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Abstract: Spatially coupled low density parity check (SC-LDPC) are prominent candidates for future
communication standards due to their “threshold saturation” properties. To evaluate the finite-length
performance of SC-LDPC codes, a general and efficient finite-length analysis from the perspective
of the base matrix is proposed. We analyze the evolution of the residual graphs resulting at each
iteration during the decoding process based on the base matrix and then derive the expression for the
error probability. To verify the effectiveness of the proposed finite-length analysis, we consider the
SC-LDPC code ensembles constructed by parallelly connecting multiple chains (PC-MSC-LDPC). The
analysis results show that the predicted error probabilities obtained by using the derived expression
for the error probability match the simulated error probabilities. The proposed finite-length analysis
provides a useful engineering tool for practical SC-LDPC code design and for analyzing the effects of
the code parameters on the performances.

Keywords: spatially coupled LDPC codes; finite-length performance analysis; peeling decoder

1. Introduction

Spatially coupled low-density parity check (SC-LDPC) codes have been proven to
improve the belief propagation (BP) thresholds up to the maximum a posterior (MAP)
thresholds of the underlying LDPC block codes for the binary erasure channel (BEC) [1].
Afterwards, many new structures were proposed to achieve better thresholds or low-
complexity/delay decoding, including designing the coupling pattern, eliminating small
absorbing/trapping sets, introducing slight irregularities and so on [2–4]. In addition,
most of the literature focused on applying the concept of spatial coupling on other error
correction codes to improve the decoding thresholds, such as spatially coupled repeat-
accumulate (SC-RA) codes, spatially coupled turbo codes (SC-TCs), spatially coupled
precoded rateless codes and so on [5–7]. Moreover, spatial coupling need not be limited
to forming a single chain, and more general structures formed by connecting multiple
coupled chains were presented to improve the decoding thresholds [8–10]. Different from
connecting multiple identical coupled chains, the SC-LDPC codes constructed by parallelly
connecting multiple different chains (PC-MSC-LDPC) were proposed in [11], which showed
that the thresholds of the PC-MSC-LDPC code ensembles with flexible rates are very close
to Shannon limits over the BEC.

The studies stated above mainly focused on the asymptotic performance analysis
of the SC-LDPC ensembles. To analyze the finite-length performances, a scaling law for
predicting the error probability of the SC-LDPC codes over the BEC using the peeling
decoder (PD) was proposed in [12], which extended the finite-length analysis for LDPC
codes in [13]. At each iteration, if the variable node is not erased through the channel or
connected to a degree-one check node, it will be recovered successfully and then removed
from the decoding graph along with all its attached edges. This decoding process gives rise
to a sequence of residual graphs. Therefore, the analysis of the PD process is equivalent to
analyzing the evolution of the residual graphs, which can be transformed to analyze the
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evolution of the degree distributions (DDs) on the residual graphs. In [13], it was pointed
out that the DDs on the residual graphs at any time converge to a multivariate Gaussian.
As a result, by computing the mean and the variance of the DDs evolution during the PD
process, the error probability can be estimated. Following this principle, a finite-length
analysis for the loop ensemble constructed by connecting two identical coupled chains was
presented in [14], which showed that connecting two coupled chains can result in better
thresholds and improved finite-length performances.

These finite-length analyses focused on particular code structures, either the single
SC-LDPC code ensemble or the loop ensemble. When the code structure is changed, these
analyses will be either very complicated or invalid. According to the working principle
of PD, it can be seen that the core of the finite-length analysis over the BEC is analyzing
the DDs evolution of variable nodes and check nodes on the residual graph. The essence
is to determine whether one variable/check node on the residual graph is removed or
not according to the erasure probabilities computed by the received messages from the
connected edges, which depends on the interconnections between the variable nodes
and check nodes. Inspired by this, we proposed a general finite-length performance
analysis from the perspective of the base matrix for SC-LDPC codes. We considered
embedding the base matrix into analyzing the residual graph evolution during the decoding
process. In particular, based on the base matrix, we derived the mean graph evolution and
estimated the variance of the DDs on the residual graphs at each iteration to predict the
error probabilities. To verify the effectiveness of the proposed finite-length analysis, we
considered the PC-MSC-LDPC codes because they have special connection structures that
cannot be analyzed by the existing analyses. Using this expression, we plot the predicted
error probabilities for different PC-MSC-LDPC codes and also show the error probabilities
by simulations. The comparison results show that the predicted error probabilities can
fit the simulated ones well. Since this analysis is performed on the base matrix, it can be
applied to other spatially coupled code ensembles defined by the base matrix, including
the single SC-LDPC code ensemble and the loop ensemble. The analysis results of the
conventional SC-LDPC codes demonstrate this statement.

