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Abstract: Dynamic vibration absorbers (DVAs) are extensively used in the prevention of building and
bridge vibrations, as well as in vehicle suspension and other fields, due to their excellent damping
performance. The reliable optimization of DVA parameters is key to improve their performance.
In this paper, an H∞ optimization problem of a novel three-element-type DVA model including an
inerter device and a grounded negative stiffness spring is studied by combining a traditional theory
and an intelligent algorithm. Firstly, to ensure the system’s stability, the specific analytical expressions
of the optimal tuning frequency ratio, stiffness ratio, and approximate damping ratio with regard to
the mass ratio and inerter–mass ratio are determined through fixed-point theory, which provides
an iterative range for algorithm optimization. Secondly, the particle swarm optimization (PSO)
algorithm is used to further optimize the four parameters of DVA simultaneously. The effects of the
traditional fixed-point theory and the intelligent PSO algorithm are comprehensively compared and
analyzed. The results verify that the effect of the coupling of the traditional theory and the intelligent
algorithm is better than that of fixed-point theory alone and can make the two resonance peaks on the
amplitude–frequency response curves almost equal, which is difficult to achieve using fixed-point
theory alone. Finally, we compare the proposed model with other DVA models under harmonic
and random excitation. By comparing the amplitude–frequency curves, stroke lengths, mean square
responses, time history diagrams, variances and decrease ratios, it is clear that the established DVA
has a good vibration absorption effect. The research results provide theoretical and algorithm support
for designing more effective DVA models of the same type in engineering applications.

Keywords: three-element-type DVA; inerter–mass; negative stiffness; H∞ optimization; particle
swarm optimization algorithm

1. Introduction

Destructive vibrations often lead to problems such as reduced machine performance,
reduced reliability, and noise pollution. Dynamic vibration absorbers (DVAs), also known as
tuned mass dampers (TMDs), are vibration reduction structures widely used in aerospace,
the automotive industry, instrumentation, the construction industry, and construction
machinery. In 1909, the first undamped DVA was proposed by Frahm [1]. Due to its narrow
band characteristics, its suppression effect on the dynamic response of the primary vibration
structure was limited. On this basis, Voigt-type DVA [2], three-element-type DVAs [3,4],
and Ren-type DVA [5] were proposed by configuring different linear elements (such as
damping elements and stiffness elements), and their vibration reduction performance were
further improved. Subsequently, some scholars carried out a series of type improvements
on the DVAs.
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There are a few previous studies on three-element-type DVAs. Asami et al. [3,4]
proposed a three-element-type DVA with Maxwell connections in which the damping in
the Voigt-type DVA was replaced by a viscoelastic material; that is, they added a spring in
series with the damping element. After using the H∞ optimization and H2 optimization
techniques, it was found that the efficiency of this DVA was superior to Voigt-type DVAs.
Nishihara et al. [6] used the Newton–Raphson algorithm to optimize the parameters so
that the maximum amplitude amplification coefficient of the linear primary system of
the three-element-type DVA was the smallest under a given mass ratio. Song et al. [7]
discussed the parameter optimization methods of Voigt-type DVA and three-element-type
DVA models based on the H∞ optimization criterion and compared the performance of
these different methods. Chen et al. [8] applied a three-element-type DVA to suppress
vibrations in vehicle bodies, and a formula for the design of the suspension parameters
of the frame equipment was obtained. In addition, Baduidana et al. [9] investigated a
three-element-type DVA with a Kelvin-type connection and used extended fixed-point
theory to obtain formulas for the optimized parameters.

With the further development of research on vibration control systems, scholars found
that the introduction of negative stiffness springs and inerter components in DVAs can sig-
nificantly reduce the resonant response, and the effective vibration suppression frequency
band can thus be made wider. Some traditional structures to achieve negative stiffness
mainly include frame structures, press bar structures, inverted pendulum structures and so
on. Some scholars studied the vibration isolation performance of negative stiffness springs
and performed a stability analysis on these components [10,11]. They observed that nega-
tive stiffness springs were unstable and must be used in combination with positive stiffness
springs to effectively exert a vibration isolation effect. Shen et al. [12,13] investigated the
optimal design of a Maxwell-type DVA with a grounded negative stiffness spring and
proved its effectiveness in performance by conducting a comparison analysis. Negative
stiffness components are used in practical engineering applications, such as reducing the
vibrations of large mechanical equipment in ships [14], cable vibration control in cable-
stayed bridges [15], and seismic protection [16]. Zhang and Xu [17] designed a nonlinear
control target and explored a new optimization method for nonlinear aeroelastic systems.
In addition, some scholars [18,19] investigated a variety of seismic isolation techniques and
applied them to the transformation of actual buildings.

An inerter, also known as an inertial energy storage device or an inertial mass energy
storage device, has two independent and free endpoints, and the generated force has
a linear relationship with the relative acceleration between the nodes. Compared with
traditional damping systems, inerter-based systems are advantageous because they can
realize the flexible adjustment of inertia and the adjustment of frequency and they do not
change the physical quality of the structure while changing the inertia of the structure.
Related research [20] showed that the position of the inerter’s connection had effects
on the vibration absorption of the damper. Many scholars proposed a variety of DVAs
with inerters and negative stiffness components; they investigated the H2 optimal control
and performed stability analyses from the perspective of the seismic response control
effect [21–23]. Furthermore, some studies also focused on the combined use of inerters
and grounded stiffness. Changing the arrangement of control elements produced the
generation of a variety of different types of inerter-based systems, such as high-performance
three-element-type DVAs [9], inerter-type nonlinear energy sinks [24], and different types
of amplified inerter mechanisms [25,26]. As simple amplification mechanisms, levers
were often used to amplify the displacement and force in the vibration control system
and enhance the system’s performance. Some scholars introduced levers into the inerter
absorber to further optimize the structural design and vibration absorption performance
of the absorber [27,28]. Liu et al. [29] introduced linear and nonlinear inerters into locally
resonant acoustic metamaterials and found that the structure based on the nonlinear inerter
was insensitive to changes in the inerter’s coefficient.
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With the development of computer and intelligent algorithms, intelligent particle
swarm optimization (PSO) algorithms [30], genetic algorithms [31], and other soft com-
puting technologies [32] have been used in theory and practice. The PSO algorithm is
a modern optimization method based on swarm intelligence and inspired by research
results on artificial life. This algorithm was proposed by Eberhart and Kennedy in 1995
and simulates PSO technology as a form of random optimization under the influence
of the social behavior of birds [30]. The optimization problem was regarded as a search
problem in a multidimensional space, and each solution was regarded as a particle in the
space. Each particle had an initial position and initial velocity. In the search process, each
particle constantly adjusted its speed and position and was affected by its own historical
optimal solution and group historical optimal solution in order to find the global optimal
solution [33,34]. The PSO algorithm can obtain more effective solutions when solving the
problem of the multi-parameter optimization of vibration reduction structures. Some re-
searchers [7,35] applied the PSO algorithm to study the parameter optimization of different
types of DVAs to obtain an acceptable vibration performance.

