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Abstract: Micro-expressions are the small, brief facial expression changes that humans momentarily
show during emotional experiences, and their data annotation is complicated, which leads to the
scarcity of micro-expression data. To extract salient and distinguishing features from a limited dataset,
we propose an attention-based multi-scale, multi-modal, multi-branch flow network to thoroughly
learn the motion information of micro-expressions by exploiting the attention mechanism and the
complementary properties between different optical flow information. First, we extract optical flow
information (horizontal optical flow, vertical optical flow, and optical strain) based on the onset and
apex frames of micro-expression videos, and each branch learns one kind of optical flow information
separately. Second, we propose a multi-scale fusion module to extract more prosperous and more
stable feature expressions using spatial attention to focus on locally important information at each
scale. Then, we design a multi-optical flow feature reweighting module to adaptively select features
for each optical flow separately by channel attention. Finally, to better integrate the information of
the three branches and to alleviate the problem of uneven distribution of micro-expression samples,
we introduce a logarithmically adjusted prior knowledge weighting loss. This loss function weights
the prediction scores of samples from different categories to mitigate the negative impact of category
imbalance during the classification process. The effectiveness of the proposed model is demonstrated
through extensive experiments and feature visualization on three benchmark datasets (CASMEII,
SAMM, and SMIC), and its performance is comparable to that of state-of-the-art methods.

Keywords: micro-expression recognition; attention mechanisms; logit-adjusted loss

1. Introduction

Micro-expressions are usually unconscious and respond to stimuli (e.g., an emotional
event or stressful situation) [1]. Due to their unconscious nature, micro-expressions are
considered more reliable indicators of emotion than conscious facial expressions. As a
result, micro-expression recognition has received increasing attention in various fields,
such as psychology, criminology, and human–computer interaction.

Micro-expression recognition aims to classify micro-expression videos into different
emotional categories. In each micro-expression video, the frame where the micro-expression
face action starts is noted as the start frame, while the end frame is the offset frame, and the
frame with the highest intensity is the vertex frame [2]. Like facial expression recognition,
micro-expression recognition classifies facial images/sequences into sadness, surprise,
happiness, etc. However, interpreting micro-expressions is more challenging for humans,
and micro-expression recognition studies perform poorly. There are two reasons for the
low performance of micro-expression recognition research: (1) the lack of micro-expression
datasets, which are often required for complex deep learning systems [3]; and (2) the low
intensity of micro-expressions makes it challenging to extract salient and distinguishing
features. However, building new micro-expression datasets is a time-consuming and
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challenging task. Several existing studies have found that significant progress can be
made in automatic micro-expression analysis by designing effective shallow networks
and exploring attention mechanisms. Deep-learning-based micro-expression recognition
methods have achieved state-of-the-art performance. Therefore, the optimal solution is
to process the micro-expression sample into a distinct feature and then use deep learning
techniques for the classification task.

Due to a limited amount of data, single-scale features may not be sufficient to distin-
guish different micro-expression categories. Combining multiple channels and effectively
integrating various scale features can improve the ability of the model to learn micro-
expression features. Therefore, we propose an attention-based multi-scale, multi-branch
flow network for mining of subtle micro-expression movements from a limited micro-
expression dataset. Specifically, in the preprocessing data stage, we compute the optical
flow using the initial and vertex frames of the micro-expression video and generate new
optical flow information (optical strain) [4] to better capture the subtle facial motion of
micro-expressions. Second, we use the inception network [5] to input the three pieces of
optical flow information into the three-branch network for feature extraction. Considering
that single-scale features cannot adequately extract local motion, we propose a new multi-
scale feature fusion (MSFF) module that focuses on the critical information at each scale
using a spatial attention mechanism. Then, since each piece of optical flow information
contributes differently to micro-expression classification, we propose a multi-optical flow
feature reweighting (MOFRW) module that adaptively selects features for each optical
flow separately using the channel attention mechanism [6]. Finally, we introduce a logit
adjustment loss [7] to weight the prediction scores of micro-expression categories using
prior knowledge to effectively balance unevenly distributed samples to further improve the
performance of our model. The contributions of this paper can be summarized as follows:

• In the AM3F-FlowNet framework, we designed a module called MOFRW. This module
uses a channel attention mechanism to first score and weight the contribution of each
piece of optical flow information, then adaptively select features for the channels
within each optical flow feature. This double-weighting approach is effective in
highlighting key features and suppressing redundant features.

• We propose the MSFF module, which enables AM3F-FlowNet to learn the local
detail of micro-expression facial movements by fusing information from different
scales. The experimental results show that combining different scales to use the
underlying stack information entirely plays a crucial role in recognizing locally fine
micro-expression movements.

• Considering the category imbalance in the micro-expression dataset, we introduce
a logit adjustment loss function that uses prior knowledge to weight the prediction
scores of minority and majority class samples to mitigate the negative impact of
category imbalance that may occur during the classification process.

• Our proposed method is evaluated not only on multiple micro-expression datasets but
also on a composite dataset formed by combining multiple micro-expression datasets.
The experimental results show that our method achieves intensely competitive perfor-
mance with state-of-the-art methods.

This paper is organized as follows. In Section 2, we review the work related to this
study. In Section 3, we describe our proposed algorithm in detail. Section 4 reports the
experimental results of the composite dataset benchmark and the evaluation of a single
dataset with an ablation study and visualization analysis of our proposed module. In
Section 5, we summarize our work.