This paper is organized as follows. In Section 2, we describe the SC-LDPC and PC-
MSC-LDPC code ensembles using the base matrix. In Section 3, we analyze the graph
evolution based on the base matrix, including the mean graph evolution and the variance
estimation. In Section 4, we show and compare the results for different PC-MSC-LDPC
codes and the conventional SC-LDPC codes. In Section 5, we conclude our work.

2. Construction of PC-MSC-LDPC Codes
2.1. SC-LDPC Codes

A (J, K, L) SC-LDPC coupled chain was constructed by coupling L disjoint and small
(J, K)-regular LDPC protographs. Each protograph was placed at one position in order and
each position was denoted by u, u = 1, 2, . . . , L. Here, we considered a conventional fully
connected coupling pattern to couple these L protographs. Specifically, let w = gcd(J, K),
which denotes the greatest common divisor of J and K. Then, there are J′ check nodes
and K′ variable nodes at each position with J′ = J/w and K′ = K/w. To couple these L
protographs, we spread J edges of each variable node at position u to all adjacent check
nodes at position u + i, i = 0, 1, . . . , w− 1. In turn, for each check node at position u, K
edges will be connected to all nearby variable nodes at position u− i, i = 0, 1, . . . , w− 1. To
terminate the coupled chain, w− 1 extra positions only including additional check nodes
will be added at the end.

A (J, K, L) SC-LDPC coupled chain can be viewed as a protograph and its associated
incidence matrix Bsc, called a base matrix, is defined in (1), where the submatrices Bi,
i = 0, . . . , w− 1 are identical J′ × K′ all-one matrices. A (J, K, L, M) SC-LDPC code can
be obtained by taking an “M-lifting” of the (J, K, L) coupled chain [15]. Specifically, the
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parity check matrix can be generated by replacing each one entry by one M×M random
permutation matrix and each zero entry by one M×M all-zero matrix.

Bsc =



B0
B1 B0
... B1

. . .

Bw−1
... B0

Bw−1
. . . B1

...
Bw−1


J′(L+w−1)×K′L

. (1)

2.2. PC-MSC-LDPC Codes

Consider C independent and unconnected coupled chains with the same coupling
length L, where each chain has a different rate. The kth chain is denoted as B(Jk, Kk, L)
and there are J′k check nodes and K′k variable nodes at each position, where J′k = Jk/wk,
K′k = Kk/wk, wk = gcd(Jk, Kk) and k = 1, 2, . . . , C. The base matrix is denoted as Bsc,k and
the size is J′k(L + wk − 1)× K′kL. Let a = min{K′1, K′2, . . . , K′C} and b = min{J′1, J′2, . . . , J′C}.

Then, connect these C chains parallelly by edge exchanges. Specifically, a vari-
able nodes and b check nodes are randomly selected for each position u of every chain
B(Jk, Kk, L), where u = 1, 2, . . . , L and k = 1, 2, . . . , C. Next, break the edges between these
selected a variable nodes and b check nodes at each position u of B(Jk, Kk, L) and simul-
taneously connect these broken edges to b check nodes at each position u of B(Jz, Kz, L)
with z = (k mod C) + 1. The construction process starts from k = 1 and stops until k = C.
Take the uth position to illustrate this process in Figure 1, where the blue blank squares and
red blank circles are the selected check nodes and variable nodes, respectively, and the red
dash lines represent the exchange edges between two adjacent chains. The base matrix is

Bpc =



B
′
sc,1 LC

L1 B
′
sc,2

L2
. . .
. . . B

′
sc,C−1
LC−1 B

′
sc,C


m×n

, (2)

where B
′
sc,k denotes the remaining matrix after removing the exchange edges from the

base matrix Bsc,k and Lk represents the interconnections between the chain B(Jk, Kk, L) and
B(Jz, Kz, L), k = 1, 2, . . . , C and z = (k mod C) + 1. The size of Lk is J′z(L + wz − 1)× K′kL.
m = ∑C

k=1 J′k(L + wk − 1) and n = ∑C
k=1 K′kL. Denote the PC-MSC-LDPC code ensemble

defined by this base matrix as P(J1, K1, . . . , JC, KC, L). Take an “M-lifting” operation on
this base matrix and obtain the parity check matrix of a PC-MSC-LDPC code. Denote
the PC-MSC-LDPC code as C(J1, K1, . . . , JC, KC, L, M). More details about the asymptotic
performance analysis can be found in [11].
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the uth position of 