Regarding the model design of DVAs, it can be found through a literature review
that there are a few previous studies on three-element-type DVAs. More importantly,
the performance benefits of the optimal three-element-type DVAs with both inerters and
negative stiffness have not been fully studied. For the parameter optimization of DVAs,
most scholars directly used fixed-point theory, which failed to achieve equal heights in
the resonance peaks of amplitude–frequency curves. Motivated by this, we adopt a more
accurate, simpler, and more effective method. The traditional fixed-point theory and the
intelligent PSO algorithm are combined to solve the H∞ optimization problem of a novel
three-element-type DVA model. The system parameters are automatically adjusted. The
effects of the algorithm before and after optimization are compared, and the effectiveness
of the combination of the two methods is verified. This is the innovation of this paper.

This paper is arranged as follows. In Section 2, the established model and optimal
parameters are presented. In Section 3, the PSO algorithm is presented, and the results
before and after algorithm optimization are analyzed. The influence of the mass ratio and
the inerter–mass ratio on the response characteristics is revealed. In Section 4, the vibration
reduction performance is compared with other classical DVA models under different levels
of excitation. In Section 5, we give our conclusions and discuss future prospects.

2. Dynamic Model and Optimum Parameter Expressions

Viscoelastic materials are widely used for vibration control in engineering structures.
The spring–mass–damper models commonly used in engineering to reflect the viscoelastic-
ity of the system mainly include the Maxwell model and Kelvin model, which are essentially
the series or parallel connections of springs and dampers. The three-element layout of
springs and dampers proposed in this paper is a typical Kelvin model. In Figure 1, we
design a three-element-type inerter-based DVA model with a grounded negative stiffness
spring. m1 and k1 represent the mass and stiffness coefficients of the primary system,
respectively. b represents the inerter coefficient of the DVA. The so-called three-element-
type DVA concept studied in this paper refers to a spring with a stiffness coefficient of k2
connected in parallel with a damper (where the damping coefficient is c). The upper end of
the parallel structure supports the DVA (mass is m2), and the lower end connects in series
with a spring (where the stiffness coefficient is k3). The stiffness coefficient of the negative
stiffness spring connecting the ground or infrastructure is k4. The displacements of the
primary system, DVA, three-element spring, and damping split point are expressed by x1,
x2, and x3, respectively.
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Figure 1. The three-element-type DVA model with inerter and grounded negative stiffness.

When the primary system is excited by a harmonic force with amplitude F and
frequency ω, the governing equation is described as

m1 ẍ1 + k1x1 + k3(x1 − x3) = F cos(ωt)

m2 ẍ2 + bẍ2 + c(ẋ2 − ẋ3) + k2(x2 − x3) + k4x2 = 0

c(ẋ3 − ẋ2) + k2(x3 − x2) + k3(x3 − x1) = 0

(1)

2.1. The Analytical Solution

We use the following parameter transformations

ω1 =

√
k1

m1
, ω2 =

√
k2

m2
, ξ =

c
2m1ω1

, µ =
m2

m1

α1 =
k3

k1
, α2 =

k4

k1
, f =

F
m1

, β =
b

m1

where ω1 and ω2 represent the natural frequencies of the primary system and the absorber
system, respectively. ξ represents the damping ratio of the DVA. µ represents the mass
ratio. α1 and α2 represent the corresponding ratios of the spring constants. f represents the
amplitude-to-mass ratio. β represents the inerter-to-mass ratio.

Equation (1) can be rewritten as

ẍ1 + ω2
1x1 + α1ω2

1(x1 − x3) = f cos (ωt)

µẍ2 + βẍ2 + 2ω1ξ(ẋ2 − ẋ3) + µω2
2(x2 − x3) + α2ω2

1x2 = 0

2ω1ξ(ẋ3 − ẋ2) + µω2
2(x3 − x2) + α1ω2

1(x3 − x1) = 0

(2)

Assuming that steady-state solutions are in the form of

xi = Xiejωt, i = 1, 2, 3, (3)

then one can obtain the following by substituting them into Equation (2):

X1 =
f (b2c3 − b3c2)

det
{

∑3
i=1
[
∂3, 3

1, i (ai) + ∂3, 3
2, i (bi) + ∂3, 3

3, i (ci)
]} (4)
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∂m , n
p , q (J) is an m× n matrix in which the (p , q)-th block is J and the other blocks are

zero matrices [36]. By a simple calculation, we have

a1 = −ω2 + (α1 + 1)ω2
1, a2 = b1 = 0, a3 = c1 = −α1ω2

1

b2 = −µω2 − βω2 + 2ω1ξ jω + µω2
2 + α2ω2

1

b3 = c2 = −2ω1ξ jω− µω2
2, c3 = 2ω1ξ jω + µω2

2 + α1ω2
1

(5)

We then insert the following parameters,

λ =
ω

ω1
, ν =

ω2

ω1
, Xst =

F
k1

,

where λ and ν represent the forced frequency ratio and natural frequency ratio. Xst repre-
sents the static deformation of the primary system. Let A be the amplitude amplification
factor of the primary system in dimensionless form; that is,

A2 =

∣∣∣∣∣ X1

Xst

∣∣∣∣∣
2

=
d2

1 + d2
2ξ2

d2
3 + d2

4ξ2
(6)

where

d1 =− λ2(α1 + µν2)γ + (α1 + α2)µν2 + α1α2

d2 =− 2λ(γλ2 − α1 − α2)

d3 =(α1 + µν2)γλ4 + h1µν2 + α1α2

−
[
(α1 + 1)µ2ν2 + h2µν2 + α1α2 + α1β + α1µ

]
λ2

d4 =2λ
{

γλ4 −
[
(α1 + 1)γ + α1 + α2

]
λ2 + h1

}
h1 =α1α2 + α1 + α2, h2 = α1β + α1 + α2 + β, γ = β + µ

(7)

2.2. Closed-Form Solutions to νopt and α1opt

It is clear from Equation (6) that the amplitude amplification factor of the primary
system contains the following six variables: µ, β, α1, α2, ν, and ξ. Among them, µ and β
are the parameters of the system itself and generally do not need to be optimized. The
remaining four parameters can be optimized according to different optimization methods
to reduce the vibration of the primary system. The ultimate goal of H∞ optimization is
to minimize the maximum amplitude amplification factor A of the primary system under
harmonic excitation.

