
Citation: Zhang, Z. Several Basic

Elements of Entropic Statistics.

Entropy 2023, 25, 1060. https://

doi.org/10.3390/e25071060

Academic Editor: Nikolai

Leonenko

Received: 14 June 2023

Revised: 11 July 2023

Accepted: 12 July 2023

Published: 13 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Several Basic Elements of Entropic Statistics
Zhiyi Zhang

Department of Mathematics and Statistics, UNC Charlotte, Charlotte, NC 28223, USA; zzhang@charlotte.edu

Abstract: Inspired by the development in modern data science, a shift is increasingly visible in
the foundation of statistical inference, away from a real space, where random variables reside,
toward a nonmetrized and nonordinal alphabet, where more general random elements reside. While
statistical inferences based on random variables are theoretically well supported in the rich literature
of probability and statistics, inferences on alphabets, mostly by way of various entropies and their
estimation, are less systematically supported in theory. Without the familiar notions of neighborhood,
real or complex moments, tails, et cetera, associated with random variables, probability and statistics
based on random elements on alphabets need more attention to foster a sound framework for rigorous
development of entropy-based statistical exercises. In this article, several basic elements of entropic
statistics are introduced and discussed, including notions of general entropies, entropic sample spaces,
entropic distributions, entropic statistics, entropic multinomial distributions, entropic moments, and
entropic basis, among other entropic objects. In particular, an entropic-moment-generating function is
defined and it is shown to uniquely characterize the underlying distribution in entropic perspective,
and, hence, all entropies. An entropic version of the Glivenko–Cantelli convergence theorem is
also established.

Keywords: entropies; entropy estimation; entropic-moment-generating function; entropic statistics

1. Introduction and Summary

Let X = {`k; k ≥ 1} be a countable alphabet and let p = {pk; k ≥ 1} be a probability
distribution on X . Let P be the collection of all probability distributions on X . Let
p↓ = {p(k); k ≥ 1} be the nonincreasingly rearranged p, that is, p(k) ≥ p(k+1) for every
k ≥ 1. Let P↓ be the collection of all possible p↓. It follows that P↓ ⊂P is an aggregated
version of P in the sense that P is partitioned and represented by p↓ ∈P↓.

Across a wide spectrum of scientific investigation, a random system is often described
as a probability distribution on a countable alphabet, {X , p}; however many complex
system properties of interest, such as those studied in information theory and statistical
mechanics, are often described by functions of p↓, for example, the Shannon entropy

H = − ∑
k≥1

pk ln pk

as in [1], the members of the Rényi entropy family

Rα = ln ∑
k≥1

pα
k /(1− α)

where α ∈ (0, 1) ∪ (1.∞), as in [2], and the members of the Tsallis entropy family

Tα = (1− ∑
k≥1

pα
k )/(α− 1)
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where α ∈ (−∞, 1) ∪ (1, ∞), as in [3]. Other similar functions come under the names of
diversity indices, for example, the Gini–Simpson index

ζ = 1− ∑
k≥1

p2
k

as in [4], the generalized Simpson’s indices

ζu,v = ∑
k≥1

pu
k (1− pk)

v

where u ≥ 1 and v ≥ 0 are integers, as described in [5], Hill’s diversity numbers

Hα = (∑
k≥1

pα
k )

1/(1−α)

where α ∈ (0, 1) ∪ (1, ∞), as in [6], Emlen’s index

D = ∑
k≥1

pke−pk ,

as in [7], and the richness index

K = ∑
k≥1

1[pk > 0],

where 1[·] is the indicator function. While all the abovementioned functions each have
their unique significance in their respective fields of study, they share one characteristic in
common: they are all functions of p↓.

The word entropy has ancient Greek roots, en and tropē, that is, inward and change
respectively, in English, or internal change collectively. As such, it is a label-independent
concept. For generality and conciseness of the presentation in this article, let the following
definition be adopted.

Definition 1. Let f (p) be a function defined for every p ∈P . The function f (p) is referred to as
an entropy if f (p) depends on p only through p↓, that is, f (p) = f (p↓).

By Definition 1, all entropies and diversity indices mentioned about are indeed en-
tropies. In addition, p(1), or more generally p(k) for any positive integer k, is an entropy, and
therefore p↓ is an array of entropies. One important property to be noted about entropies
is that p↓ is independent of labels of the alphabet, {`k; k ≥ 1}. Another fact to be noted is
that all entropies are uniquely determined by p↓. For clarity of terminologies throughout
this article, let it be noted that any properties of the underlying random system that are
described by one or more entropies are referred to as entropic properties. Furthermore, p
is referred to as the underlying probability distribution, or simply the distribution, of a
random system, and p↓ is referred to as the entropic distribution associated with p. It is
also to be noted that p↓ = {p(k); k ≥ 1} is not a probability distribution in the usual sense
since it is not associated with any specific probability experiment. It is merely an array of
nonincreasingly ordered positive parameters that sum up to one.

Let {X1, · · · , Xn}, drawn from X according to p, be a random sample of size n. The
sample may be summarized into Y = {Yk; k ≥ 1}, where Yk is the observed frequency
of letter `k, or into p̂ = { p̂k = Yk/n; k ≥ 1}. Let Y↓ = {Y(k); k ≥} and p̂↓ = { p̂(k) =
Y(k)/n; k ≥ 1} be the nonincreasingly rearranged Y and p̂, respectively, where Y(k) ≥ Y(k+1)
and p̂(k) ≥ p̂(k+1) for every k. Under the assumption that the study interest of the underly-
ing random system only lies with the properties described by indices that are functions
of the form f (p↓), that is, entropies by Definition 1, there are two conceptual perspectives
to the associated with statistical inference. The first is a framework of estimating f (p)
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based on p̂, and the second is one of estimating f (p) = f (p↓) based on p̂↓. For lack of
better terms, let the first framework be referred to as the classical statistics and the second
framework as the entropic statistics. These two frameworks are not equivalent and, in
particular, the entropic framework has its special and useful implications.

The literature of statistical estimation of entropies, mostly in the specific form of the
Shannon entropy, begins with the early works, as in [8–10], and expands in width and depth
in works by, for example, [11–13]. Many other worthy references on entropy estimation
may be found in the literature review in [14]. The general entropies of Definition 1, however,
allow a discussion on the foundational elements of the statistics in entropic perspective, or
entropic statistics, in a broader sense. This article focuses on three basic basic issues.

First, a notion of entropic sample space is introduced in Section 2 below. An entropic
sample space is an aggregated sample space to register; not a single data point, but an
ensemble of data points. It is a sample space of the entropic statistics, Y↓ or p̂↓, and hence
is label-independent. The said label-independence in turn allows an entropic sample space
to accommodate statistical sampling into a population that is not necessarily prescribed,
that is, the labels of alphabet X need not be completely specified a priori. This property of
an entropic sample space gives new meaning to statistical learning and lends foundational
support for statistical exploration into an unknown, or partially known, universe.

Second, an entropic characteristic function, φ(t) = ∑k≥1 pt
(k) for t ≥ 1, is introduced. It

is obvious that φ(t) is an entropy by Definition 1 and that it always exists. It is established
in Section 3 that φ(t) in an arbitrarily small neighborhood of any interior point of [1, ∞)
uniquely determines the p↓ ∈P↓ and vice versa. Therefore, it is immediately implied that
any and all entropic properties of a random system, including statistical inferences, may be
approached by way of φ(t).

Third, it is established in Section 4 that the entropic statistics converges almost surely
and uniformly to the underlying entropic distribution, that is, p̂↓

a.s.−→ p↓ uniformly, for any
p↓ ∈ P↓. In light of the entropic sampling space and an entropic characterization of the
associated entropic sampling distribution, the Glivenko–Cantelli-like convergence theorem
provides a fundamental support in theory for exercises in entropic statistics.