'

1J
'

1K '

2K '

CK'

2J '

CJ

1 1( , , )J K L

the uth position of the uth position of 

( , , )C CJ K L2 2( , , )J K L

Figure 1. The connection structure at the uth position of the code ensemble P(J1, K1, . . . , JC, KC, L).

Example: Consider two coupled chains: B(3, 6, 8) and B(4, 6, 8). Since K′1 = 2, J′1 = 1
for B(3, 6, 8) and K′2 = 3, J′2 = 2 for B(4, 6, 8), we have a = 2 and b = 1. Thus, we need to
select two variable nodes and one check node at each position for B(4, 6, 8). The connection
structure of these two chains in parallel is shown in Figure 2, where the blue blank squares
denote the selected one check node and the red blank circles are the selected two variable
nodes. Specifically, at each position, we break the two edges between two variable nodes
and one check node of B(3, 6, 8) and connect them to one selected check node of B(4, 6, 8)
at the same position (shown in dash lines). Then, we break the two edges between these
two selected variable nodes and one selected check node of B(4, 6, 8), and connect them
to one check node of B(3, 6, 8) (shown in red dash lines). The base matrix can be obtained
by (2).

 3, 6,8

 4,6,8

Figure 2. The connection structure of two chains B(3, 6, 8) and B(4, 6, 8) in parallel.

3. Graph Evolution under Peeling Decoder

Following the PD working principle, we proposed a general finite-length analysis
based on the base matrix to predict the error probabilities. Without a loss of generality, we
considered the PC-MSC-LDPC codes transmitted over the BEC with erasure probability ε
under PD.

3.1. Denotations of DDs

As described in Section 2, denote the check node at the ith row of the base matrix
B as Type-i check node and the variable node at jth column as Type-j variable node,
where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The number of each type of check/variable node is
M. The degrees of Type-i check node and Type-j variable node are dci = ∑n

j=1 B(i, j) and
dvj = ∑m

i=1 B(i, j), respectively, where B(i, j) is the entry at the ith row and jth column of B.
To describe the graph evolution under PD, let l denote time and let it be normalized

by τ = l/M. Since the PD peels off one variable node at each iteration from the decoding
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graph and there are εMn variable nodes in total at the start of the decoding process, εMn
iterations are required on average in order to reach the empty graph and realize successful
decoding, i.e., τ ∈ [0, εn].

Let Vj(l) denote the number of the remaining Type-j variable nodes and Rs,i(l) denote
the number of edges connected to Type-i check nodes with degree s at time l, where
1 ≤ j ≤ n, 1 ≤ s ≤ dci, 1 ≤ i ≤ m. Vj(l) and Rs,i(l) are defined as the DDs at time l.

Denote vj(τ) and rs,i(τ) as the normalized versions, where they can be obtained by
normalizing Vj(l) and Rs,i(l) with M at normalized time τ.

vj(τ) =
Vj(l)

M
, rs,i(τ) =

Rs,i(l)
M

. (3)

Since the expected values are required during the graph evolution, denote the expected
values of vj(τ) and rs,i(τ) as v̂j(τ) = E[vj(τ)] and r̂s,i = E[rs,i(τ)].

3.2. Mean Graph Evolution

Initialization Step: The number of the correctly received Type-j variable nodes is
(1− ε)M after passing the BEC with erasure probability ε. At l = 0, PD removes all these
correctly received variable nodes along with their attached edges from the decoding graph.
The expected number of Type-j variable nodes is given by

E[Vj(0)] = εM, 1 ≤ j ≤ n, (4)

and the normalized version is v̂j(0) = E[vj(0)] = E[Vj(0)]/M.
At l = 0, since PD removed all correctly received variable nodes along with their

attached edges from the decoding graph, the check nodes on the residual graph will lose
edges and the degree will be decreased. If the degree of a Type-i check node with degree
dci is decreased to s, it means that a total of dci − s edges of this check node are connected
to the correctly received variable nodes. Therefore, the expected value of Rs,i(0) is

E[Rs,i(0)] = sM
(

dci
s

)
εs(1− ε)dci−s, 1 ≤ i ≤ m. (5)

At the right side of Equation (5), the former part sM represents the total number of
edges connected to Type-i check nodes with degree s and the latter part is the probability
that the degree of a Type-i check node is s. The normalized version is r̂s,i(0) = E[rs,i(0)] =
E[Rs,i(0)]/M.