According to Equation (6), the corresponding amplitude–frequency response curves
are drawn in Figure 2. The damping ratios are adopted as 0.5, 0.6, and 0.7. There exist three
fixed points, P, Q, and R, on all the curves, which are independent of the damping ratio.
Based on fixed-point theory, we can obtain the following relationship from Equation (6):∣∣∣∣∣d1

d3

∣∣∣∣∣ =
∣∣∣∣∣d2

d4

∣∣∣∣∣ (8)
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Figure 2. The normalized amplitude–frequency curves can be found under different damping ratios
with µ = 0.1, β = 1.8, ν = 1, α1 = 1.2, α2 = −0.05.

Substituting variables into Equation (8), we obtain

q1λ6 + q2λ4 + q3λ2 + q4 = 0 (9)

where

q1 =− 2
[
µ3ν2 + (2βν2 + α1)µ

2 + (β2ν2 + 2α1β)µ + α1β2]
q2 =2µ3ν2(α1 + 1) + (4ν2h2 + α2

1 + 2α1)µ
2

+
{

2ν2[(α1 + 1)β2 + 2(α1 + α2)β
]
+ 2α2

1(β + 1) + 4α1(α2 + β)
}

µ

+ (α2
1 + 2α1)β2 + 2α1(α1 + 2α2)β

q3 =− 2
{

h3µ2ν2 +
[
h3β + (α1 + α2)

2]µν2 + h4γ + α1α2(α1 + α2)
}

q4 =2
[
(1 + α2)α

2
1 + (α2

2 + 2α2)α1 + α2
2
]
µν2 + (α2

2 + 2α2)α
2
1 + 2α1α2

2

h3 =α2
1 + 2α1α2 + 2α1 + 2α2, h4 = α2

1α2 + α2
1 + 2α1α2

(10)

When ξ = 0, we can obtain

A =

∣∣∣∣∣ X1

Xst

∣∣∣∣∣ =
∣∣∣∣∣−(α1 + µν2)γλ2 + (α1 + α2)µν2 + α1α2

−(α1 + µν2)γλ4 + h5λ2 − h1µν2 − α1α2

∣∣∣∣∣ (11)

where

h5 = (α1 + 1)µ2ν2 + h2µν2 + α1(γ + α2)

When ξ → ∞, we can obtain

A =

∣∣∣∣∣ X1

Xst

∣∣∣∣∣ =
∣∣∣∣∣ γλ2 − α1 − α2

γλ4 − [γ(α1 + 1) + α1 + α2]λ2 + h1

∣∣∣∣∣ (12)

In order to facilitate the addition and subtraction of the two equal fractions represented
by Equations (11) and (12), we multiply the numerator and denominator of Equation (12)
by (α1 + µν2) at the same time so as to eliminate λ4 from the denominator. We thus obtain

A =

∣∣∣∣∣ X1

Xst

∣∣∣∣∣ =
∣∣∣∣∣ (α1 + µν2)(γλ2 − α1 − α2)

(α1 + µν2)
{

γλ4 −
[
γ(α1 + 1) + α1 + α2

]
λ2 + h1

} ∣∣∣∣∣ (13)
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Hence, by adding Equations (11) and (13), we have

A =

∣∣∣∣∣ X1

Xst

∣∣∣∣∣ =
∣∣∣∣∣−2γ(α1 + µν2)λ2 + 2µν2(α1 + α2) + α1(α1 + 2α2)

α2
1
[
(−γ− 1)λ2 + α2 + 1

] ∣∣∣∣∣
Assuming that λ2

P, λ2
Q, and λ2

R are three roots of Equation (9), the vertical ordinates of
the three fixed points are expressed as∣∣∣∣∣ X1

Xst

∣∣∣∣∣
P

=

∣∣∣∣∣−2γ(α1 + µν2)λ2
P + 2µν2(α1 + α2) + α1(α1 + 2α2)

α2
1
[
(−γ− 1)λ2

P + α2 + 1
] ∣∣∣∣∣∣∣∣∣∣ X1

Xst

∣∣∣∣∣
Q

=

∣∣∣∣∣− −2γ(α1 + µν2)λ2
Q + 2µν2(α1 + α2) + α1(α1 + 2α2)

α2
1
[
(−γ− 1)λ2

Q + α2 + 1
] ∣∣∣∣∣∣∣∣∣∣ X1

Xst

∣∣∣∣∣
R

=

∣∣∣∣∣−2γ(α1 + µν2)λ2
R + 2µν2(α1 + α2) + α1(α1 + 2α2)

α2
1
[
(−γ− 1)λ2

R + α2 + 1
] ∣∣∣∣∣

(14)

The first step is to adjust the vertical coordinates of P and R to the same height, i.e.,∣∣∣∣∣ X1

Xst

∣∣∣∣∣
P

=

∣∣∣∣∣ X1

Xst

∣∣∣∣∣
R

(15)

The optimum frequency ratio can be obtained by Equation (15) as

ν =

√
α1
[
2(α2 − γ) + α1(γ + 1)

]
2µ(−α2 + γ− α1(γ + 1))

(16)

Substituting Equation (16) into Equation (9), the abscissa of the three fixed points is

λ2
P =

γ−
√

G
γ

λ2
Q =

1 + α2

1 + γ

λ2
R =

γ +
√

G
γ

(17)

where G = γ(α2
1 + γ) + (α1 + α2)(α1 + α2 − 2γ).

Thus, Equation (14) becomes∣∣∣∣∣ X1

Xst

∣∣∣∣∣
P,R

=

∣∣∣∣∣ γ

α1 + α2 + (α1 − 1)γ

∣∣∣∣∣∣∣∣∣∣ X1

Xst

∣∣∣∣∣
Q

=

∣∣∣∣∣
[
α1 + α2 + (α2 − 1)γ

]
(γ + 1)

(α2 − γ)2

∣∣∣∣∣
(18)

The second step is to adjust the ordinate of point P (or R) and point Q to the same
height to obtain the optimal stiffness ratio.

α1a =

[
γ +

√
γ(γ + 1) + 1

]
(γ− α2)

(γ + 1)2

α1b =

[
γ−

√
γ(γ + 1) + 1

]
(γ− α2)

(γ + 1)2
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By simple derivation, we find that α1b < 0 under certain parameters, so α1a is selected as
the optimal stiffness ratio.

