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Abstract: The mutual information of the observed channel phase between devices can serve as an
entropy source for secret key generation in line-of-sight scenarios. However, so far only simulated and
numeric results were available. This paper derives the probability distribution of the channel phase
and corresponding expressions for the mutual information. Moreover, the orientation distribution
is optimized in order to maximize the mutual information. All presented results are validated
numerically. These outcomes serve as a basis for further analytic investigations on the secret key
generation rate and subsequent physical layer security performance analysis in line-of-sight scenarios,
such as those encountered in drone-aided communications.
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1. Introduction

Integrated ground–air–space global networks will rely heavily on the use of multi-hop
wireless networking, e.g., using drones, in order to expand the performance and capabilities
of future generations of wireless systems. In order to deliver the promised performance,
various challenges need to be addressed, e.g., meeting aggressive latency requirements,
enabling massive connectivity with low energy consumption and computational effort,
jointly with the provision of explicit security guarantees. Another crucial concern arises
from the widespread deployment of low-end Internet of Things (IoT) devices. These
devices, often manufactured through non-uniform production processes and expected
to remain operational for over 10 years, raise important questions about future security
architectures. Furthermore, the extensive utilization of artificial intelligence (AI), machine
learning (ML), and quantum computing advancements will increase the vulnerability of
6G systems to attacks.

Today’s security architecture of connected devices mainly relies on public key infras-
tructure (PKI) [1] for authentication and key distribution. Such architecture has proven
reliable and useful for a vast range of applications and has proven instrumental in securing
both the core network as well as 5G networks incorporating TLS-based protocols. How-
ever, upcoming quantum computers are said to on one hand be able to break standard
public key-encryption-based handshakes, while on the other hand post-quantum-based
asymmetric cryptography can still be computationally expensive for simple, low-end IoT
devices such as wireless sensors [2]. Hence, alternative methods for authentication and key
distribution must be found.

Here, Physical layer security (PLS) can be a promising candidate to overcome this
key distribution problem [3]. In particular, applying secret-key generation (SKG) algo-
rithms that extract the keys from the shared physical channel between the communicating
devices [4] presents a light-weight alternative to the complex logistics of PKI, especially
when billions of small embedded IoT devices are deployed. In many 5G and 6G scenarios
with wide-band communication, the dynamic frequency selectivity of the wireless channel
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between the pairing devices can be used as a common source of entropy to generate a
common secret key [5]. Unfortunately, in static line-of-sight (LOS) scenarios such as those
encountered in drone-enabled multi-hop wireless networks, the wireless channels become
frequency flat and less dynamic and hence another source of entropy needs to be found.

Despite these difficulties, the use of SKG in LOS conditions can be important for use
cases such as drone communications and is motivated by many factors:

• Drones are expected to have widespread use in applications including surveillance,
delivery services, and critical infrastructure inspections. These applications often
involve the exchange of sensitive and often confidential data that need to be secure
against unauthorized access. SKG emerges thus as a viable option for the ad hoc gen-
eration of secret keys between drones and critical infrastructure. These can be used in
hybrid PLS-crypto systems to establish secure communication channels, ensuring that
the transmitted information remains confidential and protected from eavesdropping,
while respecting very strict delay constraints by avoiding conventional PKI-based
key distribution.

• Secondly, drones operate in wireless environments that are susceptible to other types
of malicious attacks, e.g., jamming, spoofing and tampering. Recent works on SKG
robustness against such attacks provide the grounds for using such technologies in
a trustworthy manner. We note in passing that jamming attacks have been analyzed
in [6], tampering during pilot exchange in [7], spoofing during side information
exchange in [8], while generalized channel probing has been covered in [9].

• Additionally, drones often operate in dynamic and unpredictable environments, mak-
ing them vulnerable to both physical and cyber attacks. SKG provides an infrastruc-
tureless setting for enabling secure communications in such demanding scenarios.

• Moreover, SKG can lend itself to zero-touch solutions, especially when combined with
location and RF-fingerprint-based authentication protocols. Protocols building on
these PLS solutions have been proposed for fast authentication of IoT devices [8].

