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Abstract: This paper focuses on the application of higher-order and multilayer networks in identifying
critical causes and relationships contributing to hazardous materials transportation accidents. There
were 792 accidents of hazardous materials transportation that occurred on the road from 2017 to
2021 which have been investigated. By considering time sequence and dependency of causes, the
hazardous materials transportation accidents causation network (HMTACN) was described using
the higher-order model. To investigate the structure of HMTACN such as the importance of causes
and links, HMTACN was divided into three layers using the weighted k-core decomposition: the
core layer, the bridge layer and the peripheral layer. Then causes and links were analyzed in detail.
It was found that the core layer was tightly connected and supported most of the causal flows of
HMTACN. The results showed that causes should be given hierarchical attention. This study provides
an innovative method to analyze complicated accidents, which can be used in identifying major
causes and links. And this paper brings new ideas about safety network study and extends the
applications of complex network theory.

Keywords: hazardous materials transportation; accidents causation network; higher-order network;
multilayer network; weighted k-core decomposition

1. Introduction

Hazardous materials transportation safety, especially road transportation, is closely
tied to people’s lives and property and getting a growing concern. For example, the
National Roadway Safety Strategy, published by the U.S. Department of Transportation,
proposed zero roadway fatalities and serious injuries [1]. The State Council of China
printed the National Road Traffic Safety Plan for the “Fourteenth Five Year Plan” and put it
forward to decrease fatalities and frequency of traffic accidents [2]. Road transportation of
hazardous materials is considered to be the most dangerous to public health [3]. When it
happened, nearby residents usually suffer the most. And its accident causes are complex
by the coupling effect of many unsafe factors including humans, vehicles, the environment,
etc., and the inherent danger of hazardous materials. At present, hazardous materials trans-
portation accidents occurring on the road are maintaining a high frequency of growth [4,5].
For example, during the period 2013–2019, 2777 accidents involving the road transportation
of dangerous goods occurred in China, except occurring in loading, unloading, storage and
maintenance [5]. Therefore, it is urgent to curb these accidents.

Identifying key causes and relationships is quite important to prevent accidents.
Accident causes often involve nonlinear relationships and complex dynamic processes.
Various factors, such as human, equipment, vehicle, environment and management, interact
with each other and increase the complexity of transportation accidents [6]. For example,
the combination of heavy fog weather and fatigue driving can lead to serious accidents.
However, existing studies on accident causation mostly analyzed the influence of single-
factors without considering the interactions of multiple factors [7–9]. The popular methods
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of accident causation mainly contain sequence models, epidemiological models, and system
models [10]. These models cannot fill in the above gaps yet. In recent years, a complex
network has emerged as a valuable tool for studying accident causation [9,11,12]. It
provides a framework for representing and analyzing the interconnected relationships
between the various factors of accidents. Although these studies have provided valuable
insights, the complex interdependencies and higher-order relationships that exist within
the accident causation systems are often failed to capture [13]. This is due to the fact that
complex network is usually built by pairwise models. The chain reactions of causal factors
with sequences and dependencies are usually neglected [14], that is the next incident is
closely related to previous incidents.

To address the above problems, this paper aims to investigate the application of
higher-order networks and multilayer networks in identifying critical factors contribut-
ing to hazardous material transportation accidents. By considering the interactions and
dependencies between different causes of accidents, the importance of causes and links
can be obtained. Theoretically, a new idea for safety network study and an application of
network theory was developed. In application, this paper proposes valuable insights into
the underlying causes and references for accident control. The rest of this paper is organized
as follows. Section 2 describes the related works. Section 3 describes the details of the data
and methods. Section 4 presents the multilayer properties of HMTACN. Section 5 presents
the discussion. Finally, we show the conclusions of our study.

2. Related Works

Accident causation models, traditional approaches to analyzing accidents, have
formed a relatively mature theoretical system [10]. Sequence models are simple linear
thinking statistical analyses, such as dominoes [15], which are only adapted to simple factor
analysis. Epidemiological models emphasize the joint analysis of the causes at individual
and organizational levels [7,16]. Jiang et al. [7] used Human Factors Analysis Classification
System (HFACS) to classify the causes of hazardous chemical storage accidents and found
that resource management was a significant cause of accidents, followed by violations
and inadequate supervision. System models are more comprehensive in analyzing the
hierarchical relationships among causal factors and complex nonlinear interactions [17,18].
Leveson [17] proposed System Theoretic Accident Model and Processes (STAMP) based
on system theory in 2004. STAMP seeks to identify and analyze these complex interac-
tions using a set of modeling techniques. Therefore, accident cause analysis remains a hot
topic. However, the following gaps remain in these studies: (i) Sequence models may over-
look nonlinear temporal relationships, epidemiological models may ignore heterogeneity
among individuals, and system models may overlook complex interactions quantitalitively.
These may not fully reflect the complex accident causation mechanisms in the real world.
(ii) These lack quantitative research, which is not conducive to a larger number of accident
causation systems. (iii) Lack of consideration of multi-factor interactions.