α1opt =

[
γ +

√
γ(γ + 1) + 1

]
(γ− α2)

(γ + 1)2
(19)

Then, we substitute α1opt into Equation (16) to obtain

νopt =

√
γ− α2

2µ
√

γ(γ + 1)3
(20)

The ordinate of the response at the three fixed points of P, Q, and R can be obtained∣∣∣∣∣ X1

Xst

∣∣∣∣∣
2

P,Q,R

=
γ(γ + 1)
(α2 − γ)2 (21)

2.3. Closed-Form Solutions to α2opt and ξopt

The proposed model contains a negative stiffness spring, which exhibits negative
stiffness subjected to preload. Improper negative stiffness values will make the system
unstable, so the negative stiffness term must be optimized. We can see that when the
primary system displacement is equal to the response value at the fixed points due to
preloading, the system will be stable; that is,∣∣∣∣∣ X1

Xst

∣∣∣∣∣
2

λ=0

=

∣∣∣∣∣ X1

Xst

∣∣∣∣∣
2

P,Q,R

(22)

where ∣∣∣∣∣ X1

Xst

∣∣∣∣∣
2

λ=0

=

[
µν2(α1 + α2) + α1α2

]2
(µν2h1 + α1α2)2

Solving Equation (22), the possible optimal negative stiffness ratios are obtained as

α2a =
γ(γ + 2)−

√
M

γ + 2

α2b =
γ(γ + 2) +

√
M

γ + 2

α2c =
γ
[
2
√

γ(γ + 1)− 2γ− 1
]

2
√

γ(γ + 1)− γ

α2d = −1

(23)

where M = γ4 + 4γ3 + 5γ2 + 2γ.
According to Equation (6), the dimensionless natural frequencies expression of the

coupled system with regard to the inerter–mass ratio, β, and the negative stiffness ratio, α2,
can be obtained as

Ω1,2 =

√
2

2
ω1√

γ(α1ω2
1 + µω2

2)

√
Φ1 ∓

√
Φ2

1 −Φ2

Φ1 = (γ + α2)α1ω2
1 +

[
γ(α1 + 1) + α1 + α2

]
µω2

2

Φ2 = 4γ(α2
1α2ω4

1 + h1µ2ω4
2 + h4µω2

1ω2
2)

(24)
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Substituting Equation (23) into Equation (24), we can see that α2a, α2b, and α2d make
the natural frequency of the coupled system imaginary. α2b also makes the optimal natural
frequency ratio νopt an imaginary number. Hence, the optimal grounded negative stiffness
ratio is chosen to be α2c, such that

α2opt = α2c =
γ
[
2
√
(γ + 1)γ− 2γ− 1

]
2
√
(γ + 1)γ− γ

(25)

As shown in Figure 3, the three fixed points have been adjusted to the same height
at this time. When the two resonance peaks are adjusted to the same height, the optimal
damping ratio can be obtained. When the two resonance peaks are almost at the same
height, the fixed point Q will be very close to the horizontal point tangent to the amplitude–
frequency curve. Therefore, according to the following extremum conditions at the point
Q, the optimal damping ratio can be deduced.

∂A2

∂λ2 = 0

α1opt =

[
γ + 1 +

√
γ(γ + 1)

]
(γ− α2)

(γ + 1)2

νopt =

√
γ− α2

2µ
√

γ(γ + 1)3

λ2
Q =

α2 + 1
γ + 1

(26)

0.5

1

1.5

2
=0.3943
=0.5
=0.7
=0.9

A

λ

P Q R

0              0.5               1               1.5              2               2.5              3          

ξ

ξ
ξ

ξ

Figure 3. The normalized amplitude–frequency curves of system with µ = 0.1, β = 1.8, ν = 1.2034,
α1 = 1.2302, and α2 = −0.0716.

Thus, the approximate optimal damping ratio can be obtained:

ξopt ∼=

√√√√[
e1 − g− 4γ +

√
(γ + 1)2(e2g + e3)

]
(α2 − γ)2

16γ(γ + 1)2(γ + g + 1)(α2 + 1)
(27)

where

g =
√
(γ + 1)γ, e1 = −4(2g3 + 2γ3 + 3γ2)

e2 = 8(16γ3 + 24γ2 + 10γ + 1), e3 = 32(4γ4 + 8γ3 + 5γ2 + γ) + 1
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2.4. Three-Dimensional Diagrams of the Optimal Parameters

The optimal parameter design expressions are given by Equations (19), (20), (25), and
(27). We use µ and β as the abscissa and ordinate and draw the three-dimensional diagrams
of the four optimal parameters, as shown in Figure 4. When β increases, the value of each
design parameter gradually increases. When the mass ratio µ increases, the values of α1,
α2, and ξ increase, while ν decreases.

(a)

-

(b)

(c) (d)

Figure 4. A 3D surface diagram of the relationship between DVA optimal design parameters and
system parameters: (a) α1opt, (b) α2opt, (c) νopt, and (d) ξopt.

3. Particle Swarm Optimization Algorithm and Comparative Analysis

In the previous section, a set of local approximate optimal parameter formulas of
the DVA were calculated through fixed-point theory. An algorithm for particle swarm
optimization is employed in this section to iteratively optimize multiple variables within a
given scope, thereby ascertaining the most suitable vibration absorption parameters for
the DVA.

3.1. The Optimal Parameters Obtained by the Particle Swarm Optimization Algorithm

The optimal parameters obtained by fixed-point theory can provide a reference range
for parameter regulation for intelligent algorithm regulation. We selected different mass
ratios µ and inerter–mass ratios β; then, the local optimal parameter values calculated
based on fixed-point theory were used as the reference values of the algorithm optimization
variables, as shown in Table 1.

The PSO algorithm is a search algorithm that relies on collective collaboration. It
is an intelligent optimization algorithm. Figure 5 shows the basic idea of the algorithm.
An objective function determines the fitness of all particles, and a velocity determines
their flight direction and distance. Particles know their current optimal value and current
position, and each particle also knows the best position found by all particles in the
current population. The particles determine their next action through their own and peer
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experience, and they find the optimal solution through iteration. The particles will alter
their velocity and location to discover the single optimal solution and the global optimal
solution. When the iteration count is maximized, the particle swarm can locate the optimal
spot and output the ideal parameter value according to the termination conditions of the
iteration.