In summary, the use of SKG in drone communications can be instrumental to protect
sensitive data, secure wireless communication channels, mitigate risks of physical and
cyber attacks, and enable secure interactions within the IoT ecosystem. It can be used in
hybrid PLS-crypto systems to ensure the confidentiality of the transmitted data, enhancing
the overall security and reliability of drone operations.

Due to the frequency flatness in LOS scenarios, in [10] the authors proposed to use
the phase shift of a LOS multiple-input multiple-output (MIMO) channel as the common
randomness between devices. In particular, with small wave lengths, small fluctuations
in the position of transmitting and receiving antennas can already have a large effect on
the channel phase and hence serve as a source of entropy. Moreover, such small changes
in the position are hardly visible to malicious observers and hence the channel phase
cannot be predicted. The authors in [10] numerically analyzed the mutual information (MI)
I(A; B) between the pairing devices, Alice and Bob. Moreover, they also simulated the
conditional MI between Alice and Bob given the observer, Eve, to understand the available
key generation rate for a specific geometric constellation.

As the novelty, and in contrast to the work in [10] this paper provides analytic expres-
sions for the MI between Alice and Bob given different counts of antennas and signal-to-
noise ratios (SNRs). Analytic results are important in order to understand the underlying
characteristics of a system and potentially allow to generalize results beyond scenarios that
where simulated numerically. In particular, the results presented in this paper are valid for
single- and dual-antenna systems and provide a theoretical reasoning on the behaviour of
the MI for different SNRs at Alice and Bob. We show that the results match the numeric
simulations. In particular, the contributions of this paper are three-fold:

• We analyze the properties of the noise of the channel phase and provide analytic
expressions for the probability density function (PDF) of the channel phase under
rotating antennas. Here, we build upon the system model from [10], but introduce a
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geometric approximation in order to make the expressions mathematically tractable.
The obtained PDF serves as a basis for the subsequent analysis of I(A; B).

• We derive a tight upper-bound expression for the MI between Alice and Bob which is
valid for different SNRs and antenna constellations. This is particularly novel, as the
model under consideration has previously only been studied via numeric simulations.

• Using the derived analytic results we show that the orientation distribution of Alice
and Bob can be optimized such that I(A; B) reaches the provided upper bound. The
obtained expression of the optimal rotation is a direct consequence of the previously
derived expressions and is therefore a direct application of our results.

All results are verified with numeric simulations to corroborate their validity. The
shown results can serve as a basis for subsequent performance analysis of LOS SKG
algorithms in different scenarios, e.g., in drone-aided communications. The remainder of
this paper is structured as follows. Section 2 describes the system model in terms of signal
and geometry and derives the PDF for the channel phase between Alice and Bob. Analytic
expressions for MI between Alice and Bob are derived in Section 3. Section 4 verifies the
analytic results with numeric simulations. Finally, concluding remarks are provided in
Section 5.

2. System Model
2.1. Signal Model

Consider the two-dimensional model in Figure 1. Alice is located at the origin and
Bob’s center is at position ~d and both have multiple antennas, at positions ~ai and ~bk,
respectively, where i, k are the antenna indices at Alice and Bob, respectively. From the
geometry we see that~ai = rARαi~e and~bk = ~d + rBRβk~e, where αi and βk are the antenna
rotations of the i-th and k-th antenna at Alice and Bob, Rγ is a rotation matrix that rotates
around the angle γ, rA, rB are the antenna radius for Alice and Bob, respectively, and~e is
the unit vector pointing towards the right.

~d

rBRβ1
~e

~b1

rBRβ2~e
~b2

β

Bob

rARα1
~e

~a1

rARα2~e

~a2

α

Alice

Figure 1. Geometry of the 2D setup.