The article ends with an appendix where a lengthy proof is found.

2. Things Entropic
2.1. Sample Spaces in Different Resolutions

Consider the experiment of randomly drawing a marble from urn 1, which contains
marbles of K = 3 known colors, red, white, and blue. In anticipating the outcome of the
experiment, one may introduce an index k, k = 1, 2, 3, to label the possible outcomes by
`1 = red, `2 = white, and `3 = blue, and denote the corresponding proportions by p1, p2,
and p3. In this case, the sample space is

Ω1 = {`1, `2, `3}, (1)

the event space is B = {∅, {`1}, {`2}, {`3}, {`1, `2}, {`1, `3}, {`2, `3}, {`1, `2, `3}}, and the
point mass probability measure µ(·) assigns p1 to `1, p2 to `2, and p3 to `3. Let X denote
the random outcome of the experiment. The following model of probability distribution,

X `1 `2 `3
P(x) p1 p2 p3

(2)

or in a different form p = {p1, p2, p3} on X = Ω1 = {`1, `2, `3}, is well defined with
three parameters, p1, p2, and p3, subject to the constraints, 0 ≤ pk ≤ 1 for each k and
∑3

k=1 pk = 1. The result of drawing n = 1 marble from the urn may also be represented
by a triplet of random variables Y = {1[X = `1], 1[X = `2], 1[X = `3]}. If Y is used
to represent the outcome of the experiment, the sample space may be denoted as Ω1 =
{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}with corresponding probability distribution P(Y = {1, 0, 0}) =
p1, P(Y = {0, 1, 0}) = p2 and P(Y = {0, 0, 1}) = p3. For clarity in terminology, X is
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referred to as a random element but Y is a set of random variables. In general, random
results of an experiment that are represented by numerical values are referred to as random
variables, and those by non-numerical symbols are random elements.

For a given experiment, the sample space may be chosen at different levels of resolution
depending on the experimenter’s interest in the study. Suppose the experimenter is to
randomly draw n = 3 marbles from urn 1 with replacement in sequence, resulting in
X = {X1, X2, X3} where Xi, i = 1, 2, 3, is the color of the ith marble drawn in the sequence.
The sample space associated with X may be represented by

Ωs =



{`1, `1, `1}, {`2, `2, `2}, {`3, `3, `3},
{`1, `1, `2}, {`2, `1, `1}, {`1, `2, `1},
{`1, `1, `3}, {`3, `1, `1}, {`1, `3, `1},
{`2, `2, `1}, {`1, `2, `2}, {`2, `1, `2},
{`2, `2, `3}, {`3, `2, `2}, {`2, `3, `2},
{`3, `3, `1}, {`1, `3, `3}, {`3, `1, `3},
{`3, `3, `2}, {`2, `3, `3}, {`3, `2, `3},
{`1, `2, `3}, {`1, `3, `2}, {`2, `1, `3},
{`2, `3, `1}, {`3, `1, `2}, {`3, `2, `1}


, (3)

where the subscript “s” stands for sequential. There are 27 distinct elements in (3). In this
case, the sample space may also be expressed as Ωs = {`1, `2, `3}3. This sample space may
be adopted if the order of the n = 3 observations is observable and is of interest.

Suppose in the above experiment the order of the observations is not observable or
not of interest. Then the relevant information in X = {X1, X2, X3}may be represented in
the form of Y = {Y1, Y2, Y3}, where Yk, k = 1, 2, and 3 is the number of `ks observed in the
sample. The sample space associated with Y is

Ωm =

{
{3, 0, 0}, {0, 3, 0}, {0, 0, 3}, {2, 1, 0}, {2, 0, 1},
{0, 2, 1}, {1, 2, 0}, {0, 1, 2}, {1, 0, 2}, {1, 1, 1}

}
, (4)

where the subscript “m” stands for multinomial. There are 10 distinct elements in (4). In
fact, Y = {Y1, Y2, Y3} is the usual multinomial random vector with K = 3 categories and
category probabilities p1, p2, and p3.

The two sample spaces, Ωs and Ωm, serve different statistical interests in various
situations. Ωs is well defined if X = {X1, X2, X3} is observable. Ωm is well defined
if X = {X1, X2, X3} is observable or only Y = {Y1, Y2, Y3} is observable. Noting that
X = {X1, X2, X3} implies Y = {Y1, Y2, Y3}, a lower-resolution sample space may always be
adopted if a higher-resolution sample space may, but not vice versa. For example, if the
order of the draws is not observable, then only Ωm is appropriate since Y = {Y1, Y2, Y3} is
not linked uniquely to the elements of Ωs.

Ωm is an aggregated form of Ωs and is hence of lower resolution; however, Ωm may
be further reduced in resolution. Let

Y↓ = {Y(1), Y(2), Y(3)}, (5)

where Y(1), Y(2), Y(3) are nonincreasingly ordered observed frequencies of the three colors.
The sample space associated with Y↓ is

Ωe =
{
{3, 0, 0}, {2, 1, 0}, {1, 1, 1}

}
, (6)

where the subscript “e” stands for entropic. Ωe is yet an aggregated form of Ωm and hence
of lower resolution still than that of Ωm. Noting that Ωe is label-independent, it is an
example of entropic sample space.
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It is easily verified that the probability distribution of Y↓ may be expressed in terms of
p↓ as follows.

Y↓ {3, 0, 0} {2, 1, 0} {1, 1, 1}
P(y↓) ∑k≥1 p3

(k) 3 ∑k≥1 p2
(k)

(
1− p(k)

)
6p(1)p(2)p(3)

(7)

Let it be noted that all the probabilities in (7) are label-independent, and therefore they
are entropies by Definition 1.

In the case of sampling n = 3 marbles from urn 1 in sequence, a subscription to the
entropic sample space, Ωe, is by choice since both Ωm and Ωe are available. There are
situations when the subscription to an entropic sample space may be by necessity.

Consider the experiment of randomly drawing n = 3 marbles in sequence from urn
2, which contains marbles of K = 3 unknown but distinguishable colors. In this case, the
sample spaces, Ω1 of (1) and Ωm of (3), are not well defined due to the lack of knowledge
of the color labels. However, the entropic sample space, Ωe, is available for subscription
regardless of what the colors are, known or unknown, as long as they are distinguishable.

In general, consider drawing a random sample of size n from X = {`k; k ≥ 1} under
p = {pk; k ≥ 1} in sequence. The sequential sample space is of the form Ω1 = X n. The
aggregated sample space,

Ωm = {{yk; k ≥ 1} : yk ≥ 0 for every k ≥ 1 and ∑k≥1 yk = n}, (8)

is that of the mutinomial array, Y = {Yk; k ≥ 1}, with probability mass function

P({yk; k ≥ 1}) = n!
∏k≥1 yk! ∏

k≥1
pyk

k (9)

where 0 ≤ yk ≤ n for every k ≥ 0 and ∑k≥1 yk = n. Moreover, Ωm may be further
aggregated into a sample space, Ωe, for Y↓ = {Y(k); k ≥ 1}, that is,

Ωe = {{y(k); k ≥ 1} : y(k) ≥ 0 and y(k) ≥ y(k+1) for every k ≥ 1, and ∑k≥1 y(k) = n}. (10)

Let Ωe of (10) be referred to as the entropic sample space. The associated probability
distribution is

P({y(k); k ≥ 1}) = ∑
∗

P({yk; k ≥ 1}) (11)

where ∑∗ is summation of (9) over all {yk; k ≥ 1}s in Ωm sharing the same given {y(k); k ≥ 1}.
Given a y↓ = {y(k); k ≥ 1}, (11) is an entropy. This may be seen in two steps. First,

let K̂ = ∑k≥1 1[y(k) ≥ 1] be the number of distinct letters of X represented in a sample of
size n, and let z = {z1, · · · , zK̂} be the set of K̂ positive integer values of y↓. K̂ is a positive
finite integer. Let the cardinality of X be denoted as K = ∑k≥1 1[pk > 0]. K ≥ 1 may be
finite or countably infinite. Consider an array a(y↓) = {ak(y↓); k ≥ 1} of length K whose
entries are a particular allocation of the K̂ values of zj, j = 1, . . . , K̂, with the other K− K̂
values of a(y↓) being zeros. Let A(y↓) be the complete collection of all such distinct a(y↓)s.
Then it is clear that y↓ uniquely implies A(y↓).