Evolution Step: At time l, one degree-one check node is randomly selected and then
removed along with its connected variable node and all connected edges. A new residual
graph is produced.

The mean graph evolution is determined by the expected values of rr,i(τ) and vj(τ),
which can be obtained by solving the following differential equations:

∂v̂j(τ)

∂τ
=

∂E[vj(τ)]

∂τ
=

∂E[Vj(l)]
∂l

= E
[
Vj(l + 1)−Vj(l)

∣∣Rq,p(l), Vt(l), ∀q, p, t
]
, (6)

∂r̂s,i(τ)

∂τ
=

∂E[rs,i(τ)]

∂τ
=

∂E[Rs,i(l)]
∂l

= E
[
Rs,i(l + 1)− Rs,i(l)

∣∣Rq,p(l), Vt(l), ∀q, p, t
]
, (7)

where 1 ≤ i ≤ m, 1 ≤ s ≤ dci, 1 ≤ j ≤ n, and they have unique solutions. As pointed out
in [13], when M→ ∞, any samples of vj(τ) and rs,i(τ) follow v̂j(τ) and r̂s,i(τ) closely. The
solutions of Equations (6) and (7) are given as follows.
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Solution of Equation (6): At time l, assume the removed degree-one check node to be
a Type-c check node, which is chosen randomly from all degree-one check nodes on the
residual graph with uniform probability pc(l).

pc(l) =
R1,c(l)

∑m
i=1 R1,i(l)

. (8)

Then, the variable node connected to this removed Type-c degree-one check will be
removed. Denote the probability that this variable node is a Type-j variable node as λc,j(l).

λc,j(l) =
Vj(l)Bpc(c, j)

∑n
u=1 Vu(l)Bpc(c, u)

, (9)

where the denominator represents the total number of variable nodes connected to Type-c
check nodes.

Since a Type-j variable node with probability λc,j(l) is removed, the variation for the
variable nodes is

E[Vj(l + 1)−Vj(l)|pc(l)] = −λc,j(l). (10)

Solution of Equation (7): At time l, if this Type-j variable node connected to the
removed Type-c degree-one check node is removed, all the attached edges will be deleted,
which results in every connected check node losing one edge. Then, denote the probability
that a Type-i check node loses one edge as ξc,i(l) and, specifically, ξc,c(l) = 1.

ξc,i(l) =
n

∑
j=1

Bpc(i, j)λc,j(l). (11)

Since a Type-c check node with degree one and an edge connected to it are removed,
the variation in the check nodes for the case i = c can be calculated as

E[Rs,c(l + 1)− Rs,c(l)|pc(l)] =
{
−1, s = 1

0, others
. (12)

For the case i 6= c, the graph loses one edge with probability ξc,i(l). This lost edge is
connected to a degree-s check node with probability

Rs,i(l)

∑dci
q=1 Rq,i(l)

. (13)

As a result, the graph will lose s edges of Type-i check nodes with degree s and gain
s− 1 edges of the Type-i check nodes with degree s− 1. The expected graph evolution is

E[Rs,i(l + 1)− Rs,i(l)|pc(l)] = sξc,i(l)
Rs+1,i(l)− Rs,i(l)

∑dci
q=1 Rq,i(l)

, (14)

where Rs+1,i(l) = 0 for s = dci.
Since the fraction of degree-one check nodes on the graph determines the successful

decoding, we only consider the variation in the degree-one check nodes. In conclusion, by
using Equations (10) and (14), the expected graph evolutions can be derived.