Assuming that Alice sends a non-modulated carrier x(t) from antenna i, the received
signal yik(t) at Bob’s kth antenna is given by

x(t) = exp(j2π fct) (1)

yik(t) = exp
(

j2π fc

(
t− dik

c

))
+ ñik(t) (2)

= exp(j2π fct) exp(jφik) + ñik(t) (3)

where c is the speed of light, fc is the carrier frequency and

dik = ‖~d +~bk −~ai‖ (4)

is the distance between the ith and kth antenna and φik = dik/c mod 2π is the phase of the
channel between these antennas (Note that in reality, real-valued signals are transmitted
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and received. However, for the mathematical presentation, the complex passband repre-
sentation is more compact.). ñik(t) is AWGN. Letting Bob employ an ideally synchronized
matched filter receiver which integrates the received signal over a period of the carrier
frequency we have

yB,ik =
∫ 1/ fc

0
yB,ik(t) exp(−j2π fct)dt (5)

= 1
fc

exp(jφik) + ñB,ik (6)

There, ñB,ik is once again complex AWGN with variance σ2
B since the integration happens

over a full period of the carrier. Without loss of generality we assume fc = 1 and hence
we define the SNR at Bob by SNRB = 1/σ2

B. A similar consideration can be performed
for signals transmitted from Bob to Alice. In particular, we note that the phase between
antennas i and k is reciprocal, meaning that the channel phase from Alice to Bob is equal to
the phase from Bob to Alice.

Now, to estimate the phase of the channel, Bob takes the angle of the matched filter
output, yielding

φ̂B,ik = arg(yB,ik) = φik + nB,ik, (7)

where nB,ik is the measurement noise which is not Gaussian distributed anymore. In-
stead, (7) describes the phase of the non-zero mean complex Gaussian random variable
yB,ik ∼ CN (ejφik , σ2

B). The distribution of this phase has been thoroughly analyzed in [11]
and the authors have shown that for high SNR the distribution matches a Gaussian distri-
bution as nB,ik ∼ N (0, σ2

2 ). In fact, for high SNR the periodic von-Mises distribution [12]
yB,ik ∼ M(κ) = 1

2π I0(κ)
exp(κ cos(φ)) with κ = 2σ−2

B matches as well and provides the
avantageous property of being periodic with 2π. For lower SNR, both the Gaussian and the
von-Mises distribution do not fully reflect the original distribution, however the von-Mises
distribution better follows the longer tail of the actual distribution, see Figure 2 for an
illustration. Therefore, in the sequel we assume nB,ik to be von-Mises distributed and we
will point out the numerical consequences later on. Note that analogous considerations
can be done for the measurements at Alice, yielding the same results, which we omit here
for brevity.

−π −π2 0 π
2

π10−3

10−2

10−1

100

nB,ik

P
ro
b
a
b
il
it
y
d
en
si
ty
P
(n
B
,i
k
)

Exact distribution

N (n;µ = 0, σ2)

M(n;κ = σ−2)
SNR=0dB
SNR=5dB
SNR=10dB

Figure 2. Probability distribution of the real phase error nB,ik and approximations by Gaussian and
von-Mises distributions for different SNR. For high SNR, both Gaussian and von-Mises match the
exact distribution well, whereas for low SNR, the von-Mises distribution is advantageous.
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2.2. Geometry Model

The channel phase between Alice and Bob for varying α, β is given by

φik = 2π
dik
λ

mod 2π (8)

where λ = c fc is the carrier’s wavelength. Using (4) we get

dik =
√
(d− rA cos αi + rB cos βk)2 + (rA sin αi − rB sin βk)2 (9)

Assuming that d � rA and d � rB we omit the second part under the square root
and find

φik ≈ 2π
d
λ
− 2π

rA cos αi
λ

+ 2π
rB cos βi

λ
mod 2π (10)

= φ0 + φA,i + φB,k mod 2π. (11)

Here, φ0 is a constant due to the average distance and φA,i, φB,k describe the phase
contributions due to the rotation of Alice and Bob.

Let us assume αi and βk are uniformly distributed, i.e., P(βk) = (2π)−1 and Alice and
Bob have no preferred orientation. Then, applying random variable transformation to
φ(βk) yields

φB,k(βk) = 2π
rB cos(βk)

λ
mod 2π (12)

= 2π
rB cos(βk)

λ
+ n · 2π s.t. φB,k ∈ [−π, π] (13)

βk(φB,k) = cos−1
(

λ · φB,k

2πrB
− λ · n

rB

)
(14)

dβk(φB,k)

dφB,k
=

λ

2π

1√
1− (

λ·φB,k
2πrB

− λ·n
r )2

(15)

and thus

PφB,k (φB,k) = Pβ(βk(φB,k))
dβk(φB,k)

dφB,k
(16)