Second, the probability in (11) may be re-expressed as

P({y(k); k ≥ 1}) = n!
∏k≥1 y(k)!

∑
∗∗

(
∏
k≥1

p
ak(y↓)
(k)

)
(12)

where ∑∗∗ is summation over all a(y↓) ∈ A(y↓), given a y↓ = {y(k); k ≥ 1}. Equation (12)
implies that P({y(k); k ≥ 1}) is a function of p↓ and hence an entropy. Let P({y(k); k ≥ 1})
of (11) or (12) be referred to as the entropic distribution associated with the entropic sample
space, Ωe.
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2.2. Entropic Objects

Let the adjective “entropic” be used to describe objects that are label-independent.
Several such objects are defined or summarized below.

• A function, f (p) = f (p↓) for all p↓ ∈P↓, is an entropy.
• The elements of p↓ = {p(k); k ≥ 1} are the entropic parameters, as compared to the

elements of p = {pk; k ≥ 1}, which are multinomial parameters.
• The elements of Y↓ = {Y(k); k ≥ 1} or equivalently of p̂↓ = { p̂(k); k ≥ 1} are entropic

statistics, as compared to the elements of Y = {Yk; k ≥ 1} or equivalently p̂ = { p̂k; k ≥ 1},
which are multinomial statistics.

• Ωe of (10) is the entropic (multinomial) sample space, as compared to Ωm of (8), which
is the multinomial sample space.

• The distribution P({y(k); k ≥ 1}) of (11) or (12), is the entropic probability distribution,
while P({yk; k ≥ 1}) of (9) is the multinomial probability distribution.

• Entropic statistics is the collection of statistical methodologies that help to make
inference on the characteristics of a random system exclusively via entropies.

In addition, there are several useful other entropic objects. First, letting ζv = ∑k≥1 pk(1−
pk)

v for all non-negative integers v ≥ 0, ζ = {ζv; v ≥ 0} is referred to as the entropic basis.
The name comes from the fact that, for any well-behaved function, h(p) for p ∈ [0, 1],
an entropy of the form H = ∑k≥1 pkh(pk) may be expressed as a linear combination
H = ∑v≥1 w(v)ζv. For example, the Shannon entropy, provided that it is finite, may be
written as

H = − ∑
k≥1

pk ln pk = ∑
v≥1

(1/v)ζv−1.

The entropic basis is useful because it unfolds many entropies into simple and linearly
additive forms.

Second, letting ηu = ∑k≥1 pu
k for all positive integers u ≥ 1, η = {ηu; u ≥ 1} is often

referred to as the entropic moment. The elements of both ζ and η have good estimators. A
detailed discussion may be found in [14].

Definition 2. Let X be an random element on a countable alphabet X = {`k; k ≥ 1} with a
corresponding probability distribution p ∈ P and its associated entropic distribution p↓ ∈ P↓.
The function,

φ(t) = ∑
k≥1

pt
k, for t ≥ 0, (13)

is referred to as the entropic-moment-generating function of X, of p, or of p↓. The two complemen-
tary parts of its domain, [1, ∞) and [0, 1), are, respectively, referred to as the primary domain and
the secondary domain of the entropic-moment-generating function.

Depending on context, φ(t) may be denoted as φX(t), φp(t), or φp↓(t) whenever
appropriate. Obviously, φ(t) is uniformly bounded above by one for all p ∈ P in the
primary domain but is not necessarily finitely defined in the secondary domain. However,
in the case of a finite alphabet, that is, K = ∑k≥1 1[pk > 0] < ∞, φ(t) is finitely defined for
each and every t ∈ R, in particular for t ≥ 0. The characteristic utility of φ(t) is further
explored in Section 3 below.

2.3. Examples of Entropic Statistics

Example 1. Consider the Bernoulli experiment of tossing a coin, where P(h) = p and
P(t) = 1 − p. The question of whether the coin is fair may be formulated in the usual clas-
sical sense, that is, whether p = 0.5. The question may be approached by estimating p based
on a sample proportion, p̂, if it is observable which trials lead to “h” and which lead to “t”.
The question may alternatively be formulated by an equivalent entropic statement, for example,
whether H = p(1− p) = 0.25. More generally, if K = ∑k≥1 1[pk] is finite and known, then
the uniformity of p on X may be formulated entropically by, for example, H = ∑k≥1 p2

k = 1/K,
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H = ∑k≥1 pk(1− pk) = (K − 1)/K, or H = −∑k≥1 pk ln pk = ln K. The validity of these
entropic statements may then be gauged statistically.

Example 2. Consider a two-stage sampling scheme: a random sample of size n, {X1, · · · , Xn},
and then a single extra observation Xn+1 are taken. The sample of size n may be summarized into
letter frequencies, Y = {Yk; k ≥ 1}. Let π0 = ∑k≥1 pk1[Yk = 0]. Clearly, π0 is label-independent
and therefore an entropic random variable. Given the sample of size n, π0 may be thought of as the
probability of that Xn+1 assumes a letter in X that is not represented in the sample of size n. In
some context, π0 may be thought of as the probability of new discovery. Let N1 = ∑k≥1 1[Yk = 1]
and Tn = N1/n. Tn is commonly known as Turing’s formula, introduced in [15], but credited
largely to Alan Turing. It is to be noted that N1 is label-independent and, therefore, so is Tn. Tn is
an good estimator of π0 and a discussion on many of its statistical properties may be found in [14].

Example 3. In developing a decision tree classifier, the data space is partitioned into an ensemble of
small subspaces, in each of which a local classification rule is sought. The central spirit of every local
classification may be described by a two-step scheme.

1. First, a random sample of size n, {X1, · · · , Xn}, is taken from X = {`k; k ≥ 1}, under an
unknown p = {pk; k ≥ 1}, which is summarized into Y = {Yk; k ≥ 1}.

2. The data-based local classification rule is as follows: the next observation, Xn+1, is predicted
to be the letter which is observed most frequently in the sample of size n. For simplicity, let it
be assumed that p(1) > p(2), and a letter with the sample maximum frequency is unique (if
not, some randomization may be employed).

Obviously, the designated letter based on a sample is not necessarily the letter associated
with the letter corresponding to the maximum of pks. In such a setup, the performance of the tree
classifier may be gauged by evaluating (calculating or estimating) the probability of the event that

“the designated letter is the same letter of X with probability p(1)”, that is,

P

(
arg max
`k ;k≥1

{p(`k); k ≥ 1} = arg max
`k ;k≥1

{ p̂(`k); k ≥ 1}
)

. (14)

Note that the event in (14) is label-independent and hence the probability is an entropy,
which may be estimated. The probability in (14) may reasonably called the confidence level of the
simple classifier.