2. Related Work
2.1. Micro-Expression Recognition

As research on micro-expression recognition has intensified in the past few years, more
methods have emerged. These methods can be broadly classified into two categories: tradi-
tional methods based on conventional machine learning and those based on deep learning.
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2.1.1. Traditional Machine Learning

In the early stages of micro-expression research, researchers mainly used image pro-
cessing and computer vision techniques, such as local binary patterns, gradient operators,
and optical flow, to extract hand-designed features from micro-expression videos and tradi-
tional machine learning algorithms to classify these features. For example, Yan et al. [8] ex-
tracted LBP-TOP features from a spatiotemporal perspective to describe micro-expressions
and used SVM classifier for recognition. Wang et al. [9] used LBP-Six Intersection Point
(LBP-SIP) to reduce redundant features and provide a more compact and lightweight
representation. Li et al. [10] investigated LBP-TOP, directed gradient histogram, and image
gradient direction histogram as three feature descriptors and combined them to obtain
combined feature vectors for recognition. In addition, some studies used optical flow
features based on interframe luminance intensity variations to estimate frame-level motion.
Shreve et al. [11] used optical strain, i.e., the optical flow derivative, as a feature descriptor
and achieved good results in both macro- and micro-expression recognition. Liu et al. [12]
proposed main directional mean optical flow (MDMO) to calculate facial motion, effectively
reducing the computational cost by dimensionalizing the features. Liong et al. [13] pro-
posed bidirectional weighted oriented optical flow (Bi-WOOF), which uses only the optical
flow information of the start frame and vertex frame to represent the motion changes of the
whole micro-expression video, reducing a large number of redundant features. However,
these methods are sensitive to data quality and noise, lack robustness, and often face
performance bottlenecks.

2.1.2. Deep Learning

With the development and application of deep learning in the field of image recog-
nition, more and more researchers have started to explore deep-learning-based micro-
expression recognition methods to overcome the limitations of traditional methods. Pa-
tel et al. [14] used a convolutional neural network trained on a macro-expression database as
a feature extractor for micro-expression classification using a transfer learning technique—
the first application of deep learning to micro-expression recognition. However, the ex-
tractor did not outperform some traditional manual methods because micro-expression
data still have the problem of small samples, and complex network models tend to lead
to overfitting. Quang et al. [15] proposed a capsule network for micro-expression recogni-
tion using only apex frames to find part–whole relationships. This method outperformed
the provided LBP-TOP baseline method. However, extracting salient and distinguishing
features using only raw images/sequences is difficult. Gan et al. [16] combined manual
features and deep learning to extract optical stream features from each video’s onset and
apex frames, then input the horizontal and vertical components of the optical stream into
a dual-stream CNN to learn and extract features automatically using a neural network.
Liong et al. [17] proposed a shallow triple-stream 3D CNN, which combines horizontal
optical flow, vertical optical flow, and optical strain to learn compact and discriminative
feature representations. Zhou et al. [18] designed a dual inception network using horizontal
and vertical optical flow features extracted from the onset and apex frames to extract rich
information through multiple convolutional kernels of different sizes in parallel. These
methods achieved the best results and demonstrated the superiority of combining optical
flow with shallow neural networks.

2.2. Attention Mechanism in Micro-Expression Recognition

The process of human perceptual analysis is based on attentional mechanisms. Human
vision acquires target areas in a scene that require focused attention and focuses more atten-
tion on the target area to obtain more detailed information about the scene and thus better
capture the visual structure of the target [19]. In computer vision, attention mechanisms
are used to discover an image’s interest intervals and highlight the representation of the
intervals of interest. The two main aspects of the attention mechanism in deep learning
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are (1) adaptively acquiring meaningful channels for input features and (2) selecting focus
locations to produce more discriminative feature representations.

In micro-expression recognition tasks, attention mechanisms guide the model to focus
on critical facial regions and suppress irrelevant facial regions and noise [20]. Researchers
have proposed various attentional mechanisms for micro-expression recognition. For
example, Wang et al. [21] introduced a micro-attention mechanism in concert with a
residual network. This mechanism utilizes self-learning multi-scale features in the residual
network architecture to compute an attention map that enables the network to focus
on the regions of facial interest and cover different action units to focus on the regions
where micro-expressions occur. Yang et al. [22] proposed a convolutional neural network
based on the attention mechanism. They embedded generic attention into static face key
points, dynamic information into dynamic attention, and semantic attributes related to
expressions into channel attention. These three attention mechanisms are integrated to
obtain a more differentiated visual representation. Li et al. [23] proposed a muscle-motion-
guided network to model local subtle muscle motion patterns by introducing successive
attention blocks and introducing the attention map of the previous layer as prior knowledge
to generate the attention map of the current layer. Su et al. [24] proposed a micro-expression
extractor guided by a critical face component recognition method that uses a face semantic
segmentation probability map involving multiple essential facial parts to guide face feature
learning and highlights the relevant regions through a component-aware attention module.
Zhang et al. [25] proposed an attention-enhanced residual block that uses a triple attention
mechanism in the residual block to extract relatively coarse-grained features using channel
and spatial attention and multi-headed self-attention on different spatial locations and
channels of the features to generate a self-attention map, which makes the network focus
more on critical facial regions.

We propose an MSFF module and an MOFRW module to focus on salient features
of facial regions from channel and spatial perspectives based on the attention mechanism.
This operation improves the network’s generalization ability and enhances the recognition
of different micro-expression types. With these improvements, our model achieves better
performance in micro-expression recognition tasks.