=
λ

2π2rB
∑
n

1√
1−

(
λ(φB−2πn)

2πrB

)2
, (17)

where the summation is over all n such that the square root is real. In particular, for
rB ≤ λ/2 the expression simplifies to

PφB,k (φB,k) =
1

π2
√

1− (
λ·φB,k
2πrB

)2
, (18)

where for rB < λ/2 not even all channel phases are reached.
On the other hand, taking the limit for infinite rB we obtain

lim
rB→∞

PφB,k (φ) =
1

2π2U ∑
n

1√
1−

(
k
U

)2
(19)

=
1

2π2U

∫ 1

−1

Udx√
1− x2

=
1

2π
, (20)
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where U = rB
λ and dx = n

U − n+1
U = 1

U and hence for large rB the distribution approaches
uniformity.

Figure 3 shows the phase distribution for different ratios of λ/rB. As visible, for
λ/rB = 1

4 , the channel phase does not reach the entire range of angles, because the
antenna radius is too small. On the other hand, the bigger the rB, the more the distribution
approaches a uniform distribution, and already for λ/rB = 1

2 the real distribution is very
close to uniform. Note that analogous considerations can be carried for the distribution of
φA,i, yielding the analog expressions.

−π −π
2

0 π
2

π
10−1

100

φB,k

P
φ
B

,k
(φ
B
,k
)

rB = λ/4

rB = λ/2

rB = 11λ/2

rB = 201λ/2

Figure 3. PDF of φB,k for different antenna rotation radii. With increasing radius, the PDF approaches
the uniform distribution.

3. Mutual Information

For calculating the mutual information I(A; B) we assume φ0 = 0, since a constant
angle offset does not influence the mutual information between Alice and Bob. Moreover,
in the sequel we assume that if Alice or Bob have two antennas, then α1 = α2 + π = α and
β1 = β2 + π = β, i.e., the antennas at both Alice and Bob have an angle offset of 180 degree.
In this case, φA,1 = −φA,2 and φB,1 = −φB,2.

3.1. Single-Antenna Case

In the most basic 1× 1-case, where Alice and Bob have one antenna each and only Bob
rotates their antenna, the measurement model can be written as

φ̂A,11 = φB,1 + nA,11 φ̂B,11 = φB,1 + nB,11, (21)

where both summations are performed mod 2π. Here, we consider φA,0 = 0 since φA,0 is
constant and any constant angle will not influence I(A; B). We substract both equations
and get

φ̂A,11 = φ̂B,11 + nB,11 − nA,11, (22)

and therefore

I(φ̂A,11; φ̂B,11) = I(φ̂B,11 + n; φ̂B,11) (23)

= H(φ̂B,11 + n)− H(φ̂B,11 + n|φ̂B,11) (24)

= H(φB,1 + nA,11)− H(n), (25)

where n = nB,11 − nA,11 is the sum of the measurement noise at Alice’s and Bob’s antenna.
In (17) it was shown that the distribution of φB,1 is already nearly uniform. Since addi-

tive noise results equalizes the distribution more, we assume φ̂A,11 to be nearly uniformly
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distributed. Therefore, the first component of the mutual information can be approximated
(and upper bounded) by the entropy of the uniform distribution on [−π, π):

H(φB,1 + nA,11) / log2(2π) (26)

For the second part, H(nB,11 − nA,11) we consider that both nA,11, nB,11 are independent
and, for higher SNR, nearly Gaussian distributed. Hence, the difference of both is also
distributed according to a Gaussian with variance Var(n) = σ2

A + σ2
B. However, before we

saw that the periodice von-Mises distribution approximates the real phase distribution
better for lower SNRs, and therefore we assume that n is von-Mises distributed with

n ∼M(κ = 2
σ2

A+σ2
B
). (27)

Note, that this expression does not hold exactly for lower SNR, since in this case the
variances do not add completely due to the summation mod 2π. The deviation will be
pointed out in the simulation results. Hence, I(φ̂A,11; φ̂B,11) can be calculated by

I(φ̂A,11; φ̂B,11) ≤ log2(2π)− HM(κ = 2
σ2

A+σ2
B
) (28)

=
1

ln 2
κ I1(κ)

I0(κ)
− log2(I0(κ))

∣∣∣∣
κ= 2

σ2
A+σ2

B

(29)

=: I1×1(σ
2
A, σ2

B), (30)

where HM(κ) is the differential entropy of a von-Mises distributed random variable with
parameter κ.