The PSO algorithm was solved by MATLAB programming. The objective function is
defined as

A0 = min
(α1,α2,ν,ξ)∈τ

(
max

λ∈(0,3)
A(α1, α2, ν, ξ)

)
(28)

where τ represents the change interval of the DVA’s parameters. We set the particle
dimension as 4, corresponding to the parameters α1, α2, ν, and ξ to be determined. It can
be clearly seen from Equation (28) that the optimization objective function in this paper
is a specific explicit function, but it needs to optimize four adjustable parameters at the
same time. It is usually difficult to obtain analytical results when the traditional fixed-point
theory is used to solve the optimal damping ratio. Generally, the approximate value of
the damping ratio is given, which leads to the fact that the two resonance peaks cannot
achieve the same height on the amplitude–frequency response curves. The PSO algorithm
can optimize four variables at the same time so that the resonance peaks of the amplitude–
frequency curves are equal, which is difficult to achieve by traditional theoretical methods.
This method can also achieve higher accuracy and faster calculation speeds. Based on
the advantages of the PSO algorithm in data processing, we further optimize the optimal
parameters and realize an automatic parameter adjustment strategy, which is the novelty
of this paper in dealing with parameter optimization problems.

Table 1. The optimal parameter values of the system under different conditions based on fixed-point
theory.

Case 1: µ = 0.1

β α1 α2 ν ξ

0.1 0.3612 −0.1078 1.6179 0.2342

0.5 0.7116 −0.1061 1.5007 0.3072

1.0 0.9775 −0.0909 1.3659 0.3541

1.5 1.1516 −0.0780 1.2578 0.3822

2.0 1.2749 −0.0679 1.1706 0.4011

Case 2: µ = 0.2

β α1 α2 ν ξ

0.1 0.4680 −0.1110 1.1249 0.2583

0.5 0.7756 −0.1031 1.0405 0.3191

1.0 1.0179 −0.0880 0.9491 0.3608

1.5 1.1795 −0.0757 0.8760 0.3866

2.0 1.2954 −0.0661 0.8169 0.4042
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Calculate the fitness 
value of each particle
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termination 
condition

Determine the individual optimal 
particle and the global optimal particle
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end

Next generation 
particles

Update velocity
no

Randomly initialize the 
position and velocity of 

each particle

Update position

Figure 5. Particle swarm optimization algorithm flow chart.

We selected the total number of particles as 60, the maximum iteration times as 1000,
and the learning factor as c1 = c2 = 2. In addition, we set the maximum inertia weight
as 0.6 and the minimum inertia weight as 0.4. By investigating the amplitude of the
amplitude–frequency response curve, the system will generate two formants according to
the parameter values, and it is optimal for the two formants to achieve the same height.

Obtaining the maximum amplitude amplification factor A of the primary system in
the i-th iteration is the initial step in the design of an intelligent optimization algorithm for
the particle swarm technique. Subsequently, the four optimal parameters that minimize
the maximum amplitude in all iterations are output. These are the optimal parameters
we seek, which will make the two resonance peaks of the amplitude-frequency response
curve reach the same height. We can observe that when µ = 0.1 and β = 0.1, the optimal
parameters of the DVA in the given optimization range are α1 = 0.38226, α2 = −0.11283,
ν = 1.60040, and ξ = 0.24288. When µ = 0.1 and β = 0.5, the optimal parameters of
the DVA in the given optimization range are α1 = 0.71506, α2 = −0.11568, ν = 1.53110,
and ξ = 0.36068. Similarly, the optimal parameters obtained by algorithm optimization
under different values of µ and β are listed in Table 2. Figure 6 shows the iterative curve
of the PSO algorithm for µ = 0.1. As is evident from Figure 6, the amplitude diminishes
drastically in the initial iteration phase. The amplitude of the primary system eventually
flattens out as the number of iterations increases. At the same mass ratio, increasing the
inerter–mass ratio can reduce the amplitudes. It should be noted that the initial range
of parameters given in the iterative process is very important and is directly related to
whether the detected optimal value is accurate.

3.2. Effectiveness Analysis of the Particle Swarm Optimization Algorithm

In order to prove the effectiveness of the multi-parameter iterative optimization
carried out by the PSO algorithm, we compared the amplitude–frequency response curves
of the primary system before and after optimization using the PSO algorithm, as shown
in Figures 7 and 8. Through this comparison, we found that after optimization using
fixed-point theory, the two resonance peaks of the amplitude-frequency curves did not
reach the same horizontal height. The PSO algorithm made the two peaks almost equal,
and the amplitude was significantly reduced. The change in amplitude between the two
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resonance peaks was relatively small, and no large fluctuation occurred, indicating good
stability.

Table 2. The optimal parameter values of the system under different conditions by the PSO algorithm.

Case 1: µ = 0.1

β α1 α2 ν ξ

0.1 0.38226 −0.11283 1.60040 0.24288

0.5 0.71506 −0.11568 1.53110 0.36068

1.0 0.99482 −0.08441 1.37350 0.39000

1.5 1.18000 −0.07805 1.20740 0.42300

2.0 1.28910 −0.07451 1.16210 0.46160

Case 2: µ = 0.2

β α1 α2 ν ξ

0.1 0.48487 −0.11701 1.13620 0.28304

0.5 0.78925 −0.10323 0.98870 0.34579

1.0 1.08310 −0.09290 0.93500 0.39130

1.5 1.20780 −0.07956 0.83454 0.43079

2.0 1.34370 −0.07102 0.79453 0.44900
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Figure 6. Iterations when optimizing four variables (µ = 0.1): (a) β = 0.1; (b) β = 0.5; (c) β = 1; and
(d) β = 1.5.

As shown in Table 3, we compared the specific values of the response characteristics
of the primary system in a more comprehensive way, including the maximum value of
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the amplitude–frequency curve, Amax; the horizontal coordinates λpeak1 and λpeak2, which
correspond to the two peaks; the horizontal distance between the two resonance peaks,
|λpeak2 − λpeak1|; and the mean square response, σ2

opt. Through the comparison of these
indicators, the following detailed conclusions can be drawn:

(1) Under the same mass ratio µ and inerter–mass ratio β, the Amax obtained with
the PSO algorithm is significantly lower than that obtained with the optimization method
based on fixed-point theory, and the mean square response value σ2

opt is also low. That is,
the vibration state of the system under external excitation after algorithm optimization is
more stable than before algorithm optimization. However, in the case of µ and β taking
some parameters, the distance between the two resonance peaks becomes shorter after
intelligent algorithm optimization. In practical engineering, one can determine whether
to use an intelligent algorithm for further optimization according to the needs of specific
indicators.