For illustration purpose, consider the special case of a binary X, with n = 2m + 1 for some
positive integer m. For simplicity, n is chosen to be odd here so that Y(1) > Y(2) always holds true.
Suppose that p1 = p(1) > p(2) = 1− p(1). The event that a classifier based on the sample of n
correctly identifies the letter of maximum probability may be equivalently expressed as Y1 ≥ m + 1.
The probability of such an event, (14), is

P

(
`1 = arg max

`1,`2

{ p̂1, 1− p̂1}
)

= P(Y1 ≥ m + 1)

= ∑
y≥m+1

n!
y!(n− y)!

py
(1)(1− p(1))

n−y, (15)

which is independent of the assumption that p1 > p2 = 1− p1 and, therefore, is an entropy. More
specifically, (15) is computed for several combinations of n and p↓ and the resulting values are
tabulated in Table 1. Table 1, and its likes, may be used in two different ways. First, given a fixed p↓,
it indicates how large a sample is needed to assure a reliability level of the classifier. On the other
hand, at a given level of n and a particular p↓, the classifier may be evaluated by the probabilities in
the table. In practice, p↓ is unknown but may be estimated.
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Table 1. Confidence Levels of Simple Binary Classifier.

p↓ n = 3 n = 5 n = 7

(1/2, 1/2) 0.5000 0.5000 0.5000

(2/3, 1/3) 0.7407 0.7901 0.8267

(3/4, 1/4) 0.8438 0.8965 0.9294

(4/5, 1/5) 0.8960 0.9421 0.9667

(5/6, 1/6) 0.9259 0.9645 0.9824

3. Entropic Characterization

Entropic statistics focuses on making inference via entropies; it is therefore of interest
to find a function which may characterize p↓ ∈P↓. Since the function φ(t) in its primary
domain and η = {ηu; u ≥ 1}, where ηu = ∑k≥1 pu

k and u is an integer, imply each other
(see Lemma 1 below), it follows immediately that (13) uniquely determines all entropies.
However, the following theorem claims that the characteristic property of the entropic-
moment-generating function, φ(t), remains intact in any arbitrarily neighborhood of any
t ∈ (1, ∞).

Theorem 1. Let p = {pk; k ≥ 1} and q = {qk; k ≥ 1} be two probability distributions on a
same countable alphabet, X = {`k; k ≥ 1}. Let p↓ = {p(k); k ≥ 1} and q↓ = {q(k); k ≥ 1}
be the respective corresponding entropic distributions of p and q. Then p↓ = q↓ if and only if
φp(t) = φq(t) for all t ∈ (a, b) where (a, b) is an arbitrary interval such that 1 ≤ a < b < ∞.

Lemma 1. Let p = {pk; k ≥ 1} and q = {qk; k ≥ 1} be two probability distributions in P with
two corresponding associated entropic distributions p↓ and q↓ in P↓. Then p↓ = q↓ if and only if
∑k≥1 pn

k = ∑k≥1 qn
k for all positive integers n ≥ 1.

A proof of Lemma 1 may be found on pages 50 and 51 in [14]. To prove Theorem 1,
it suffices to show that φ(t) in an arbitrarily small neighborhood of any interior point of
[1, ∞) determines the function globally.

Proof of Theorem 1. If p↓ = q↓, then it immediately follows that φp(t) = φq(t) for all
t ∈ [1, ∞) and, therefore, for t ∈ (a, b) specifically. To prove the theorem, it suffices to show
the converse.

Consider the series

f (z) =
∞

∑
k=1

pz
k

where z ∈ C is a complex variable. Denote the real and the imaginary parts of a complex
value z by Re(z) and Im(z), respectively.

Let D = {z : Re(z) > 1} be the subset of C such that the real part of z is greater than 1.
For every z ∈ D, since pRe(z−1)

k ≤ 1 and
∣∣∣pi Im(z)

k

∣∣∣ = 1, for every k, where |z| is the modulus
of z, it follows that

f (z) =
∞

∑
k=1

pk pz−1
k =

∞

∑
k=1

pk pRe(z−1)
k pi Im(z)

k

and

| f (z)| ≤
∞

∑
k=1

pk. (16)

Letting αk = ln(1/pk),

f (z) =
∞

∑
k=1

e−αkz, (17)

and the functions e−αkz, k ≥ 1, are analytic on C.
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Since the series in (17), for z ∈ D, is dominated by the convergent series ∑k≥1 pk as
in (16), by the Weierstrass uniform convergence theorem, f (z) is analytic on D. By a similar
argument, g(z) = ∑∞

k=1 qz
k is also analytic on D.

Assuming that φp(t) = φq(t) for t ∈ (a, b) where 1 ≤ a < b < ∞, there exists a
convergent sequence, {zn; n ≥ 1} in (a, b) such that limn→∞ zn = z0 ∈ (a, b). Noting that
(a, b) ⊂ D and f (zn) = φp(zn) = φq(zn) = g(zn) for n ≥ 0, by the identity theorem for
analytic functions, f (z) = g(z) for all z ∈ D. It follows that φp(t) = f (t) = g(t) = φq(t)
for all t ∈ [1, ∞), specifically, ∑k≥1 pn

k = ∑k≥1 qn
k for all n ≥ 1. Finally, by Lemma 1,

p↓ = q↓.

Theorem 1 immediately implies that a subfamily of the Rényi entropy Rα with
α ∈ (a, b) ⊂ (1, ∞), a subfamily of the Tsallis entropy Tα with α ∈ (a, b) ⊂ (1, ∞), and a sub-
family of Hill’s diversity numbers Hα with α ∈ (a, b) ⊂ (1, ∞), respectively, characterizes
p↓ and, hence, characterizes all entropies.

The characterization of p↓ in Theorem 1 may be equivalently stated only on any
infinitely countable subset of (a, b).

Corollary 1. Let p and q be two probability distributions on a same countable alphabet, X . Let
p↓ and q↓ be the corresponding entropic distributions of p and q, respectively. Then p↓ = q↓
if and only if φp(t) = φq(t) on any infinite sequence of distinct values, {tn; n ≥ 1}, such that
limn→∞ tn = c ∈ (1, ∞).

Proof. Both φp(t) and φq(t) are analytic at t = c, and therefore h(t) = φp(t)− φq(t) is
analytic at t = c. Let it be first shown, by induction, that all derivatives of h(t) at t = c are
zero, that is, h(m)(c) = 0 for m ≥ 0. Note first that h(c) = h(0) = 0 by the fact that both
φp(t) and φq(t) are continuous and limn→∞ φp(tn) = φp(c) = φq(c) = limn→∞ φq(tn).
Suppose that h(0)(c) = h(1)(c) = h(2)(c) = · · · = h(m)(c) = 0 but h(m+1)(c) 6= 0. Then
there exists an interval (c− ε, c + ε) such that h(t) 6= 0 for t ∈ (c− ε, c + ε). However, there
is at least one tn ∈ (c− ε, c + ε) such that h(tn) = 0 by assumption. This is a contradiction
and therefore h(m)(c) = 0 for all m ≥ 1.

Corollary 2. Let p and q be two probability distributions on a same countable alphabet, X . Let
p↓ and q↓ be the corresponding entropic distributions of p and q, respectively. Then p↓ = q↓ if
and only if φp(t) = φq(t) on any infinite sequence of distinct values, {tn; n ≥ 1} ∈ (a, b) where
1 ≤ a < b < ∞.

Proof. Noting that the infinitely many tns are in an bounded interval, there exists an
infinite subset of {tn; n ≥ 1} that converges to a constant c ∈ [a, b]. The corollary follows
Corollary 1.