3. Proposed Method

In this section, we describe the framework of the micro-expression recognition task in
detail. The overall flow is shown in Figure 1.
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Figure 1. The general flow chart of micro-expression recognition. The model is divided into three
parts: data preprocessing, feature learning, and a priori weighted prediction. Among them, the data
preprocessing part contains apex frame localization and optical flow feature calculation, and the
feature learning part uses inception blocks for feature extraction, with 6 convolutional kernels for each
scale in the first Inception block and 16 convolutional kernels for each scale in the second inception
block. In addition, the multi-scale feature fusion (MSFF) and multi-optical flow feature reweighting
(MOFRW) modules are used to fuse features and reweight optical flow features, respectively. In the
prior weighting part, the model uses the prior probability (Pp) learned from the dataset distribution
and adds it to the model prediction to obtain the final prediction (padd).
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3.1. Data Preprocessing
3.1.1. Face Cropping and Apex Frame Positioning

Among the three generic datasets (CASMEII [8], SAMM [26], and SMIC [27]), the
CASME II and SMIC datasets provide video sequences of already cropped face images.
Since the SAMM dataset does not provide cropped images, we use the Dlib toolkit to
detect critical points on the face and crop the images according to these points. All cropped
images are resized to a size of 170 × 140.

The subtlety of micro-expression facial muscle movements makes facial changes
between two successive frames less obvious. Inspired by [13], the apex frame with the
highest motion intensity can provide a meaningful enough representation to encode facial
micro-expressions. Therefore, each micro-expression sample can be represented using only
the onset and apex frames. For the SMIC dataset with only the onset and offset frames
labeled, we use an automatic apex localization algorithm (i.e., D&C-RoIs) [13] to locate
the apex frames of each micro-expression sequence. The method first divides the face
image into three facial subregions, i.e., mouth, left eye and left eyebrow, and right eye and
right eyebrow. Then, LBP features are calculated for each subregion, and the differences
in LBP features between the three ROIs are compared with the first frame. The ROI with
the most significant difference is selected. The frame with the most considerable intensity
of facial muscle movement is searched using a partitioning strategy to obtain the index
of micro-expression apex frames. Using this method, D&C-ROIS can efficiently locate
micro-expression apex frames and improve the accuracy of micro-expression recognition.

3.1.2. Optical Flow Feature Extraction

The optical flow method is a commonly used method to study dynamic objects and is
also applicable to describe the minute movements of facial muscles [28]. Because micro-
expression datasets are collected under strict lighting conditions, the light-sensitive nature
of the optical flow method can be mitigated to some extent [29]. Compared with texture
features, the optical flow method can effectively reduce the domain difference between
different databases, which is crucial in improving cross-database micro-expression recog-
nition performance [30]. Therefore, the optical flow method has essential applications in
micro-expression analysis.

We use the total variation-l1 optical flow (TV-L1) method to calculate the optical flow
between the start and vertex frames. This algorithm is suitable for motion analysis, where
the displacement of two adjacent frames is small and the edge feature information of the
image can be preserved. We use u and v to denote the horizontal and vertical components
of the optical flow field, respectively, to describe the motion information between the start
frame and the vertex frame. The authors of [17] further extracted optical strain from the
optical flow to emphasize the fine motion on a tiny scale. Inspired by this, we calculate the
optical strain (os) as the third optical flow information according to u, v:

os =
1
2
[∇O f + (∇O f )

T ] (1)

where O f = [u, v]T is the optical flow vector, including horizontal and vertical components,
and ∇ is the derivative of O f . In summary, the following three optical flows can represent
each micro-expression sample.

u: the horizontal component of the optical flow field;
v: the vertical component of the optical flow field;
os: optical strain.

3.2. Network Architecture
3.2.1. Backbone Selection

Larger convolutional kernels usually have larger perceptual fields for convolutional
neural network models. They can better capture the global features in the input data,
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while smaller convolutional kernels are more suitable for extracting local features. Due
to the differences in the location of critical information in different optical flow images,
choosing the appropriate convolution kernel size for convolutional operations is more
complicated. Inspired by [18], we adopt the inception technique, using multiple size filters
in parallel at the same level. The inception network extracts features at different scales and
abstraction levels, which can be better adapted to graphs of different sizes and complexities,
enabling the network to capture richer information. In addition, inception blocks use small
convolutional layers of 1 × 1, 3 × 3, and 5 × 5 instead of large filters, while an additional
1 × 1 convolutional layer is added to limit the number of input channels. This design
can effectively reduce the number of model parameters and computational effort and
improve computational efficiency. Finally, using the maximum pooling operation after
each inception block can further reduce the size and computation of the feature maps and
filter out the noise and redundant information in the input feature maps to better aggregate
the feature information. The inception structure used in this paper is shown in Figure 2.

Input feature

3×3 Max pool 1×1 Conv 1×1 Conv

Filter 

Concatenation

1×1 Conv1×1 Conv 3×3 Conv 5×5 Conv

2×2 Max pool

Figure 2. The structure of the inception block.

3.2.2. MFSS Module

The MSFF module proposed in this paper aims to obtain motion information of face
optical flow images at different scales. To enhance the salience and expressiveness of
features in each layer, we first employ a spatial attention module (SAM) for adaptive
weighting, as shown in Figure 3a. The SAM module can learn the features of the previous
and current layers, generate the corresponding attention mapping (Attn), and multiply it
by the input features to enhance the expression of local information of the face and the
representation of motion region features.

Our proposed MSFF module employs a three-step strategy to capture more local
motion information in low-level optical flow features, as shown in Figure 3b. (i) To connect
with the current layer features, the features of the previous layer are downsampled. Then,
the downsampled features are subjected to SAM processing, and before entering SAM,
the features are subjected to a summing operation with the enhanced features. (ii) SAM
processing is conducted for the current layer. (iii) The processed features of the previous
and current layers are concatenated to obtain the final multi-scale fused features (OF-
MSFF) of the middle and low neighbor layers. This design can extract and fuse different



Entropy 2023, 25, 1064 7 of 17

motion information at different levels and scales to enhance the expression and recognition
accuracy of local information on the face.

FInput 

Conv3×3

[MaxPool,AvgPool] Attn

Fprevious

Fcurrent SAM

(a)

(b)

3×3,stride=2 SAM

Concatenation

Figure 3. (a) SAM flow chart; (b) MSFF flow chart.