(2) Under the same mass ratio µ, no matter the fixed-point theory optimization or the
PSO algorithm, it can be found that with increases in the inerter–mass ratio, β, the mean
square response decreases, and the lateral spacing between the two peaks becomes larger
and larger. That is, the resonant band gradually widens, which shows that the inerter
element can reduce the amplitude.

(3) Under the same inerter–mass ratio β, whether using the fixed-point theory or the
PSO algorithm, it can be found that when the mass ratio µ increases, the amplitude of the
system diminishes, the resonance frequency band expands, and the mean square response
value decreases.
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Figure 7. The amplitude–frequency response curves of the primary system when µ = 0.1 for the two
optimization methods: (a) fixed-point theory optimization and (b) particle swarm optimization.
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Figure 8. The amplitude–frequency response curves of the primary system when µ = 0.2 for the two
optimization methods: (a) fixed-point theory optimization and (b) particle swarm optimization.

As shown in Figures 9 and 10, we simulated the dimensionless transient response
x1/x0 of the primary system under the different optimization methods. We selected an
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initial displacement value of x0 = 1 m and a fixed time step of 10−4 s. The optimization
results of the PSO algorithm are slightly better than the fixed-point theory optimization
results. There is no vibration phenomenon when the system is stable in both cases. The
corresponding vibration attenuation rate of the primary system when β = 2 is obviously
faster than in other cases and tends toward a steady state preferentially.

(a) (b)

Figure 9. Transient response to initial displacement x0 when µ = 0.1: (a) fixed-point theory optimiza-
tion and (b) particle swarm optimization.

(a) (b)

Figure 10. Transient response to initial displacement x0 when µ = 0.2: (a) fixed-point theory
optimization and (b) particle swarm optimization.

3.3. Numerical Simulation

A comparison of the analytical and numerical solutions achieved with our two distinct
optimization techniques was conducted to authenticate the correctness of the solution
process discussed in the previous section. We employed the fourth-order Runge–Kutta
technique for numerical simulation, taking 2000 s. Assuming that the excitation force
amplitude F = 1000 N, the numerical solutions of the system’s response to the two
optimization methods can be obtained. The maximum value of the steady-state solution
is taken as the excitation response amplitude, which allows us to obtain the normalized
amplitude–frequency curve. When µ = 0.1 and µ = 0.2, a comparison of the analytical
and numerical solutions of the system is presented under the two optimization methods,
as shown in Figures 11 and 12. The solid line represents the analytical solution, and the
curves drawn by different shapes are the numerical solutions of the system. Different colors
indicate different selections of the parameters µ and β. When the system’s parameters
are the same, the curves of the two solutions are basically the same regardless of the
optimization method, which also verifies the correctness of our theoretical analysis.
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Table 3. Numerical comparison of the response characteristics of the primary system under two
different optimization methods.

Case 1: µ = 0.1

β Amax λpeak1 λpeak2 |λpeak2 − λpeak1| σ2
opt(

πS0
ω3

1
)

β = 0.1 (FPT) 1.97454 0.59 1.21 0.62 2.7820

β = 0.1 (PSO) 1.76320 0.65 1.20 0.55 2.7111

β = 0.5 (FPT) 1.68205 0.47 1.19 0.72 2.2072

β = 0.5 (PSO) 1.51950 0.50 1.26 0.76 2.1109

β = 1 (FPT) 1.52233 0.37 1.18 0.81 1.9117

β = 1 (PSO) 1.39426 0.43 1.23 0.80 1.8351

β = 1.5 (FPT) 1.43656 0.32 1.18 0.86 1.7570

β = 1.5 (PSO) 1.29750 0.42 1.22 0.80 1.6714

β = 2 (FPT) 1.38211 0.29 1.18 0.89 1.6612

β = 2 (PSO) 1.24456 0.35 1.26 0.91 1.5603

Case 2: µ = 0.2

β Amax λpeak1 λpeak2 |λpeak2 − λpeak1| σ2
opt(

πS0
ω3

1
)

β = 0.1 (FPT) 1.87156 0.55 1.20 0.65 2.5747

β = 0.1 (PSO) 1.67845 0.59 1.24 0.65 2.4914

β = 0.5 (FPT) 1.68166 0.46 1.20 0.74 2.1280

β = 0.5 (PSO) 1.48809 0.54 1.22 0.68 2.0644

β = 1 (FPT) 1.52295 0.38 1.18 0.72 1.8735

β = 1 (PSO) 1.33904 0.44 1.20 0.76 1.7753

β = 1.5 (FPT) 1.43656 0.33 1.18 0.85 1.7344

β = 1.5 (PSO) 1.28069 0.40 1.24 0.84 1.6450

β = 2 (FPT) 1.38211 0.27 1.11 0.84 1.6463

β = 2 (PSO) 1.23473 0.35 1.23 0.88 1.5500
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Figure 11. The comparison between the numerical solution and the analytical solution under the
two optimization methods when µ = 0.1: (a) fixed-point theory optimization and (b) particle swarm
optimization.
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Figure 12. The comparison between the numerical solution and the analytical solution under the
two optimization methods when µ = 0.2: (a) fixed-point theory optimization and (b) particle swarm
optimization.

4. Comparative Analysis of DVA Models under Different Excitation

In this section, we compare the proposed DVA model with the classical DVA models to
prove the effectiveness of the our design. The models involved in the comparison are Voigt-
type DVA [2], Ren-type DVA [5], and the DVAs in Ref. [12] (NS-Shen-type DVA), Ref. [13]
(NS-Wang-type DVA). Figure 13 displays these DVA models. In addition, comparison
is also made between the three-element DVA model without both inerter and negative
stiffness (TE-type DVA in Figure 13c), and the three-element DVA model with negative
stiffness and without inerter (NS-TE-type DVA in Figure 13d). Setting both α2 = 0 and
β = 0, the model in Figure 13c is the example of our model. Setting β = 0, the model in
Figure 13d also is the example of our model. For the convenience of expression, our model
is denoted as INS-TE-type DVA.
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Figure 13. The classical models of DVAs: (a) Voigt-type, (b) Ren-type, (c) TE-type, (d) NS-TE-type,
(e) NS-Shen-type, and (f) NS-Wang-type.
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4.1. Harmonic Excitation Scenario