On the variable node side, we can obtain

E[Vj(l + 1)−Vj(l)] = −
m

∑
p=1

λc,j(l)pc(l). (15)
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On the degree-one check node side, we can obtain

E[R1,i(l + 1)− R1,i(l)] = −pc(l) + (
R2,i(l)− R1,i(l)

∑
dci
q=1 Rq,i(l)

)(p(l)ξi
T(l)− pi(l)), (16)

where p(l) = [p1(l) p2(l) · · · pm(l)] and ξi(l) = [ξ1,i(l) ξ2,i(l) · · · ξm,i(l)].
Decoding Criteria: To ensure the successful decoding, the total number of degree-one

check nodes must be kept positive until the whole graph is peeled off. Therefore, the BP
threshold can be defined as the maximum ε to ensure that the mean fraction of degree-one
check nodes r̂1(τ) is strictly positive for any τ ∈ [0, εn].

r̂1(τ) =
m

∑
i=1

r̂1,i(τ) =
m

∑
i=1

E[r1,i(τ)]. (17)

3.3. Variance Estimation

After describing the expected evolution of the random process r1(τ), we need to com-
pute the variance of r1(τ) for estimating the error probability of the PC-MSC-LDPC codes.
As pointed out in [12], for sufficiently large M, the distribution of r1(τ) can converge to a
Gaussian distribution with mean r̂1(τ) in Equation (17) and variance δ1(τ) in Equation (18).
Therefore, we can estimate the variance empirically around the mean value using a large
set of samples of r1(τ) at time τ.

Var[r1(τ)] = E[(r1(τ)− r̂1(τ))
2] =

1
M

m

∑
i=1

m

∑
t=1

δ1i,1t =
δ1(τ)

M
. (18)

4. Performance Analysis and Results

We first show the mean value r̂1(τ) for the PC-MSC-LDPC code ensembleP(3, 6, 3, 9, 8)
with different ε and M = 500 in Figure 3a. For ε = 0.37, we also plot a set of 10 simulated
decoding trajectories to confirm that they indeed concentrate around the predicted mean
evolution. From Figure 3a, we can clearly observe that the local minimum decreases as ε
increases and will be close to zero at the BP threshold ε∗ = 0.4064 computed by the density
evolution in [11], which also coincides with the definition of the BP threshold in Section 3.2.
The time at this local minimum was defined as the critical point and denoted as τ∗.

0 5 10 15 20

Normalized time 

10-2

10-1

100

101

=0.37
=0.38
=0.39
=0.40
=0.406

decoding trajectories

increasing 

(a)

0 2 4 6 8 10 12 14 16 18 20

Normalized time 

100

101

102

=0.37
=0.38
=0.39
=0.40

decreasing 

(b)

Figure 3. (a) Plot r̂1(τ) for the ensemble P(3, 6, 3, 9, 8) with M = 500 and different ε. The decoding
trajectories are included for ε = 0.37. The symbols in each line correspond to the critical points for
each ε. (b) Plot r̂1(τ)/(ε∗ − ε) with the threshold ε∗ = 0.4064.
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In order to associate the error probability with ε, we considered a first-order Taylor
expansion around the threshold ε∗ for r̂1(τ

∗) at τ∗.

r̂1(τ
∗) ≈ r̂1(τ

∗)|ε∗ + γ(ε∗ − ε) +O((ε∗ − ε)2). (19)

We plot r̂1(τ)/(ε∗− ε) for the ensemble P(3, 6, 3, 9, 8) in Figure 3b. The approximately
constant values can be observed for different ε at τ∗, which indicates that it is reasonable
to remove the high-order components in Equation (19). Using r̂1(τ

∗)|ε∗=0, we can obtain
γ ≈ r̂1(τ

∗)/(ε∗ − ε), which can characterize the expected number of degree-one check
nodes for a given ε at the critical point τ∗.

Then, we extended the analysis to the case of L = 50 and plot the mean value r̂1(τ)
of the ensemble P(3, 6, 3, 9, 50) with M = 500 in Figure 4a, which also includes a set of
10 simulated decoding trajectories for ε = 0.35 to verify the accuracy of the mean evolution.
Different from the ensemble P(3, 6, 3, 9, 8), we can observe that the local minimum appears
not only at one critical point but also for a period of time. This phase is named as a
steady phase and the critical point τ∗ can be any time during this phase. At this steady
phase, the expected number of degree-one check nodes is almost constant, which confirms
the conclusion in [1] that the decoding waves travel away from the boundaries toward
the center of the coupled chain at a constant speed. We also plot r̂1(τ)/(ε∗ − ε) for the
ensemble P(3, 6, 3, 9, 50) in Figure 4b. The approximately constant values can be observed
for different ε at τ∗.