3.2. 1× 2 System

The case with multiple antennas can be directly derived from the fundamental single-
antenna case. First, we consider a 1× 2 system where Bob has 2 antennas, and Alice has
1 antenna, and only Bob rotates their antennas, the measurement equations become:

φ̂A,11 = φB,1 + nA,11, φ̂B,11 = φB,1 + nB,11, (31)

φ̂A,12 = −φB,1 + nB,12, φ̂B,12 = −φB,1 + nB,12. (32)

Essentially, now Bob and Alice have two independent noisy observations of the same
underlying random variable φB,1. Therefore, the mutual information can be calculated from
the fundamental case by a simple SNR shift:

I1×2(σ
2
A, σ2

B) := I(φ̂A,11, φ̂A,12; φ̂B,11, φ̂B,12) (33)

= I1×1(
σ2

A
2 , σ2

B
2 ). (34)

3.3. 2× 2 System

Eventually, the 2× 2-case where both Alice and Bob have two antennas each, and both
Alice and Bob rotate their antennas yields the following measurement equations for Alice,

φ̂A,11 = φA,1 + φB,1 + nA,11 (35)

φ̂A,12 = φA,1 − φB,1 + nA,12 (36)

φ̂A,21 = −φA,1 + φB,1 + nA,21 (37)

φ̂A,22 = −φA,1 − φB,1 + nA,22, (38)

and similar equations can be formulated for Bob’s reception. Compared to the case where
only Bob rotated their antennas, the system now has two degrees of freedom, namely
φA,1 and φB,1. Therefore, we expect the mutual information to be double compared to the
case with a single degree of freedom. At the same time, each side has four measurements
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to estimate two parameters. Compared to the single-antenna case, where each side had
one measurement to estimate one parameter, the SNR is again doubled. Consequently, the
mutual information in the multi-antenna case is given by

I2×2(σ
2
A, σ2

B) := I




φ̂A,11
φ̂A,12
φ̂A,21
φ̂A,22

;


φ̂B,11
φ̂B,12
φ̂B,21
φ̂B,22


 (39)

= 2 · T1×1(
σ2

A
2 , σ2

B
2 ). (40)

3.4. Optimal Rotation Distribution

Before, we saw that (25) is maximized, if φA,i and φB,k are uniformly distributed.
Hence, finding a distribution for α, β that yields a uniform channel phase will maximize
I(A; B). When Alice and Bob have no preferred orientation and hence α, β are uniformly
distributed, φ is distributed according to (17). On the other hand, for rB = λ/2, if

Pβ =
1
4

√
1− cos2(β) (41)

is inserted into (16) it becomes apparent that φB,k is uniformly distributed for the given
optimal rotation distribution in (41).

4. Simulation Results

This section shows simulated MI between Alice and Bob along with the analytic results
from above. The results were obtained in Python by simulating (6) and then taking the
phase according to (7). We assume ideal synchronization and no hardware impairments
like phase noise of the oscillators. The distances dik that are used to generate φik = dik/c
have been obtained by using the exact geometry expression from (4) for random rotations
of the antennas at Alice and Bob. The distribution of the rotation angle of Alice and Bob was
uniform except for the optimized rotation distribution described in the previous section.
The mutual information was estimated using the Python NPEET package [13]. For each
SNR point, sufficiently many samples were obtained until the curves became smooth and
the upper bound of calculatable mutual information imposed by the NPEET algorithm [14]
was not reached. In particular, this corresponded to 500.000 angle realizations per SNR
point. The source code used for obtaining the results is contained in the supplementary
material of this paper.