Consider a pair of random elements, (X, Y), on a countable joint alphabet,
X × Y = {(li, mj); i ≥ 1, j ≥ 1}, with a corresponding joint probability distribution,
pX,Y = {pi,j; i ≥ 1, j ≥ 1}. Let pX = {pi,·; i ≥ 1} and pY = {p·,j; j ≥ 1}, where
pi,· = ∑j≥1 pi,j and p·,j = ∑i≥1 pi,j, be the two marginal probability distributions of X
and Y, respectively.

Corollary 3. X and Y are independent if and only if

φX,Y(t) = φX(t)× φY(t) (18)

for all t ∈ (a, b), where a and b are two arbitrary real numbers such that 1 ≤ a < b < ∞.

Proof. If X and Y are independent, then (18) follows immediately. Conversely, suppose
that (18) holds. Consider another pair of independent random elements, (U, V), on the
same countable joint alphabet X ×Y and with identical marginal distributions to those of
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(X, Y), that is, pX and pY. It then follows, by (18) and Theorem 2, that pU,V = pX,Y, which
in turn implies that X and Y are independent.

Corollary 3 provides a characterization of independence on a general countable joint
alphabet, and its utility may be explored further.

4. A Basic Convergence Theorem

From an entropic perspective, the convergence of p̂↓ to p↓, to be distinguished from
that of p̂ to p, is of fundamental interest.

For clarity of presentation in this section, let it be noted that, whenever necessary,
the subindex n may be added to Y, Yk, p̂, p̂k, p̂↓, and p̂(k) to highlight the dynamic nature
of these previously defined quantities as n changes, that is, Y = Yn, Yk = Yk,n, p̂ = p̂n,
p̂k = p̂k,n, p̂↓,n = p̂↓ and p̂(k) = p̂(k),n, respectively.

The main result established in this section is the uniform almost-sure convergence of
p̂↓ to p↓, which is made more precise in Theorem 2 below.

Consider the experiment of repeatedly and independently drawing a letter from X
under p, resulting in a sequence of randomly selected letters, ω = {x1, x2, · · · }. Let the
collection of all possible such sequences or paths be denoted Ω. A sample of size n is a
partial sequence of the first n randomly selected letters in an ω, {x1, · · · , xn}.

Let p↓ = {p(k); k ≥ 1} and p̂↓ = { p̂(k); k ≥ 1} be defined as above. It is to be specifi-
cally noted that the rearrangement of the observed relative frequencies, p̂↓, is performed
independently based on the observed values of p̂k for all k ≥ 1, with no regard to the
arrangement of the probabilities, p↓ = {p(k); k ≥ 1}. Consequently, the letter of which
the relative frequency p̂(k) is observed is not necessarily the same letter with which the
probability p(k) is associated. This is, in fact, the essence of entropic perspective.

Theorem 2. For any p ∈P , let p↓, p̂ and p̂↓ be defined as above. Then

max
k≥1

∣∣∣ p̂(k) − p(k)
∣∣∣ a.s.−→ 0. (19)

A proof of Theorem 2 requires Lemmas 2 and 3 below.

Lemma 2. For any p ∈P , let p̂ be as defined above. Then

max
k≥1
| p̂k − pk|

a.s.−→ 0. (20)

Proof. For each k, by the strong law of large numbers, p̂k
a.s.−→ pk or equivalently

| p̂k − pk|
a.s−→ 0. Let the collection of paths ω = {x1, x2, · · · } in Ω that satisfies limn→∞ | p̂k −

pk| = 0 be denoted as Ωk ⊆ Ω. It follows that P(Ωk) = 1, that the complement of Ωk, Ω′k,
is of probability zero, that ∪k≥1Ω′k is of probability zero, and that, letting Ω∗ = ∩k≥1Ωk,
P(Ω∗) = 1− P(∪k≥1Ω′k) = 1.

For each and every path ω ∈ Ω∗ and every k, limn→∞ | p̂k − pk| = 0. Note the fact that
| p̂k − pk| ≤ p̂k + pk and, therefore , ∑k≥1 | p̂k − pk| ≤ ∑k≥1( p̂k + pk) = 2, by the bounded
convergence theorem,

lim
n→∞ ∑

k≥1
| p̂k − pk| = ∑

k≥1
lim

n→∞
| p̂k − pk| = 0, (21)

that is, ∑k≥1 | p̂k − pk|
a.s.−→ 0. By (21), the lemma follows from the fact that

max
k≥1
| p̂k − pk| ≤ ∑

k≥1
| p̂k − pk|

a.s.−→ 0.
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Lemma 2 may be viewed as a version of the Glivenko–Cantelli theorem on countable
alphabets with respect to observed data from a classical multinomial experiment. The
uniformity of the convergence in (20) is of essential importance in the proof of Theorem 2,
which is given below by way of Lemma 3.

Lemma 3. For each k ≥ 1,
p̂(k) − p(k)

a.s.−→ 0. (22)

A proof of Lemma 3 is given in Appendix A. Let it be noted that Ω is the sample space
of a perpetual multinomial iid sampling scheme on X under a probability distribution
p ∈P . Each path in Ω may be represented by {p̂n; n ≥ 1} where p̂n = { p̂k,n; k ≥ 1}. For
each such path {p̂n; n ≥ 1} ∈ Ω, there exists a corresponding path {p̂↓,n; n ≥ 1}, which is
the rearranged {p̂n; n ≥ 1} over all k for every n. Let the total collection of all rearranged
paths of Ω be denoted as Ω↓, and let the collection of all rearranged paths of Ω∗ be denoted
as Ω∗↓. It follows that P(Ω∗↓) = P(Ω∗) = 1. Lemma 3 states that, in each path of Ω∗↓, the k th
component of p̂↓,n converges to the k th component of p↓, namely, p(k), for each k.

Proof of Theorem 2. For any ω ∈ Ω∗↓, note that ∑k≥1 | p̂(k) − p(k)| ≤ 2, by the bounded
convergence theorem and Lemma 3, limn→∞ maxk≥1 | p̂(k) − p(k)| ≤ limn→∞ ∑k≥1 | p̂(k) −
p(k)| = ∑k≥1 limn→∞ | p̂(k) − p(k)| = 0. The theorem follows the fact that P(Ω∗↓) = 1.

Theorem 2 may be viewed as a version of the Glivenko–Cantelli theorem on countable
alphabets with respect to observed data from an entropic multinomial experiment. Theorem 2
immediately implies almost sure convergence for estimators of several key quantities in
classification procedures.

Example 4. p̂(1)
a.s.→ p(1).

Example 5. Suppose that p(1) > p(2), that is, there exists a unique letter in X , denoted
`0, associated with probability p(1). Then the probability of a correct classification, that is,
`0 = arg maxX { p̂k; k ≥ 1}, converges almost surely to one. This is so because, for any path in
Ω∗↓ and any ε < (p(1) − p(2))/2, there exists an N such that, for any n > N, | p̂(1) − p(1)| < ε

and | p̂(1) − p(k)| > ε for all k ≥ 2.

The results of Examples 4 and 5 lend fundamental support for classification algorithms
based on maximum observed frequency, used widely in exercises of modern data science,
for example, decision trees, as mentioned in Example 3.

Many entropies of interest across a wide spectrum of studies are of the additive form,
H(p↓) = ∑k≥1 g(p(k))h(p(k)), where g(p) ≥ 0 and h(p) ≥ 0 are functions of p ∈ [0, 1]. The
almost-sure convergence of Theorem 2 may be passed on to the plug-in estimators of some
such entropies by way of a rather trivial statement in the proposition below.