0 20 40 60 80 100

Normalized time 

10-2

10-1

100

101

=0.35
=0.36
=0.37
=0.375
=0.38

decoding trajectory

increasing 

(a)

0 20 40 60 80 100

Normalized time 

100

101

102

103

=0.35
=0.36
=0.37
=0.375
=0.38

decreasing 

(b)

Figure 4. (a) Plot r̂1(τ) for the ensemble P(3, 6, 3, 9, 50) with M = 500 and different ε. The decoding
trajectories are included for ε = 0.35. The symbols in each line correspond to the critical points for
each ε. (b) Plot r̂1(τ)/(ε∗ − ε) with the threshold ε∗ = 0.3819.

As pointed out in [12], the fraction of degree-one check nodes at τ∗ dominates the
code performance, so we only need to estimate the variance Var[r1(τ)] at τ∗. Specifically,
we produced a set of 102 samples of r1(τ) for each ε by using one randomly generated
code from the PC-MSC-LDPC ensemble under the PD. For the ensemble P(3, 6, 3, 9, 8), the
estimated δ1(τ

∗) for different ε and M is listed in Table 1.

Table 1. The values of δ1(τ
∗) for the ensemble P(3, 6, 3, 9, 8).

δ1(τ∗) ε = 0.385 ε = 0.39 ε = 0.395 ε = 0.40

M = 200 0.3526 0.3222 0.2548 0.1509
M = 500 0.5527 0.4796 0.4258 0.3031

δ1(τ∗) ε = 0.393 ε = 0.394 ε = 0.395 ε = 0.40

M = 1000 0.6174 0.6019 0.5978 0.4991
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Since r1(τ) converges to a Gaussian distribution [13], the error probability at τ∗ can
be obtained.

P = Q

(
r̂1(τ

∗)√
Var[r̂1(τ∗)]

)
= Q

(
γ(ε∗ − ε)√
δ1(τ∗)/M

)
. (20)

Using Equation (20), we show the predicted error probabilities (dash lines) for dif-
ferent PC-MSC-LDPC codes in Figure 5 and also plot the simulated ones (solid lines) for
comparisons. The results show that the predicted error probabilities are consistent with the
simulated error probabilities but small gaps can be observed for relatively small M. They
are caused due to two reasons. One is the deviation between the mean value r̂1(τ) and
the true mean value of the process r1(τ), but it deviates from the true mean value of the
process r1(τ) by less than M−1/6. As M → ∞, any sample of r1(τ) follows r̂1(τ) closely.
The other is the negligence of the decoding failure at τ 6= τ∗ caused by the small cycles or
stopping sets in the graph. This effect is more severe for smaller values of M. However,
since the SC-LDPC code ensemble has a linear growth of minimum distance with block
length nM, the codes with small cycles or low-weight stopping sets can hardly be found
for sufficiently large M. Therefore, when M increases to a few thousands, the effects on the
prediction accuracy will be small enough to be ignored.
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Figure 5. Simulated error probabilities (solid lines) and predicted error probabilities using the
expression in Equation (20) (dash lines) for the different PC-MSC-LDPC codes. The rate and the
codelength of C(3, 6, 3, 9, 50, 500) are 0.584 and 125,000. The rate of the other three codes is 0.5 and the
codelengths are 8000, 20,000 and 40,000 respectively.

Next, we extended the analysis to the case of connecting three different chains and
considered the ensemble P(3, 6, 3, 9, 3, 12, 15). The mean value r̂1(τ) with M = 200 and
different ε is plotted in Figure 6. Similar results can be observed that, when approaching
the threshold ε∗ = 0.3114, the r̂1(τ

∗) values gradually decrease to approximately zero.
In Table 2, the δ1(τ

∗) values are calculated for the codes generated from the ensemble
P(3, 6, 3, 9, 3, 12, 15). The predicted error probabilities and the simulated ones for these
codes are shown in Figure 7. The comparison results show that these two curves can
match well and that the accuracy of the prediction gets better as M becomes larger. For
comparison, the finite length performance bounds obtained by Equation (290) in [16] for
different codelengths along with the BP threshold and Shannon limit are also plotted in
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Figure 7, from which we can observe that the gaps between the error probability curves and
performance bounds are almost equal to the gap between the BP threshold and Shannon
limit. It is known that the finite-length performance is consistent with the BP threshold.
By increasing the coupling length, the BP threshold can be improved to be close to the
Shannon limit, which can result in the error probabilities approaching the finite-length
performance bounds.
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Figure 6. (a) Plot r̂1(τ) for the ensemble P(3, 6, 3, 9, 3, 12, 15) with M = 200 and ε from 0.29 to 0.31. A
set of 10 empirical trajectories for ε = 0.29 are included. The symbols in each line correspond to the
critical points for each ε. (b) Plot r̂1(τ)/(ε∗ − ε) with the threshold ε∗ = 0.3114.