According to the optimal parameter expression of each model [2,5,12,13], Figure 14
illustrates the amplitude–frequency response curves of the primary system of each DVA
model under harmonic excitation when µ = 0.1 and µ = 0.3, respectively. When µ = 0.3,
the optimal parameter values of the proposed model obtained by the PSO algorithm are
α1 = 1.1941, α2 = −0.0898, ν = 0.7360, and ξ = 0.3814. An NS-TE-type DVA model
with grounded negative stiffness is superior to the absorption performance achieved by
Viogt-type, Ren-type, TE-type DVA, and NS-Shen-type DVAs. The proposed model’s
vibration reduction ability is evidently superior to the other six DVA designs when either
the fixed-point theory or the PSO algorithm is applied. In addition, we can see that the
combination of an inerter and a grounded negative stiffness spring can not only greatly
reduce the response amplitude of the primary system but also broaden the frequency
band with reduction vibrations. It can be seen from Figure 14 that when the mass ratio µ
increases, the lateral distance between the two peaks of the amplitude–frequency curves
becomes larger. In summary, the larger the mass ratio µ, the wider the effective vibration
reduction frequency band of a DVA and the better the vibration reduction effect.
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Figure 14. Comparison of amplitude–frequency response curves with other DVAs when β = 1:
(a) µ = 0.1 and (b) µ = 0.3.

The stroke length of an absorber is a meaningful index by which to evaluate the per-
formance of a DVA. Figure 15 shows the frequency response of relative movement x2 − x1
between the primary system and the DVA under a harmonic force, which is also known as
stroke length. It can be noted that the proposed three-element-type inerter-based DVA can
significantly reduce the peak amplitude of stroke length compared with the classical models,
which is conducive to its actual effectuation in more rigorous engineering conditions.
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Figure 15. Comparison of frequency response curves of the stroke length with other DVAs when
µ = 0.1 and β = 1.
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4.2. Random Excitation Scenario

There exist many vibration sources in engineering that cannot be described by definite
time and space coordinate functions, such as earthquakes, turbulences, uneven road excita-
tion, and noise. These kinds of vibration sources can only be described by probability or
statistics. Usually, this type of vibration source is called a random vibration source, and
the structural vibration it causes is called a random vibration. Since the mechanical or
structural excitation is usually random, it is necessary to prove the effectiveness of our
design by comparing its results with those of the classical DVAs under random excitation.
The power spectral density function S(ω) of the primary system was taken into account.
The symbols V, R, T, NT, NS, NW, and INS stand for a Voigt-type DVA model, Ren-type
DVA model, TE-type DVA model, NS-TE-type DVA model, NS-Shen-type DVA model,
NS-Wang-type DVA model, and our model, respectively. The primary system displacement
mean square values of the seven DVA models can be derived as follows.
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α2(α2 − 2β− 2µ) + (µ + β)2

][
µν2(α1α2 + α1 + α2) + α1α2

]
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where

YV = µν2(2ν2 − 1 + 4ξ2) + µ2ν4 + ν2(ν2 − 2 + 4ξ2) + 1

YR = ν2(ν2 + 4ξ2 + µ− 2) + 1

YT = 4µν2α1(α1µl1 + µ3)ξ2 + µ4ν6α1l2 − µ4ν4α2
1l3 + µ4ν2α3

1

YNT = 4(α1µn1 + µn2)(µν2n3 + α1α2)ξ
2 + µ4ν6[(1 + µ)2α3

1 + n4α2
1 + n5

]
− µ3ν4α1(n6α2

1 − n7) + µ2ν2α2
1n8(µ− α2) + µα2α3

1(µ− α2)
2

YNS = 4ξ2[1 + α2(1 + µν2)
]{

1 + ν2[(µ2 − s3µ + s2)ν
2 − 2s1

}
+ α2

1ν2
{[

µ(2α2 + 1)− 2(1 + α2)
2]ν2 + s4ν4 + α2 + 1

}
YNW = 4ξ2(1 + α2 + α2µν2)(η1 + η2ν4) + α2

1ν2(η3 − η4ν2 + η5ν4)

YISN = f1µ5 + f2µ4 + f3µ3 + f4µ2 + f5µ + f6

with

l1 =(1 + µ)α1 − 2µ, l2 = (1 + µ)2α2
1 − µ(µ + 2), l3 = (µ + 2)α1 − 2µα1 + µ2

n1 =l1, n2 = (µ− α2)(µ + α2), n3 = α1α2 + α1 + α2

n4 =− µ2 + 2(α2 − 1)µ + 3α2, n5 = (µ− α2)
[
(µ− 3α2)α1 + α2(µ− α2)

]
n6 =µ2 − 2µ(α2 − 1)− 3α2, n7 = (µ− α2)

[
2(µ− 3α2)α1 + 3α2(µ− α2)

]
n8 =(µ− 3α2)α1 + 3α2(µ− α2)

s1 =α1 + α2 − µ + 1, s2 = (α1 + α2 + 1)2

s3 =1 + 2(α1 + α2), s4 = (1 + α2)
[
(1 + α2)

2 − 2α2µ
]
+ α2µ2

η1 =− 2ν2(α1 + α2 + 1)(β + 1) + (1 + β)2

η2 =r1 + α2(2 + α2) + α2
1r1 + 2α1(α2 + r1)

η3 =(1 + α2)(1 + β)2, η4 = (1 + β)[2α2(2 + α2) + r1 + 1]

η5 =3α2
2 + α3

2 + r2
1 + α2(2r1 + 1), r1 = 1 + µ(1 + β)

f1 =(α3
1 − α2

1 + α1 + α2)ν
6

f2 = f21ν6 + (−α3
1 + 2α2

1 + 3α1α2)ν
4

f21 =(2β + 2)α3
1 + (2α2 − 2β− 2)α2

1 + (−4α2 + 2β)α1 − 2α2
2 + 2α2β

f3 = f31ν6 + f32ν4 + f33ν2

f31 =(β + 1)2α3
1 + (2α2β− β2 + 3α2 − 2β)α2

1 + (3α2
2 − 4α2β + β2)α1 + α3

2 − 2α2
2β + α2β2

f32 =(2α2 − 2β− 2)α3
1 + (−8α2 + 4β)α2

1 + (−6α2
2 + 6α2β)α1

f33 =α3
1 + 3α2

1α2 + (4α2ξ2 + 4ξ2)α1 + 4α2ξ2

Supposing that the system parameters of the six DVAs in Figure 13 are selected as
µ = 0.1 and β = 0.1, the corresponding mean square values can be calculated according to
their respective optimization formulas [2,5,12,13].