3.2.3. MOFRW Module

The MOFRW module proposed in this paper stitches the optical flow information
of different modes. It uses the channel attention module (CAM) to weigh each piece of
optical flow information, as shown in Figure 4a. This design can fully use the characteristics
and advantages of different modal optical flow information to improve the performance
and differentiation of optical flow features and thus obtain more accurate and reliable
dynamic information. When performing CAM and weighting calculation, it is also neces-
sary to weight each channel according to its importance to strengthen critical information
and further suppress noise and redundant information to improve the performance and
differentiation ability of optical flow features.

The MOFRW module achieves attention weighting of multiple pieces of optical flow
feature information through four main steps. The overall process is shown in Figure 4b.
First, the three optical flow features are stitched together. The channel attention vectors
of different optical flow information feature maps are extracted using CAM to obtain the
channel attention of the three optical flow features. Second, the three optical flow channel
attention vectors are feature-recalibrated using softmax to obtain new attention weights for
each optical flow information interaction. Then, a dot-product operation is performed on
the recalibrated weights and the corresponding feature maps. After attention weighting
the multi-optical flow feature information, the output is obtained as a feature map. Finally,
the three input-spliced optical flow features are summed with the attention-weighted
features and output to obtain a reweighted multi-optical flow-weighted feature map. The
computational process of the MOFRW module can be described as follows.

Zi = CAM(Fi), i = u, v, os

atti = So f tmax(Zi) =
exp(Zi)

∑3
i=1 exp(Zi)

, i = u, v, os

Yi = Fi � atti, i = u, v, os

Out = Finput + Cat([Yu, Yv, Yos])

(2)
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Shared MLP

MaxPool

AvgPool

Attn
FInput 

CAM

u v
Softmax

u v

Fu Fv Fos Fu Fv Fos
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(a)

(b)
Figure 4. (a) CAM flow chart; (b) MOFRW flow chart.

3.3. Logit-Adjusted a Priori Weighted Loss

Due to the difficulty of collecting micro-expressions and the significant difference
in the difficulty of collecting different types of micro-expressions, the micro-expression
dataset has the problem of a highly uneven distribution of categories. To solve this problem,
we introduce the logit-adjusted softmax cross-entropy (LASCE) method to balance the
prediction scores of minority- and majority-class samples. In the training process, the
LASCE method weights the prediction scores of minority and majority samples based on
the sample label frequency, which avoids the situation in which majority samples suppress
minority samples and optimizes the model training process. Especially in the case of
highly unbalanced data distribution, the learning classifier based on the LASCE method
can reduce the probability of misclassifying minority class samples as the majority class,
thus improving the robustness of the model. In LASCE, the category prior probabilities
are summed with the model’s output, then trained using a cross-entropy loss function.
Specifically, LASCE is formulated as follows. First, the category prior probability (Pp) is
calculated, where Py denotes the frequency of occurrence of each category, n is the total
number of samples, yi is the category of the ith sample, C is the total number of categories,
and [yi = y] denotes 1 when yi = y and 0 otherwise:

py =
∑n

i=1[yi = y]
n

, y = 1, 2, . . . , C (3)

Then, the correction factor (ay) is calculated for each category based on the category prior
probability (Pp), where τ is a hyperparameter and ε is a minimal value to avoid the
correction factor becoming infinite:

ay = log (pτ
y + ε), y = 1, 2, . . . , C (4)
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Eventually, the vector (Pp) consisting of the correction factor (ay) is summed with the output
of the model and trained using the cross-entropy loss function, i.e.,

LLASCE = − 1
N

N

∑
i=1

C

∑
j=1

(pij + aj) log(
exp(pij + aj)

∑C
k=1 exp(pik + ak)

) (5)

where N is the total number of samples, C is the total number of categories, pij is the
original predicted value of the ith sample belonging to the jth category, log denotes the
natural logarithm, and exp denotes the natural exponential function. When τ = 0, LASCE is
equivalent to the ordinary softmax cross entropy. In contrast, when the value of τ increases,
the model training process focuses more on a few classes of samples, and after extensive
experiments, we select τ = 0.5.

4. Experiments
4.1. Datasets

This section aims to validate the feasibility and effectiveness of our proposed emotion
recognition method on different datasets. We tested on the CASME II, SAMM, and SMIC
datasets. These datasets contain rich emotional information and micro-expression videos,
which are highly challenging for emotion recognition tasks.

The CASME II dataset contains 256 micro-expression videos from 26 participants
with a resolution of 640 × 480 and a frame rate of 200 FPS. The coder categorizes each
video into seven emotion categories: disgust, happiness, depression, surprise, sadness,
fear, and other. The SAMM dataset contains 159 micro-expression videos from 32 partic-
ipants with a resolution of. Each video is categorized by the coder into seven affective
categories based on FACS: anger, happiness, surprise, contempt, disgust, fear, sadness, and
other. The SMIC dataset contains 164 micro-expression videos from 16 participants with
a resolution of 640 × 480 and a frame rate of 100 FPS. These videos are categorized into
positive, negative, and surprise emotional categories. We did not consider the categories
with smaller sample sizes for the individually tested datasets. Thus, the CASME II, SAMM,
and SMIC-HS datasets have 246 (5 categories), 136 (5 categories), and 164 (3 categories)
samples, respectively.

In addition to the three datasets mentioned above, we also use the combined dataset
proposed by MEG2019 to validate the performance of our algorithm. This dataset labels
samples from the CASME II, SAMM, and SMIC datasets into three affective categories: pos-
itive, negative, and surprised. We used the same classification strategy as the mainstream
approach and tested it on the combined dataset. Table 1 shows the relevant information for
the combined dataset.

Table 1. The specific information of the combined dataset.