Table 2. The values of δ1(τ
∗) for the ensemble P(3, 6, 3, 9, 3, 12, 15).

δ1(τ∗) ε = 0.295 ε = 0.30 ε = 0.305 ε = 0.31

M = 200 0.4777 0.4146 0.1988 0.0094
M = 500 0.7972 0.7711 0.5394 0.0275
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Figure 7. Simulated error probabilities (solid lines) and predicted error probabilities (dash lines) for
the codes C(3, 6, 3, 9, 3, 12, 15, 200) and C(3, 6, 3, 9, 3, 12, 15, 500). The rate is 0.6222 and the codelengths
are 27,000 and 67,500 respectively. The solid lines from left to right are the performance bounds for
codelength = 27,000 and codelength = 67,500 in order. BP threshold (vertical dash line) and Shannon
limit (vertical solid line) are also included.
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Finally, we applied the analysis to the conventional SC-LDPC code C(3, 6, 8, 700). The
mean value r̂1(τ) with different ε and plot r̂1(τ)/(ε∗ − ε) is shown in Figure 8. It can be
observed that the local minimum values decrease when increasing ε to the BP threshold
ε∗ = 0.5212 and that they are small enough to be close to zero at ε = 0.52. In addition,
the approximately constant γ can be observed at the critical point as expected. Following
similar steps, we computed and list the δ1(τ

∗) values for different ε in Table 3. Using
Equation (20), the predicted error probability for C(3, 6, 8, 700) can be plotted in Figure 9.
It was shown that the predicted performance using this error probability expression can
fit well with the simulated performance, which can demonstrate the effectiveness of the
proposed finite-length analysis for other SC-LDPC code ensembles.
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Figure 8. (a) Plot r̂1(τ) for the code C(3, 6, 8, 700), where ε varies from 0.49 to 0.52. The symbols in
each line correspond to the critical points for each ε. (b) Plot r̂1(τ)/(ε∗ − ε) with the BP threshold
ε∗ = 0.5212.
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Figure 9. Simulated error probability and predicted error probability for the code C(3, 6, 8, 700).
The rate is 0.375 and the codelength is 11,200. The blue solid line is the performance bound for
codelength=11,200. BP threshold (vertical dash line) and Shannon limit (vertical solid line) are
also included.
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Table 3. The values of δ1(τ
∗) for the code C(3, 6, 8, 700).

δ1(τ∗) ε = 0.52 ε = 0.515 ε = 0.51 ε = 0.505 ε = 0.50 ε = 0.495

M = 700 0.0422 0.1372 0.1694 0.2432 0.2825 0.3069

5. Conclusions

This paper proposed a general finite-length analysis from the perspective of the
base matrix over the BEC and applied it to the PC-MSC-LDPC code ensembles to verify
the effectiveness. The results show that the predicted error probabilities obtained by
using the derived error probability expression are consistent with the simulated error
probabilities and that the accuracy of the prediction will be further improved when M
increases. Since the proposed analysis is performed on the base matrix, it can be generalized
to any spatially coupled ensembles defined by the base matrix, such as SC-RA codes and
spatially coupled generalized LDPC codes. Finite-length performance analysis provides
a useful engineering tool for practical code design and analyzing the effects of the code
parameters on the performances.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L.; software, S.S.; validation, S.S.;
formal analysis, Y.L. and S.S.; writing—original draft preparation, Y.L. and S.S.; writing—review and
editing, Y.L. and Y.Z.; funding acquisition, B.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. U19B2015,
No. 62271386, No. 61801371).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SC-LDPC Spatially coupled low-density parity check
BP Belief propagation
MAP Maximum a posterior
BEC Binary erasure channel
SC-RA spatially coupled repeat-accumulate
SC-TCs spatially coupled turbo codes
PC-MSC-LDPC Parallelly connecting multiple SC-LDPC
PD Peeling decoder
DDs Degree distributions
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