Proposition 1. Let H(p↓) = ∑k≥1 g(p(k))h(p(k)) where g(p) ≥ 0 and 0 ≤ h(p) ≤ M for some
M > 0 are continuous functions of p ∈ I = [0, 1]. Suppose that p ∈P such that

1. ∑k≥1 g(p(k)) < ∞, and

2. ∑k≥1 g( p̂(k),n)
a.s.→ ∑k≥1 g(p(k)).

Then H(p̂↓)
a.s.→ H(p↓).

Proof. Noting that H(p↓) = ∑k≥1 g(p(k))h(p(k)) ≤ M ∑k≥1 g(p(k)) < ∞, it follows by
Conditions 1 and 2 that

|H(p̂↓)− H(p↓)| ≤ M ∑
k≥1

g( p̂(k)) + M ∑
k≥1

g(p(k)) < ∞. (23)
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Let Ω∗∗↓ ⊆ Ω↓ be the total collection of paths such that Condition 2 holds. For each path,
{p̂n,↓; n ≥ 1} ∈ Ω∗∗↓ , by (23), the proposition follows by the bounded convergence theorem
and the fact that P(Ω∗∗↓ ) = 1.

Example 6. Let H(p↓) = ∑k≥1 ps
(k)(1− p(k))t where s ≥ 1 and t ≥ 0 are two real constants.

In the setup of Proposition 1, h(p) = (1− p)t ≤ 1 on I = [0, 1], and g(p) = ps satisfying
∑k≥1 ps

(k) ≤ 1 for all p↓ ∈ P↓ without qualification, and therefore also for p̂↓ ∈ P↓, that is,
∑k≥1 p̂s

(k) ≤ 1, which implies, by the bounded convergence theorem, ∑k≥1 p̂s
(k) → ∑k≥1 ps

(k) along

each and every path in Ω∗. By Proposition 1, ∑k≥1 p̂s
k(1− p̂(k))t a.s.→ ∑k≥1 ps

k(1− p(k))t. More
specifically, when s and t take integers u ≥ 1 and v ≥ 0, the plug-in estimator of the generalized
Simpson’s diversity index H(p↓) = ∑k≥1 pu

(k)(1− p(k))v (see [5,16]) converges almost surely.

Example 6 implies that the plug-in estimator of H(p↓) = ∑k≥1 ps
(k) where s ≥ 1

converges almost surely, which in turn implies that the plug-in estimators of members
of the Rényi entropy family and the Tsallis entropy family converge almost surely for all
p↓ ∈P↓ without qualification when α ≥ 1. However, it is not known whether the plug-in
estimators of the members of the families with α ∈ (0, 1) converge almost surely when
p↓ ∈P↓ without other qualification (also, see [17]).

Example 7. The plug-in estimator of the Shannon entropy, H(p↓) = −∑k≥1 p(k) ln p(k), con-
verges almost surely when p↓ is such that K = ∑k≥1 1[p(k)>0] < ∞. In this case, even though
− ln p is not bounded above on I = [0, 1], h(p) = −pα ln p ≤ 1/(αe) is for any α ∈ (0, 1).
Writing H(p↓) = ∑k≥1 g(p(k))h(p(k)) where g(p) = p1−α and h(p) = −pα ln p, it suffices to
show ∑k≥1 p̂1−α

(k) converges almost surely. However, this is the case since, by Theorem 2, for every

path {p̂n,↓; n ≥ 1} ∈ Ω∗↓, ∑k≥1 p̂1−α
(k) → ∑k≥1 p1−α

(k) , due to the fact that K < ∞ and P(Ω∗↓) = 1.

It is not known whether the plug-in estimator of the Shannon entropy converges
almost surely when p↓ ∈P↓ without further qualification.

The Shannon entropy has utilities across a wide spectrum of scientific investigations
(see [18]). However, it is not finitely defined for all distributions in P . A family of the
generalized Shannon entropies, for any p↓ ∈P↓, is proposed as follows:

Hm(p↓) = − ∑
k≥1

(
pm
(k)

∑j≥1 pm
(j)

)
ln

(
pm
(k)

∑j≥1 pm
(j)

)
(24)

in [19], where m ≥ 1 is an integer. The Shannon entropy is a special family member
corresponding to m = 1. It may be verified that each member of the family, except the
Shannon entropy, is finitely defined for all p ∈ P and offers all important utilities that
the Shannon entropy offers, including the fact that the mutual information derived based
on each member with m ≥ 2 is zero if and only if the two underlying random elements
are independent.

Example 8. The plug-in estimator of (24) converges almost surely for any p↓ ∈ P↓ whenever
m ≥ 2. To see this, let it be first noted that the plug-in estimator of −∑k≥1 pm

k ln pk converges
almost surely. This fact follows from Proposition 1 with g(p) = p, h(p) = −pm−1 ln p which is
uniformly bounded above on I = [0, 1]. The claimed almost-sure convergence then follows the fact
that, in the re-expression of (24) below,

Hm(p↓) =

(
1

∑j≥1 pm
(j)

)[(
−m ∑

k≥1
pm
(k) ln p(k)

)
+

(
∑
k≥1

pm
(k)

)(
ln ∑

j≥1
pm
(j)

)]
, (25)

and the fact that the plug-in estimator of each of the four series converges almost surely.
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5. Conclusions and Discussion

This article introduces a perspective termed entropic statistics. One of the motivations
of the perspective is to accommodate probability experiments on sample spaces which
may include outcomes that are known to exist (and therefore are prescribed) and those
whose existence is not known (and therefore not prescribable). Such a framework allows
statistical exploration into a general population with possibly infinitely many previously
unobserved and unknown outcomes, or new discoveries. The key concept to foster such a
framework is the label-independence, that is, all parameters and statistics do not depend of
the labels of an alphabet as long as they are distinguishable. Consequently, in this article an
array of label-independent objects are defined and termed entropic objects. In particular, a
general entropy, entropic parameters, entropic statistics, entropic sample spaces, entropic
probability distributions, and an entropic-moment-generating function are defined.

Based on the defined entropic objects, two basic theorems are established. Theorem 1
provides a characterization of the entropic probability distribution on the alphabet via
the entropic-moment-generating function, and Theorem 2 establishes the almost-sure
convergence of the entropic statistics to the entropic parameters and, hence, provides a
foundational support to the entropic framework.

On the other hand, this article merely provides a few basic results in entropic statistics.
On a broader spectrum, many other issues may be fruitfully considered on at least three
fronts, namely, fundamental, probabilistic, and statistical. To begin with, the fundamental
question of what constitutes entropy may be explored in many directions. One of the
most cited sets of axioms is that discussed by Khinchin [20], under which the Shannon
entropy is proved to be unique. However under slightly less restrictive axioms, many
other entropies exist and enjoy almost all the desirable utilities of the Shannon entropy;
for example, see [19]. The existing literature on generalization of entropy is extensive in
physics and information theory; for example, see [21,22]. The collective effort to better
understand what entropy is and how it may help to describe an underlying random system
is ongoing. Further research in understanding generalized entropies and their implications
could greatly enrich the framework of entropic statistics.