Dataset SAMM SMIC-HS CASMEII 3DB-Combined

Number of subjects 28 16 24 68

Number of samples 133 164 145 442

Expression
Positive 26 51 32 109
Negtive 92 70 88 250
Surprise 15 43 25 83

4.2. Evaluation Metrics

In our experiments, we used F1 score (F1) and accuracy (Acc) as evaluation metrics
to assess the performance of our sentiment recognition algorithm against the state-of-the-
art methods for the problem of uneven class distribution of micro-expression datasets.
Specifically, F1 is the summed average of precision and recall, which is used to measure the
accuracy and robustness of the classifier. Furthermore, Acc is the ratio of the number of
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samples correctly classified by the classifier to the total number of samples, which is used
to measure the overall accuracy of the classifier. Our evaluation metrics, F1 and Acc, were
chosen because they eliminate the bias caused by the uneven distribution of categories in
the micro-expression dataset while enabling an objective assessment of the algorithm’s
performance. Our comparison with state-of-the-art methods aims to verify whether our
algorithm performs better and more robustly.

Accc =
TPc

Nc
(6)

F1c =
TPc

2TPc + FPc + FNc
(7)

where F1c is the F1 score of the classification results of class c; TPc, FPc, and FNc are the
numbers of true positives, false positives, and false negatives in the classification results
of class c, respectively; Nc represents the number of samples in class c; and Accc is the
accuracy rate of class c, i.e., the proportion of correct predictions in class c to the total
number of samples in that class.

We used the unweighted F1 score (UF1) and the unweighted average recall (UAR) as
evaluation metrics on the combined dataset, aiming to objectively assess the performance
and effectiveness of our proposed sentiment recognition algorithm. The reason for using
this metric is that the combined dataset contains multiple datasets, with different sample
sizes and category distributions in each dataset, thus requiring an unweighted metric to
eliminate the differences between the individual datasets. Specifically, UF1 is the average
of the F1 score of each category, and UAR is the average of the recall of each category. They
can be expressed as:

UF1 =
1
C ∑

c
F1c (8)

UAR =
1
C ∑

c
Accc (9)

where C is the number of micro-expression tags.

4.3. Experimental Setup

In this study, we combine three pieces of optical flow information (horizontal optical
flow, vertical optical flow, and optical strain) into a 28 × 28 image using the horizontal flip
and color dithering techniques for data enhancement. Before the images enter the network,
we use the channel dimension to slice the three pieces of optical flow information so that
they can enter the multi-branch network. To evaluate the experimental results for the triple
and quintuple classification tasks, we use the leave-one-subject-out (LOSO) cross-validation
method. Specifically, we use each subject group as the test set and all the remaining subject
groups for training. This cross-validation approach can effectively reduce overfitting and
improve the robustness and reliability of the model. We used a model based on the PyTorch
framework implementation in our experiments and performed all experiments on a TITAN
RTX3080. We used the Adam optimizer and set the weight_decay parameter to 1 × 10−4.
We set the batch size to 8, the initial learning rate to 0.0001, and the epoch value to 70. These
parameters were chosen based on our experience in the experiments and the experimental
results to adjust them.

4.4. Results and Analysis

In this study, experiments were conducted on the widely used SMIC-HS, CASME II,
and SAMM micro-expression databases, as well as the MEGC2019 combined database, and
compared with traditional machine learning methods and more recent and prominent deep
learning methods to evaluate the performance of the proposed approach. The experimental
results are shown in Tables 2 and 3.
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Table 2. Performance comparison on a single dataset.

Method SAMM (5 Classes) SMIC-HS (3 Classes) CASMEII (5 Classes)
Acc F1 Acc F1 Acc F1

LBP-TOP [8] - - 53.66 0.5384 46.46 0.4241

MDMO [12] (2016) - - 61.5 0.406 51.0 0.418

Bi-WOOF [13] (2018) 59.8 0.591 59.3 0.620 58.9 0.610

DSSN [31] (2019) 57.35 0.4644 63.41 0.6462 70.78 0.7297

STRCN [32] (2019) 54.5 0.492 53.1 0.514 56.0 0.542

SLSTT [33] (2021) 72.388 0.640 73.17 0.724 75.806 0.753

GEME [34] (2021) 55.88 0.4538 64.63 0.6158 75.2 0.7354

Later [35] (2022) - - 73.17 0.7447 70.68 0.7106

FDCN [36] (2022) 58.07 0.57 - - 73.09 0.72

KTGSL [37] (2022) - - 72.58 0.6820 75.64 0.6917

AM3F-FlowNet (Ours) 66.18 0.5410 74.25 0.7254 84.52 0.8288

Table 3. Performance comparison on a combined dataset.

Method
Full SAMM SMIC CASMEII

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [8] 0.5882 0.5280 0.3954 0.4102 0.2000 0.5280 0.7026 0.7429

Bi-WOOF [13] (2018) 0.6296 0.6227 0.5211 0.5139 0.5727 0.5829 0.7805 0.8026

OFF-ApexNet [16] (2019) 0.7196 0.7096 0.5409 0.5392 0.6817 0.6695 0.8764 0.8681

Dual-Inception [18] (2019) 0.7322 0.7278 0.5868 0.5663 0.6645 0.6726 0.8621 0.8560