σ2
V =

6.401πS0

ω3
1

, σ2
R =

5.780πS0

ω3
1

σ2
T =

6.098πS0

ω3
1

, σ2
NT =

3.095πS0

ω3
1

σ2
NS =

3.091πS0

ω3
1

, σ2
NW =

3.0474πS0

ω3
1

(29)

We have calculated the mean square responses of the proposed model under the fixed-
point theory method of optimization and the PSO algorithm in the previous section. The
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results show that our models all have lower mean square responses than the above models,
which means that our models have better random vibration damping effects than other
DVAs, as shown in Figure 13. In addition, NS-TE-type DVAs with only grounded negative
stiffness ire superior to Voigt-type DVAs, Ren-type DVAs, and TE-type DVA, while TE-type
DVAs without inerters and grounded stiffness are superior to Voigt-type DVAs. Through
comparison, this study shows that the simultaneous introduction of an inerter and negative
stiffness elements gives the proposed model better vibration absorption performance than
other models using the two optimization methods.

To more accurately illustrate the contrast effect, we employed the fourth-order Runge–
Kutta algorithm to generate the time history response diagrams of the primary system
attached to various DVAs under 50 s of random stimulation, consisting of 5000 normalized
random numbers with a zero mean and zero unit (as depicted in Figure 16). First, in the
case of the same µ and β parameters, the primary system time history diagrams of the
proposed model under two different optimization methods were compared. As illustrated
in Figure 17a, when µ = 0.1 and β = 0.1, the curves of the two optimization methods are
roughly the same. Through the specific coordinates of the positioning curve, it can be found
that except for individual cases, the displacement of the primary system after intelligent
algorithm optimization is smaller than after fixed-point theory optimization. When β is
larger, the advantage of the PSO algorithm is more obvious, as shown in Figure 17b. Second,
we compared the time history diagrams of the primary system with different values of β,
as seen in Figure 18. It was found that increasing the inerter–mass ratios could reduce the
response amplitude.
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Figure 16. The time history of the random excitation.

The primary system time history diagrams of different DVA models when µ = 0.1
and β = 0.1 are shown in Figure 19. The displacement variance statistics of the primary
system and its decreased ratios relative to the uncontrolled primary system are shown
in Table 4. After comparing the numerical values, we can find that the variance in the
numbers generated by the DVA discussed in this study is smaller than for other models,
indicating that the deviation between random variables and mathematical expectations
is smaller. The decrease ratios refer to the ratio of the difference between the previous
amplitude of the two adjacent waves in the same direction minus the difference between
the latter amplitude and the previous amplitude after each fluctuation cycle. The decrease
ratios of the wave generated by the primary system without DVA and the wave generated
by the primary system with DVA were calculated. It was found that the decrease ratio
of the model in this paper is larger. The proposed model exhibits superior performance
compared to other DVAs under random excitation. Furthermore, compared to the TE-type
DVA and NS-TE-type DVA models, the NS-TE-type DVA model displays superior control
performance, indicating that the introduction of grounded negative stiffness to the DVA
model has a beneficial random vibration reduction effect. The combined application of
the inerter and negative stiffness has a satisfactory vibration reduction effect and can
provide ideas and beneficial choices for the design of vibration isolation systems in seismic
engineering.
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Figure 17. Comparison of the time histories of the primary system with different optimization
methods: (a) β = 0.1 and (b) β = 1.
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Figure 18. Comparison of the time histories of the primary system with different inerter–mass ratios.
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Figure 19. Comparison of the time histories of the primary system with different DVAs: (a) Voigt-type
and Ren-type; (b) TE-type and NS-TE-type; and (c) NS-Shen-type and NS-Wang-type.

Table 4. The variances and decrease ratios of primary structure displacement.

Models Variances Decrease Ratios (%)

Without DVA 2.5712 × 10−4 /
Voigt-type DVA 3.5639 × 10−5 86.14
Ren-type DVA 3.0313 × 10−5 88.21
TE-type DVA 4.0445 × 10−5 84.27
NS-TE-type DVA 1.8508 × 10−5 92.80
NS-Shen-type DVA 2.9562 × 10−5 88.50
NS-Wang-type DVA 2.8035 × 10−5 89.10
INS-type DVA (β = 0.1) 1.6080 × 10−5 93.75
INS-type DVA (β = 0.5) 1.1951 × 10−5 95.35
INS-type DVA (β = 1) 1.0637 × 10−5 95.86
INS-type DVA (β = 1.5) 9.8359 × 10−6 96.17
INS-type DVA (β = 2) 9.3692 × 10−6 96.36

5. Conclusions and Prospect

The vibration experienced under complex working conditions is an important factor
affecting the efficiency, reliability, accuracy, and safety of engineered structures. It is a
technical problem and a frontier in the field of major engineering to suppress harmful
vibrations in complex dynamic environments. In our study, a novel three-element-type
inerter-based DVA model with grounded negative stiffness is presented. The specific
expressions and optimal values of the frequency ratio, α1, α2, ν, and ξ, are obtained by
the fixed-point theory and provide an iterative value range for algorithm optimization.
In order to further minimize the maximum amplitude amplification coefficient of the
primary system, an intelligent PSO algorithm is introduced to optimize the four parameters
iteratively at the same time. By tracking the individual and global optimal values, the
particle alters its velocity and location, and the ultimate output parameters bring the
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optimized curve to nearly equal heights. The specific values of the response characteristics
of the primary system under the fixed-point theory optimization method and the intelligent
PSO algorithm are compared more comprehensively. It is found that after using the PSO
algorithm, the two resonance peaks on the amplitude–frequency response curve are almost
equal, the corresponding amplitude–frequency response is significantly reduced, the mean
square value is lower, and the response curve is more stable. The numerical and analytical
solutions are simulated to further prove the validity of the optimal parameter values.

Finally, from the perspective of amplitude–frequency curves, stroke lengths, time
history diagrams, displacement variances, and decrease ratios, the control performance
of the proposed model under harmonic excitation and random excitation is compared
with other DVAs. The results verify that the proposed model has significant advantages in
reducing the harmonic and random vibration, and the optimization effect of the intelligent
algorithm is better. The results provide theoretical and algorithmic support for the structural
design and parameter optimization of DVAs. Beam structures are a common structural form
in engineering applications. In addition to studying the vibration reduction performance of
a single vibration absorber, multiple or distributed vibration absorbers are also a research
frontier in the vibration suppression of beam structures. In our future research, we will
combine the actual needs of bridges regarding seismic resistance and buildings regarding
seismic protection, apply the model proposed in this paper to distributed DVAs, and
combine traditional theory and intelligent algorithms to further improve the structural
parameters of DVAs.
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