Entropy in general is often thought of as summary of a profile state, however measured
numerically, of inner energy or chaos within a random system. As such, it is independent of
any labeling systems, regardless of whether the state is observable or not. A key conceptual
shift introduced in this article is from statistical inference on p (or a function of p) based
on the multinomial frequencies Y to that on p↓ (or a function of p↓) based on the entropic
frequencies Y↓. Such a framework shift, by necessity or by choice, triggers a long array
of basic probability and statistics questions, under different degrees of model restriction,
ranging from parametric forms of pk = p(k, θ) for some parameter θ to the nonparametric
form, {p(k); k ≥ 1}. It may be interesting to note that even for the nonparametric form, there
are several qualitatively different forms, that of a known K = ∑k≥1 1[p(k)>0] < ∞, that of an
unknown K = ∑k≥1 1[p(k)>0] < ∞, and that of K = ∑k≥1 1[p(k)>0] = ∞. Each of these model
classes could imply a very different stochastic behavior of Y↓ as the sample size n increases.
Even long before the notion of information entropy was coined by Shannon in [1], the
behavior of Y↓ had been discussed in the literature by, for example, Auerbach [23] and
Zipf [24]. More recently, several articles [25,26] discussed domains of attraction in the total
collection of all distributions on a countable alphabet by a tail index, τn = n ∑k≥1 p(k)(1−
p(k))n. Each domain characterizes the decay rate of the tail of the underlying entropic
distribution and, in turn, dictates the rates of convergence of various statistical estimators
of various entropies. Further advances on that front would enhance the understanding
of probabilistic behavior of the entropic statistics and, in turn, the estimated entropies
of interest.

In terms of statistical estimation, a large proportion of the existing literature mainly fo-
cuses on the Shannon entropy and variations of the plug-in estimators under various
conditions, most of which are described and referenced in [14]. There are also non-
plug-in estimators of different types, for example, the Bayes estimators [27–29], the hi-
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erarchical Bayes estimators [30], the James–Stein estimators [31], the coverage-adjusted
estimators [32–34], and an unbiased estimator based on sequential data proposed by
Montgomery-Smith and Schürmann. In general, the asymptotic distributions of the plug-in
estimators and their variants seem to have been studied and described to some extent; for
example, see [12,35–38]. However, it is fair to say that many, if not most, of the proposed
estimators of various types have not yet been assigned asymptotic distributions. Any
advances in that direction could much benefit applications of these estimators.

In short, the landscape of entropic statistics is quite porous in comparison to that
of richly supported classical statistics. Many basic and important questions are yet to
be answered, from the axiomatic foundation, to the definitions of basic elements, to the
theoretical supporting architecture, and to the relevance in applications. However, the
same said porosity also offers opportunities for interesting contemplation.
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Appendix A

Proof of Lemma 3. For clarity, the proof of (22) is given, respectively, in five progressively
more general cases: (1) p1 = 1; (2) K = ∑k≥1 1[pk>0] < ∞ and all positive pk’s are distinct;
(3) K < ∞; (4) K is infinite and all positive pk’s are distinct; (5) K is infinite.

For notation simplicity in all cases, let it be assumed without loss of generality that
p = {pk; k ≥ 1} is nonincreasingly arranged to begin with, that is, pk ≥ pk+1 for every k.
With this assumption, the only rearranged object is p̂↓ = { p̂(k); k ≥ 1} with p̂(k) ≥ p̂(k+1)
for every k.

In Case 1, the statement of (22) is trivial.
In Case 2, let p0 = 1 and pK+1 = 0. It follows that

1 = p0 > p1 > p2 > · · · > pk−1 > pk > pk+1 > · · · > pK > pK+1 = 0.

For each sequence ω ∈ Ω∗ as defined in the proof of Lemma 2, the uniformity of (20)
implies that for any ε > 0, there exists an N such that for all n > N, −ε < p̂k − pk < ε for
all k ≥ 1. Specifically, let

ε0 = min{(pk − pk+1)/2; 1 ≤ k ≤ K} > 0. (A1)

There exists an N such that for all n > N, max{| p̂k − pk|; 1 ≤ k ≤ K} < ε0, which has
the following two implications.

1. ∩K
k=1(pk − ε0, pk + ε0) = ∅, that is, pk ± ε0 are disjoint for all k = 1, . . . , K.

2. For every k, k = 1, . . . , K, p̂k ∈ pk ± ε0 and it is the only observed relative frequency
in pk ± ε0.

Combining the above two implications, it follows that p̂k = p̂(k), that is, | p̂(k)− pk| → 0,
for every k, k = 1, . . . , K. Since Ω∗ is of probability one, (22) is established.

In Case 3, it is allowed that several consecutive probabilities in p = {pk; 1 ≤ k ≤ K},
where K = ∑k≥1 1[pk > 0] < ∞, are identical. It follows that

1 = p0 ≥ p1 ≥ p2 ≥ · · · ≥ pk−1 ≥ pk ≥ pk+1 ≥ · · · ≥ pK > pK+1 = 0.

Noting that p = {pk; k ≥ 1} is a finite sequence of runs of identical values, collecting
the first value in each run and retaining its index value, a subset of {pk; k ≥ 1} is obtained,
namely, {pki

; i = 1, . . . , I}, where I is the number of distinct values in p. Let ri be the
multiplicity of pki

in p, i = 1, . . . , I. It follows that

1 = p0 = pk0 > pk1 > pk2 > · · · > pkK′
> pK+1 = 0.
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For each sequence ω ∈ Ω∗ as defined in the proof of Lemma 2, the uniformity of (20)
implies that for any ε > 0, there exists an N such that for all n > N, −ε < p̂k − pk < ε for
all k, k = 1, . . . , K. Specifically, let

ε1 = min{(pki
− pki+1

)/2; i = 0, . . . , I} > 0 (A2)

where pk0 = p0 = 1. There exists an N1 such that for all n > N1, max{| p̂k− pk|; k ≥ 1} < ε1,
which has the following implications.

1. ∩I
i=1(pki

− ε1, pki
+ ε1) = ∅, that is, pki

± ε1 are disjoint for all i, i = 1, . . . , I.
2. For every given k, and therefore an implied i, there are exactly ri relative frequencies

among { p̂k; 1 ≤ k ≤ K} found in pki
± ε1.

It then follows that, for each given k,

min{ p̂(ki+j); j = 0, . . . , ri − 1} ≤ p̂(k) ≤ max{ p̂(ki+j); j = 0, . . . , ri − 1},

and hence p̂(k) → p(k) = pk. Finally, (22) follows the fact that P(Ω∗) = 1.
In Case 4, pk > 0 for all k ≥ 1 and all probabilities are distinct. Letting p0 = 1 and

p∞ = 0,
1 = p0 > p1 > p2 > · · · > pk−1 > pk > pk+1 > · · · > p∞ = 0.

For every fixed k′ such that pk′ ∈ (0, 1), let m ≥ 1 be an integer such that

1−
m

∑
k=1

pk < pk′+1, and (A3)

m ≥ k′ + 1. (A4)

Such an m exists for any given p with an infinite K and a fixed k′ ≥ 1.
For each sequence ω ∈ Ω∗, as defined in the proof of Lemma 2, the uniformity of (20)

implies that for any ε > 0, there exists an N such that for all n > N, −ε < p̂k − pk < ε for
all k, k ≥ 1. Specifically, let

ε2 = min{(pk − pk+1)/2; k = 0, . . . , m} > 0.

There exists an N2 such that for all n > N2, max{| p̂k − pk|; k ≥ 1} < ε2, which implies
the following.

1. The first m probabilities of p, p1, · · · , pm, are covered, respectively, by m disjoint
intervals, pk ± ε2, k = 1, . . . , m.

2. The relative frequencies corresponding to {p1, · · · , pm}, namely, { p̂1, · · · , p̂m}, are
also covered, respectively, by the same disjoint intervals, pk ± ε2, k = 1, . . . , m.