CapsuleNet [15] (2019) 0.6520 0.6506 0.6209 0.5989 0.5820 0.5877 0.7068 0.7018

STSTNet [17] (2019) 0.7353 0.7605 0.6588 0.6810 0.6801 0.7013 0.8382 0.8686

EMR [30] (2019) 0.7885 0.7824 0.7754 0.7152 0.7461 0.7530 0.8293 0.8209

STA-GCN [38] (2021) - - - - - - 0.7608 0.7096

SLSTT [34] (2021) 0.8160 0.7900 0.7150 0.6420 0.7240 0.7070 0.9010 0.8850

AUGCN [39] (2021) 0.7914 0.7933 0.7392 0.7163 0.7651 0.7780 0.9071 0.8878

BDCNN [40] (2022) 0.8509 0.8500 0.8538 0.8507 0.7859 0.7869 0.9501 0.9516

AM3FFlowNet (Ours) 0.8536 0.8594 0.7643 0.7452 0.7946 0.7941 0.9591 0.9567

Overall, the method proposed in this paper performed well in the task of micro-
expression recognition. In a single-dataset experiment, the proposed method achieved
state-of-the-art results on the CASME II database, with an increase in ACC and F1 of 8.714%
and 0.0758, respectively, compared to the second-best method. However, compared with
the CASME II dataset, this algorithm performed worse on the SAMM and SMIC datasets.
On the SMIC-HS dataset, the ACC of the proposed method was 74.25%, representing an
improvement of 1.08% over the second-best method, while the F1 was 0.7254, which is
slightly lower than the best result. CASME II samples were captured at high frame rates and
provided more accurate vertex frames, resulting in more precise optical flow calculations
and better depiction of motion changes. In contrast, on the SMIC dataset, the additional
vertex frame-locating operation may introduce potential errors. Additionally, SMIC videos
were recorded at a lower frame rate (100 fps) and were influenced by various background
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noises, such as shadows, highlights, and flickering lights caused by the database stimulation
settings. For the SAMM dataset, the performance of the proposed algorithm was not ideal
due to the smaller sample size for the five-class task, which was just slightly over half of
the sample size of the CASME II dataset, and the more severe class imbalance. This once
again confirms that the impact of small sample sizes and imbalanced class distributions
on classification results cannot be ignored. From the perspective of different emotion
categories, the more sample data are available, the more validated evidence for improved
recognition rates of specific micro-expression types.

This study also achieved excellent results on a comprehensive dataset. For comparison
with the state-of-the-art BDCNN method, we conducted five experiments using the AM3F-
FlowNet model on the composite dataset and calculated the average results. According to
the experimental results, we achieved state-of-the-art results on the FULL, CASMEII, and
SMIC-HS datasets, while on the SAMM dataset, our proposed method slightly fell behind
BDCNN but still outperformed other methods. These results demonstrate the effectiveness
and generalization ability of the proposed method.

4.5. Ablation Experiment

Through the above experiments, we demonstrated the superior performance of AM3F-
FlowNet relative to state-of-the-art micro-expression recognition methods. We believe that
the improved performance of AM3F-FlowNet can be attributed to its three key compo-
nents: the MSFF block, MOFRW block, and LASCE. To investigate their effectiveness, we
performed ablation experiments on them.

(1) Effectiveness of the MSFF block: To verify the validity of the MSFF block, we compared
three cases: (i) no multi-scale is used in AM3F-FlowNet; (ii) no MSFF block is used in AM3F-
FlowNet; and (iii) AM3F-FlowNet. According to the results shown in Table 4, AM3F-FlowNet
with MSFF blocks outperforms its competitors. For example, with multi-scale, the Acc and
F1 of the model improved by 2.09% and 0.0326, respectively, over the prototype, while with
an MSFF block on top of multi-scale, the Acc and F1 of the model improved by 3.35% and
0.0383, respectively. The above results demonstrate the key role of using multi-scale to exploit
the underlying stack information for micro-expression recognition performance and validate
the role of the MSFF block in the effectiveness of AM3F-FlowNet.

(2) Effectiveness of MOFRW block: To verify the effectiveness of the MOFRW block,
we compared two cases: (i) mo MOFRW block is used in AM3F-FlowNet; and (ii) AM3F-
FlowNet. According to the results shown in Table 4, the MOFRW block has a significant role
in improving the model performance by adaptively weighting the features by measuring
the contribution of each optical flow to the recognition results. The AM3F-FlowNet with
an MOFRW block improved Acc and F1 by 2.93% and 0.0196, respectively, relative to the
prototype, validating the effectiveness of MOFRW.

(3) Validity of LASCE: To verify the validity of LASCE, we compared four cases: (i) stan-
dard cross-entropy loss function; (ii) focal loss function; (iii) logit-adjusted focal loss function
(LA-Focal); and (iv) LASCE. According to the results shown in Table 5, LASCE achieves
the best performance in micro-expression recognition, with Acc and F1 improving by 2.12%
and 0.0238, respectively, over the standard cross entropy. The underperforming focal loss
function also improves after logarithmic adjustment based on prior knowledge. To validate
the ability of LASCE to alleviate category imbalance, we present the confusion matrices of
the loss function classification results before and after logarithmic adjustment, as shown in
Figure 5. Among the five affective categories considered, the accuracy of disgust, happiness,
and repression, on the other hand, were increased by employing log-adjusted standard cross-
entropy loss and focus loss, resulting in a more balanced distribution of prediction accuracy.
Although this was achieved by slightly reducing the accuracy of the major classes, the average
accuracy of these three classes exceeded the accuracy of the unweighted loss function. This is
especially important when the distribution of classes is extremely unbalanced or when the
accuracy of minor classes is more important than that of major classes. These experimental
results validate the effectiveness of LASCE in AM3F-FlowNet.
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Table 4. Accuracy results of AM3F-FlowNet and its variants (AM3F-FlowNet without multi-scale,
AM3F-FlowNet using multi-scale, and AM3F-FlowNet using MSFF blocks) on the CASMEII dataset.
For each classification task, the highest performance is highlighted in bold.

