantum gates was polynomial in the number of qubits, which was 2Lq + 1. Therefore, the
number of parameters was 6Lq + 3. In our scheme, the total number of quantum gates was
bound by those operating on the register Out G|Rt|s, which was the sum of the number of
quantum gates employed by the generator–discriminator sequence or the classifier. Based
on the gate number of the above two circuits for the unitary operations we considered, the
sum of the number of quantum gates remained polynomial in the number of qubits. We
added two registers, Label and Test. Their gate number was constant and their impact
on the complexity was negligible. In the process of obtaining the quantum cost function,
the number of gates and the number of parameters of our scheme were polynomial in
their number of qubits, which required exponentially fewer resources than the classical
counterparts [10]. This property potentially benefits future applications for tasks involving
complicated data structures. In general, if the information in a target dataset is insufficient,
a large amount of data must be generated to effectively transfer the knowledge required
to improve the training of the target dataset. This indicates a large storage requirement
for the data and extensive calls of the modules. Otherwise, the gap between the features
of different datasets is not bridged and the helpful information required to improve the
training process is not captured and transferred. The improvement in computing resources
by our QATL could loosen the requirements on storage and boost the efficiency of running
the subroutines of the module, facilitating the execution of tasks.

To provide a more direct connection between the computation of the cost function
and the updates of the parameters, we also applied two quantum circuits to calculate
the gradients. Their theoretical scheme and circuit design are shown in Section SI of the
Supplementary Materials. This scheme could be implemented on the recent quantum
experimental platform because it was mainly based on variational quantum algorithms
(VQAs) [63–66].

3. Results

To demonstrate the feasibility of QATLs, we considered their application in cases in
which the probability distributions of the data in the two domains were different. The
examples used the Iris dataset [67] and the states of the Bloch sphere.

The main task we considered was a classification of the Iris dataset in a numerical
simulation. We chose two types of Iris flowers from the Iris dataset: versicolor and virginica.
Each type contained 50 data samples. All data samples contained four attributes: sepal
length (SL), sepal width (SW), petal length (PL), and petal width (PW). We considered
encoding the four attributes based on the amplitudes of a two-qubit state (amplitude-
encoding strategy [47]). The source domain dataset was composed of 40 data samples;
20 were picked from the Iris versicolor data samples and labeled |0〉〈0|. The other 20 were
picked from Iris virginica data and labeled |1〉〈1|. The target domain dataset was also a
20/20 set chosen from samples other than those applied to the source domain dataset and
without labeling. The last 10 data samples of both types were used to obtain a test dataset
to check the performance of the model. The classification task labeled the target domain
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data samples using differently distributed source domain data. To enlarge the statistical
difference of the source domain dataset and the target domain dataset and to improve the
difficulty of classifying Iris flowers, we preprocessed the data samples by reducing the SL
by 7 cm, the SW by 3 cm, the PL by 4 cm, and set the value of PW to 0. An illustration of
the distribution of the data can be found in [67].

To show the convergence of terms of the cost function on the above datasets,
we plotted the cost function V and its components as a function of the training step
in Figure 2a. The cost function V converged to −0.217. The component VDG was

defined as VDG = −1/4M · ∑M
k=1 Tr

{
ZρDG

k

(→
θ D,

→
θ G, z

)}
, which represented the av-

erage probability of ρDG
k

(→
θ D,

→
θ G, z

)
being |real〉〈real|, weighted by −1/4. VDR =

1/4M ·∑M
k=1 Tr

{
ZρDRt

k

(→
θ D

)}
represented the average probability of ρDRt

k

(→
θ D

)
being

|real〉〈real|, weighted by −1/4. VGAN ≡ 1/2 + VDG + VDR; this reflected the capability
of D̂ to identify the generated data. VDG , VDR, and VGAN converged to 1/4, −1/4, and
1/2, respectively; thus, D̂ could not provide a fair judgement and designate all the
density matrices as |real〉. The average probability of matching the label with the gener-

ated data was given by VML = −1/M ·∑M
k=1 Tr

{
|λk〉〈λk|

[
Lk

(→
θ T ,

→
θ G, z

)
+ LRs

k

(→
θ T

)]}
,

which eventually reached −0.739. As Figure 2 clearly demonstrates, the cost function
and its components converged to stable values in only 1500 training steps. We tested
the trained model on the classification using the test dataset mentioned above. The
classification accuracy reached 95%. The results demonstrated that an equilibrium point
existed for the proposed cost function and the QATL model was workable on the dataset.
Due to the generative model and adversarial training, the gap of knowledge transfer
between the differently distributed datasets was effectively bridged; therefore, the
accuracy of the classification was largely improved compared with previous quantum
algorithms [51]. The method is shown in Appendix A. We also applied our scheme to
the classification of the states of the Bloch sphere; detailed descriptions are shown in
Section SII of the Supplementary Materials. A high-efficiency classification accuracy
was also observed.

Figure 2. The values of quantum cost functions as a function of the training step on the Iris dataset.
V is the total cost function. VML, VGAN, VDG, and VDR represent various components of the cost
function and are indicated by blue, green, red, and orange lines, respectively.

4. Conclusions

We demonstrated an efficient quantum machine learning scheme for cross-domain
learning problems—QATL—which was a quantum counterpart of the recent and well-
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received ATL. Using the well-defined quantum cost function, an adversarial training
process was applied to the transfer of knowledge, which was independent of specific tasks.
Our numerical experiments demonstrated that the QATL model could successfully be
trained and outperformed state-of-the-art algorithms in the same tasks. The complexity
of the algorithm was logarithmic in terms of the number of quantum gates and training
parameters, showing an advance over ATL.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/e25071090/s1. References [44,58,62] have been cited in the
Supplementary Materials.
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Appendix A

To complete the numerical simulation task of the theoretical scheme, we used a

variational quantum circuit with eight entangled qubits from [58] to implement Ĝ
(→

θ G

)
,

D̂
(→

θ D

)
, and T̂

(→
θ T

)
. The quantum circuit is shown in Supplementary Materials Section

S1. In our task, the register Out G|Rt|s required two qubits. As the data sample was

encoded by a pure state, Bath G did not need to generate entropy. The generator Ĝ
(→

θ G

)
,

involving 15 variational parameters, could generate the data for this task. The register Bath

D was not necessary. Therefore, D̂
(→

θ D

)
, involving 42 variational parameters, operated

on three qubits; one qubit served as Out D and the other two belonged to Out G|Rt|s.

For the classifier T̂
(→

θ T

)
, we noted that Bath T was not necessary. Thus, T̂

(→
θ T

)
, which

had 15 variational parameters, only operated on two qubits of Out G|Rt|s. The registers
Label and Test required only one qubit, respectively. An additional qubit was employed to
store the information of the gradient. Therefore, the workspace of the whole scheme was
composed of five qubits in total.

In this scenario, we trained the gradient steps for this scheme according to the updated
rules of Equation (17). At the beginning of the training sequence, the parameters were
randomly chosen. Similarly, we adopted RMSProp [68] to update the learning rate. The
idea of RMSProp is to divide the learning rate of a weight by a running average of the
magnitudes of recent gradients for that weight. With the help of RMSProp, the learning rate
is largely updated in flat directions and finely tuned in steep directions. This speeds up the
training process; it has shown a good adaptation of learning rates in different applications.
Here, the initial learning rates of Ĝ, D̂, and T̂ were set to 0.001, 0.001, and 0.005, respectively.
The training progress terminated; after that, the cost function converged at an equilibrium
point. The numerical simulation results are shown in Figure 2.
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