On the other hand, noting the strict inequality in (A3) and the fact that k′ is a fixed
integer, there exists a sufficiently small ε3 such that

1−
m

∑
k=1

pk + mε3 < pk′+1 (A5)

or equivalently

1−
m

∑
k=1

(pk − ε3) < pk′+1. (A6)

Let ε4 = min{ε2, ε3}. By Lemma 2, there exists an N4 such that for all n > N4,

pk − ε4 < p̂k < pk + ε4, (A7)
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for all k, k = 1, · · · , m, and that the updated (A5) and (A6) hold, namely,

1−
m

∑
k=1

pk + mε4 < pk′+1

or, equivalently,

1−
m

∑
k=1

(pk − ε4) < pk′+1. (A8)

That is, in each of the disjoint intervals of (A7), there is at least one relative frequency.
In particular, p̂k is covered in (pk − ε4, pk + ε4) for each k, k = 1, . . . , k′ < m, by (A4).

Next it is necessary to show that there may not be more than one relative frequency
in (pk − ε4, pk + ε4) for each k, k = 1, . . . , k′. Toward that end, consider the total mass of
100% distributed among p̂k, k ≥ 1, given n. From interval (p1 − ε4, p1 + ε4) to interval
(pm − ε4, pm + ε4), the total collective mass covered is at least ∑m

k=1 p̂k; however, by (A7)
and (A8),

m

∑
k=1

p̂k =
m

∑
k=1

( p̂k + ε4)−mε4 >
m

∑
k=1

pk −mε4 =
m

∑
k=1

(pk − ε4) > 1− pk′+1

and the remainder of the mass is

1−
m

∑
k=1

p̂k <pk′+1 < pk′+1 + ε4. (A9)

Regardless of the mass, 1−∑m
k=1 p̂k, on the left side of (A9) is allocated to one or more

than one letter, other than those in {`1, · · · , `m}, the corresponding p̂k, k ≥ m + 1, could
not possibly be sufficiently large to exceed pk′+1 + ε4, nor, therefore, pk′ − ε4. That implies
that, along the path of that selected ω ∈ Ω∗, for any n > N4, p̂k and p̂k alone is covered
in (pk − ε4, pk + ε4) for k, k = 1, . . . , k′. This immediately implies that p̂k = p̂(k) for all k,
k = 1, . . . , k′, and in particular p̂k′ = p̂(k′). p̂(k′) → pk′ since p̂k′ → pk′ . Finally (22) follows
the fact that P(Ω∗) = 1.

In Case 5, pk > 0 for all k ≥ 1 but the probabilities in p = {pk; k ≥ 1} are allowed to
have multiplicities. Letting p0 = 1 and p∞ = 0,

1 = p0 > p1 ≥ p2 ≥ · · · pk ≥ · · · > p∞ = 0. (A10)

p = {pk; k ≥ 1} has a special pattern: its maximum value runs for r1 times; then its second
largest value runs for r2 times, and so on and so forth. In general, its i th largest value runs
for ri times followed by a run of its i− 1 st largest value. Collect the first value in each run
and record its index, ki, i ≥ 1, resulting in a strictly decreasing subsequence, {pki

; i ≥ 1}.
Letting k0 = 0 and k∞ = ∞,

1 = p0 = pk0 > pk1 > pk2 > · · · pki
> · · · > pk∞ = p∞ = 0.

Consequently, p = {pk; k ≥ 1}may be viewed as a sequence containing pki
for i ≥ 1

with ri − 1 pki
s between pki

and pki+1
.

Given a value of k, say k′, there is an i′ such that pk′ = pki′
and k′ must be one of the

values from the list {ki′ , ki′ + 1, · · · , ki′ + ri′ − 1}, noting pki′+ri′
= pki′+1 < pk′ . Let m be

such that

1−
m

∑
i=1

ri pki
< pki′+1, and (A11)

m

∑
i=1

ri ≥ ki′ + 1. (A12)
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Such an m exists for any given p and a fixed k′ ≥ 1, which fixes an i′.
For each sequence ω ∈ Ω∗ as defined in the proof of Lemma 2, the uniformity of (20)

implies that for any ε > 0, there exists an N such that for all n > N, −ε < p̂k − pk < ε for
all k, k ≥ 1. Specifically let

ε5 = min{(pki
− pki+1

)/2; i = 0, . . . , m} > 0.

There exists an N5 such that for all n > N5, max{| p̂k − pk|; k ≥ 1} < ε5, which has the
following two implications.

1. The first ∑m
i=1 ri probabilities of p, p1, · · · , p∑m

i=1 ri
, are covered, respectively, by ki′

disjoint intervals, pki
± ε5, i = 1, . . . , i′.

2. The relative frequencies corresponding to {p1, · · · , p∑m
i=1 ri
}, namely, { p̂1, · · · , p̂∑m

i=1 ri
},

are also covered, respectively, by the same disjoint intervals, pki
± ε5, i = 1, . . . , i′.

On the other hand, noting the strict inequality in (A11) and the fact that k′ is a fixed
integer, there exists a sufficiently small ε6 such that

1−
m

∑
i=1

ri pki
+ ε6

m

∑
i=1

ri < pki′+1 (A13)

or, equivalently,

1−
m

∑
i=1

ri(pki
− ε6) < pki′+1. (A14)

Let ε7 = min{ε5, ε6}. By Lemma 2, there exists an N7 such that for all n > N7, all
relative frequencies sharing the same pki

, namely, p̂ki
, p̂ki+1, · · · , p̂ki+ri−1, are found in

(pki
− ε7, pki

+ ε7) (A15)

for all i, i = 1, · · · , m, and the updated (A13) and (A14) are

1−
m

∑
i=1

ri pki
+ ε7

m

∑
i=1

ri < pki′+1

or, equivalently,

1−
m

∑
i=1

ri(pki
− ε7) < pki′+1. (A16)

That is, in each of the disjoint intervals of (A15), there are at least ri relative frequencies. In
particular, the ri relative frequencies, { p̂ki

, p̂ki+1, · · · , p̂ki+ri−1}, are covered in (pki
− ε7, pki

+ ε7)
for each i, i = 1, . . . , i′ ≤ m, by (A12).

Next it necessary is to show that there may not be more than ri relative frequencies
in (pki

− ε7, pki
+ ε7) for each i, i = 1, . . . , i′. Toward that end, consider the total mass of

100% distributed among p̂k, k ≥ 1, given n. From interval (p1 − ε7, p1 + ε7) to interval
(p∑m

i=1 ri
− ε7, p∑m

i=1 ri
+ ε7), the total collective mass covered is at least ∑m

i=1 ri p̂ki
; however,

by (A15) and (A16),

m

∑
i=1

ri p̂ki
>

m

∑
i=1

ri(pki
− ε7) > 1− pki′+1

and the remainder of the mass is

1−
m

∑
k=1

p̂k <pki′+1 < pki′+1 + ε7. (A17)

Regardless of if the mass on the left side of (A17) is allocated to one or more than one
letter, other than those in {`1, · · · , `∑m

i=1 ri
}, the corresponding p̂k, k ≥ ∑m

i=1 ri + 1, could
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not possibly be sufficiently large to exceed pki′+1 + ε7, nor, therefore, pk′ − ε7. That implies
that, along the path of that selected ω ∈ Ω∗, for any n > N7, { p̂ki

, p̂ki+1, · · · , p̂ki+ri−1}
and only { p̂ki

, p̂ki+1, · · · , p̂ki+ri−1} are covered in (pki
− ε7, pki

+ ε7) for i, i = 1, . . . , i′. This
immediately implies that

1. { p̂ki′
, p̂ki′+1, · · · , p̂ki′+ri−1} = { p̂(ki′ )

, p̂(ki′+1), · · · , p̂(ki′+ri−1)} but is not necessarily
equal component-wise;

2. | p̂(ki′+j) − pk′ | < ε7 for all j = 0, 1, . . . , ri′ − 1;
3. In particular, | p̂(k′) − pk′ | < ε7.

Finally (22) follows the fact that P(Ω∗) = 1.
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