Method CASMEII (5 Classes)
Acc (%) F1

AM3F-FlowNet without multi-scale 81.17 0.7905

AM3F-FlowNet without MSFF 83.26 0.8231

AM3F-FlowNet without MOFRW 81.59 0.8092

AM3F-FlowNet 84.52 0.8288

Table 5. Accuracy results of AM3F-FlowNet on the CASMEII dataset using each of the four loss
functions. For each classification task, the highest performance is highlighted in bold.

Loss CASMEII (5 Classes)
Acc (%) F1

CE 82.38 0.8050

Focal 79.92 0.7799

LA-Focal 82.43 0.8048

LASCE 84.52 0.8288

Figure 5. Confusion matrix for classification results of different loss functions. For the CASMEII
dataset, the number of disgust categories is 60, the number of happiness categories is 32, the number
of repression categories is 27, the number of surprise categories is 25, and the number of other
categories is 102.

4.6. Feature Visualization

To improve the interpretability of models, we usually need to use visualization meth-
ods to present the model prediction results. In this process, the heat map is a standard
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visualization tool that can help us better understand the prediction results of the model. In
particular, heat maps can be helpful when verifying the validity of the model’s recognition
of specific emotions and determining whether height activation locations correspond to
specific motion locations, as shown in Figure 6.

In our experiment, we selected two sets of combinations of optical flow and optical
variation images from five emotion categories as our original images. We returned heat
maps using feature maps connected by three pieces of optical flow information after
MOFRW blocks, as shown in Figure 6. We used Grad-CAM [41] as our visualization
method, and by looking at the color distribution in the heat map, we can find the correlation,
importance, and degree of influence between different features. Visualizing the heat map
helps us better understand the model’s prediction results and the impact of each feature
on the prediction results. The validity of the model was verified in both sets of images by
comparing the detailed information of the heat maps with the original optical flow images.
For emotions of depression, surprise, and disgust, which have little difference in muscle
motor sites, the model achieved precise localization of the motor sites. For the emotion
of happiness, which has significant differences in muscle motor sites (such as eyebrows
and mouth), the model still accurately focused on the motor regions. These visualized heat
maps further enhance our confidence in the model.

Figure 6. Raw optical-flow–optical-strain image with the visualized heat map.

5. Conclusions

In this study, a model called AM3F-FlowNet is proposed, which can effectively solve
the problem of difficulty in extracting subtle local features in micro-expression recognition
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tasks. The model combines multi-scale, multi-channel, and attention mechanism techniques
to exploit the complementary characteristics of different optical flows and can thoroughly
learn the motion information of micro-expressions and extract the salient and distinguishing
features of micro-expressions. We designed several modules, specifically the MSFF and
MOFRW modules. Among them, the MSFF module specializes in highlighting subtle
local movements of the face. In contrast, the MOFRW module uses the contribution
of different optical flows for reweighting to extract key features and filter redundant
features. By visualizing the high-level feature maps, we demonstrated the effectiveness
of the attention module in capturing facial regions associated with emotions. During the
experiments, we introduced a logit adjustment loss function to successfully mitigate the
category imbalance problem of the micro-expression dataset. The experimental results show
that the performance of the AM3F-FlowNet model on multiple micro-expression datasets is
comparable to that of state-of-the-art methods, which fully demonstrates the effectiveness of
the algorithm proposed in this paper. In the future, we will further investigate the semantic
correlation of local micro-expression features to enhance the model’s interpretability and
feature-learning capability.

Author Contributions: Conceptualization, C.F.; methodology, C.F.; validation, C.F.; writing—original
draft preparation, C.F.; writing—review and editing, C.F., W.Y. and D.C.; supervision, W.Y. and F.W.;
funding acquisition, W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China (grant number
202204120017), the Autonomous Region Science and Technology Program (grant numbers 2022B01008-
2 and 2020A02001-1.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, X.-b.; Wu, Q.; Fu, X.-l. Effects of the duration of expressions on the recognition of microexpressions. J. Zhejiang Univ. Sci. B

2012, 13, 221–230. [CrossRef]
2. Li, Y.; Wei, J.; Liu, Y.; Kauttonen, J.; Zhao, G. Deep learning for micro-expression recognition: A survey. IEEE Trans. Affect.

Comput. 2022, 13, 2028–2046. [CrossRef]
3. Thi Thu Nguyen, N.; Thi Thu Nguyen, D.; The Pham, B. Micro-expression recognition based on the fusion between optical flow

and dynamic image. In Proceedings of the 2021 the 5th International Conference on Machine Learning and Soft Computing,
Da Nang, Vietnam, 29–31 January 2021; pp. 115–120.

4. Liong, S.T.; Phan, R.C.W.; See, J.; Oh, Y.H.; Wong, K. Optical strain based recognition of subtle emotions. In Proceedings of
the 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Kuching, Sarawak,
Malaysia, 1–4 December 2014; pp. 180–184.

5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

6. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

7. Menon, A.K.; Jayasumana, S.; Rawat, A.S.; Jain, H.; Veit, A.; Kumar, S. Long-tail learning via logit adjustment. arXiv 2020,
arXiv:2007.07314.

8. Yan, W.J.; Li, X.; Wang, S.J.; Zhao, G.; Liu, Y.J.; Chen, Y.H.; Fu, X. CASME II: An improved spontaneous micro-expression database
and the baseline evaluation. PLoS ONE 2014, 9, e86041. [CrossRef] [PubMed]

9. Wang, Y.; See, J.; Phan, R.C.W.; Oh, Y.H. Lbp with six intersection points: Reducing redundant information in lbp-top for
micro-expression recognition. In Proceedings of the Computer Vision–ACCV 2014: 12th Asian Conference on Computer Vision,
Singapore, Singapore, 1–5 November 2014; Revised Selected Papers, Part I 12; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 525–537.