Figure 4 shows the I(A; B) for the single-antenna system with different rB. The
distance between Alice and Bob was set to d = 100λ. As mentioned before, with increasing
rB, the distribution of φB,1 nears the uniform distribution and the uniform distribution of
φB,1 maximizes the obtained mutual information. Figure 4 also shows the simulated MI
curve, when φB,1 is truly uniformly distributed. For rB = λ these curves are reasonably
close and they virtually overlap for rB = 5λ. Moreover, we show that for SNR > 5 dB the
curve for uniform φB,1 overlaps the theoretic curve I1×1.

Figure 5 shows the simulated MI for the single and multi-antenna systems with
rB = λ, d = 100λ along with the theoretic curves. As can be seen, for SNR > 5 dB the
simulated curves are closely upper bounded by the theory, whereas for the lower SNR
the theoretic curves estimate the mutual information too low. This is due to the fact that
in lower SNR Var(n) 6= σ2

A + σ2
B because the noise samples are added mod 2π and their

entropy is upper bounded by the uniform distribution. Therefore, H(n) in (25) is estimated
too high. However, the approximation is still very close.
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Figure 4. Mutual information for different antenna radius. The higher the antenna radius, the closer
the simulated MI approaches the theoretic curve.
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Figure 5. Mutual Information for equal SNR for Alice and Bob.

Figure 6 shows the measured and theoretic mutual information for single and multi-
antenna systems where the SNR at Alice and Bob is different. This can, e.g., happen in a
non-symmetric scenario like in an up- and downlink of a celluar system. Naturally, when
the SNR of Bob is fixed, I(A; B) approaches a finite limit for high SNRA. The theoretic and
simulated curves match well, and still the theoretic curve is an upper bound for I(A; B) for
SNR > 5 dB.

Figure 5 also shows the simulated curves for I(A; B) when Alice and Bob distribute
their orientation according to (41). As can be seen, in this case I(A; B) is above that of a
uniform orientation of Alice and Bob. Moreover, the simulated curves overlap the curves
for the analytic upper bound and hence prove that the MI between Alice and Bob indeed
has been maximized.
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5. Conclusions

In this paper, we derive analytic expressions for the mutual information between
two communicating devices, where the shared information is the phase of the reciprocal
line-of-sight MIMO channel between both devices. Using randomly moving antennas, the
channel phase becomes a random variable that is estimated at both sides. Such commonly
estimated information can be used for example as an entropy source for key-generation in
physical-layer-based security schemes.

The derived expressions match well with the simulation results, proving their validity.
The results can be calculated much faster and more flexibly compared to running tedious
numerical simulations for different SNR combinations. Moreover, we derived an antenna
rotation scheme which maximizes the mutual information and proved the validity with
simulation results. The results are valid for one or two transmit antennas only, and cannot be
straightforwardly extended to four or more antennas. Another open point is the extension
of the geometry to the three-dimensional space, where Alice and Bob have two degrees of
freedom in their rotation, respectively.

The obtained results indicate that the channel phase of an LOS MIMO channel contains
sufficient information to synchronously generate random keys. At a high SNR, which can
be well assumed in LOS scenarios, each antenna can provide up to five bits of entropy
per measurement under ideal conditions. The obtained results help engineers estimate
the required SNR for real-world experiments and the presented derivations enable re-
searchers to elaborate on more sophisticated system models including higher dimensions
and more antennas.

Future Works

In future works, the presented results shall be verified with real-world measurements
to validate the obtained expressions. Here, a solution using software-defined radios and
offline signal processing shall be the first step to compare theoretic and simulated results
with real-world measurements.

On the theoretical side, it is of utmost importance to derive expressions when an
eavesdropper “Eve” enters the stage, because a secret key generation algorithm needs to
not only consider common information between Alice and Bob but also what information
is available to an eavesdropper [4]. Here, the position of Eve relative to Alice and Bob
will have a major influence on the dropped information, because, as this paper has shown,
some rotation angles exhibit more information than others. Hence, expressions involving
the position of Alice, Bob and Eve need to be developed.
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Finally, an actual key generation algorithm that exploits the channel phase between de-
vices should be designed, theoretically and numerically evaluated and eventually validated
with real measurements. Here, a multi-step approach as described in [15] consisting of
Randomness Extraction, Quantization, Information Reconciliation and Privacy Amplication
can be a promising solution.
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