10. Li, X.; Hong, X.; Moilanen, A.; Huang, X.; Pfister, T.; Zhao, G.; Pietikäinen, M. Towards reading hidden emotions: A comparative
study of spontaneous micro-expression spotting and recognition methods. IEEE Trans. Affect. Comput. 2017, 9, 563–577. [CrossRef]

http://doi.org/10.1631/jzus.B1100063
http://dx.doi.org/10.1109/TAFFC.2022.3205170
http://dx.doi.org/10.1371/journal.pone.0086041
http://www.ncbi.nlm.nih.gov/pubmed/24475068
http://dx.doi.org/10.1109/TAFFC.2017.2667642


Entropy 2023, 25, 1064 16 of 17

11. Shreve, M.; Godavarthy, S.; Goldgof, D.; Sarkar, S. Macro-and micro-expression spotting in long videos using spatio-temporal
strain. In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara,
CA, USA, 21–25 March 2011; pp. 51–56.

12. Liu, Y.J.; Zhang, J.K.; Yan, W.J.; Wang, S.J.; Zhao, G.; Fu, X. A main directional mean optical flow feature for spontaneous
micro-expression recognition. IEEE Trans. Affect. Comput. 2015, 7, 299–310. [CrossRef]

13. Liong, S.T.; See, J.; Wong, K.; Phan, R.C.W. Less is more: Micro-expression recognition from video using apex frame. Signal
Process. Image Commun. 2018, 62, 82–92. [CrossRef]

14. Patel, D.; Hong, X.; Zhao, G. Selective deep features for micro-expression recognition. In Proceedings of the 2016 23rd
International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2258–2263.

15. Van Quang, N.; Chun, J.; Tokuyama, T. CapsuleNet for micro-expression recognition. In Proceedings of the 2019 14th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; pp. 1–7.

16. Gan, Y.S.; Liong, S.T.; Yau, W.C.; Huang, Y.C.; Tan, L.K. OFF-ApexNet on micro-expression recognition system. Signal Process.
Image Commun. 2019, 74, 129–139. [CrossRef]

17. Liong, S.T.; Gan, Y.S.; See, J.; Khor, H.Q.; Huang, Y.C. Shallow triple stream three-dimensional cnn (ststnet) for micro-expression
recognition. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019),
Lille, France, 14–18 May 2019; pp. 1–5.

18. Zhou, L.; Mao, Q.; Xue, L. Dual-inception network for cross-database micro-expression recognition. In Proceedings of the 2019
14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; pp. 1–5.

19. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 1998, 20, 1254–1259. [CrossRef]

20. Zhao, S.; Tang, H.; Liu, S.; Zhang, Y.; Wang, H.; Xu, T.; Chen, E.; Guan, C. ME-PLAN: A deep prototypical learning with local
attention network for dynamic micro-expression recognition. Neural Netw. 2022, 153, 427–443. [CrossRef]

21. Wang, C.; Peng, M.; Bi, T.; Chen, T. Micro-attention for micro-expression recognition. Neurocomputing 2020, 410, 354–362.
[CrossRef]

22. Yang, B.; Cheng, J.; Yang, Y.; Zhang, B.; Li, J. MERTA: Micro-expression recognition with ternary attentions. Multimed. Tools Appl.
2021, 80, 1–16. [CrossRef]

23. Li, H.; Sui, M.; Zhu, Z.; Zhao, F. MMNet: Muscle motion-guided network for micro-expression recognition. arXiv 2022,
arXiv:2201.05297.

24. Su, Y.; Zhang, J.; Liu, J.; Zhai, G. Key facial components guided micro-expression recognition based on first & second-order
motion. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July
2021; pp. 1–6.

25. Zhang, J.; Liu, F.; Zhou, A. Off-TANet: A Lightweight Neural Micro-expression Recognizer with Optical Flow Features and
Integrated Attention Mechanism. In Proceedings of the PRICAI 2021: Trends in Artificial Intelligence: 18th Pacific Rim
International Conference on Artificial Intelligence, PRICAI 2021, Hanoi, Vietnam, 8–12 November 2021; Proceedings, Part I;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 266–279.

26. Davison, A.K.; Lansley, C.; Costen, N.; Tan, K.; Yap, M.H. Samm: A spontaneous micro-facial movement dataset. IEEE Trans.
Affect. Comput. 2016, 9, 116–129. [CrossRef]

27. Li, X.; Pfister, T.; Huang, X.; Zhao, G.; Pietikäinen, M. A spontaneous micro-expression database: Inducement, collection
and baseline. In Proceedings of the 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture
Recognition (fg), Shanghai, China, 22–26 April 2013; pp. 1–6.

28. Li, Q.; Yu, J.; Kurihara, T.; Zhang, H.; Zhan, S. Deep convolutional neural network with optical flow for facial micro-expression
recognition. J. Circ. Syst. Comput. 2020, 29, 2050006. [CrossRef]

29. Ben, X.; Ren, Y.; Zhang, J.; Wang, S.J.; Kpalma, K.; Meng, W.; Liu, Y.J. Video-based facial micro-expression analysis: A survey of
datasets, features and algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5826–5846. [CrossRef]

30. Khor, H.Q.; See, J.; Phan, R.C.W.; Lin, W. Enriched long-term recurrent convolutional network for facial micro-expression
recognition. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018),
Xi’an, China, 15–19 May 2018; pp. 667–674.

31. Khor, H.Q.; See, J.; Liong, S.T.; Phan, R.C.; Lin, W. Dual-stream shallow networks for facial micro-expression recognition.
In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 36–40.

32. Xia, Z.; Hong, X.; Gao, X.; Feng, X.; Zhao, G. Spatiotemporal recurrent convolutional networks for recognizing spontaneous
micro-expressions. IEEE Trans. Multimed. 2019, 22, 626–640. [CrossRef]
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