To expose the complex and dynamic relationships of a large number of accidents, a
complex network has been applied to analyze accidents, such as railway accidents [8,11],
subway accidents [9,19], road accidents [20] and production safety accidents [21], etc. Li
et al. [8] proposed a risk monitoring model based on complex networks to quantify the risk
of accident causal factors. Zhou et al. [9] used network theory to study the complexity of
the subway construction accident network. Complex network theory provides a new idea
for revealing important factors and functional mechanisms among factors. The pairwise
relation model is used in complex networks, which assumes that the transfer of the node
only depends on the current position. This illustrates the memoryless property of the
Markov chain [13]. However, in a real complex system an accident chain usually requires
more than two steps, and the dependency information cannot be described by a pairwise
relation model [22]. Therefore, a complex network lacks information on the sequence and
dependencies of causes, which affects the accuracy of key factors identification.
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In relation to the problem, a higher-order network was proposed in 2016. Xu et al. [23]
demonstrated that data from real-world systems can reveal fifth-order dependencies, and
proposed a higher-order network (HON). Higher-order structures [24,25], such as hyper-
graphs, multilayer models, and simplex models are effective tools for describing complex
relationships in the real world. In comparison with the traditional complex network, it can
record the sources and destinations of nodes to make up for the shortcomings of the tradi-
tional theory in describing the coupling interaction relationships [23,26]. A higher-order
network representation and algorithm were proposed to indicate that it has an important
impact on the agglomeration, node ordering and scalability of the network [27]. Nowadays,
scholars have demonstrated that the higher-order network is better than the traditional
first-order network in identifying key nodes and revealing the role between nodes [28].
However, higher-order networks had been studied in the field of transportation [29], but
not yet in analyzing accidents. Therefore, identifying key causes and links of hazardous
materials transportation by higher-order networks is an important issue.

Although a higher-order network has advantages in constructing hazardous materials
transportation accidents causation network, it lacks the ability to analyze structure such
as the importance of causes and links. In fact, a multilayer network is applicable to
analyze real situations, which can break the limitation of homogeneity in single-layer
networks and identify more precisely how factors develop in each layer of a complex
system [30,31]. However, most studies of accident causation networks had ignored their
multilayer properties. Currently, multilayer networks had been used in the transportation
field, such as airline networks [32,33], railroad networks [34] and public transportation
networks [35,36], but rarely in accident causation analysis. Du et al. [33] divided the
Chinese Airline Network (CAN) into three layers and analyzed its robustness. It was found
that the CNA is more fragile when the core layer is not fully connected. Zhou et al. [19]
established a subway construction safety risk network (SCSRN) based on the complex
network and explored the correlation between accident reasons.

In summary, most existing research on hazardous materials transportation accidents
analyzed the causes from a single-factor qualitative perspective, lacking consideration
of multi-factor interactions. In addition, the dependencies and multilayer structure of
the causes in hazardous materials accidents were not considered, resulting in imprecise
identification of the causes. Higher-order and multilayer networks are able to fill these
gaps. Therefore, this paper proposes the multi-factors and constructs an accident causation
network with the characteristics of hazardous material transportation using a higher-order
network. To analyze the importance of causes and their interactions, the structure is
explored using a multilayer network. By integrating different findings and approaches, we
can gain a more comprehensive understanding of accident causation.

3. Materials and Methods
3.1. Research Data

In this paper, Hazardous Materials Transportation Accidents (HMTAs) occurring on
the road from 2017 to 2021 in China are investigated by the China Federation of Logistics &
Purchasing (CFLP) and China Chemical Safety Association (CCSA). Finally, 792 accidents
with more complete information are collected.

Causal factors in HMTAs should be identified first. Based on the accident causation
theory and characteristics of hazardous materials transportation, causal factors are divided
into single-factors and multi-factors, and encoded with order numbers. With a system-
atic classification method and inspired by some studies about accidents [3,8,9,11,20,21],
single-factors are unsafe factors from man, vehicle, hazardous materials, environment and
management. Each type of single factor contains detailed causes. Also, considering influ-
ences of accident forms, 9 accident types are classified into single factors, which contain
collision, scrape, roll over, fall over, fire, leakage, explosion, poisoning and others. Based on
our previous research on hazardous materials transportation accidents [37], Figure 1 shows
the single factors of HMTAs. Multi-factors emphasize the combined actions of two or more
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single-factors, for example, a multi-factor E2H6 means combined actions of E02 (slippery
road) and H06 (improper operation). Ultimately, 129 accident causal factors, containing 67
single-factors and 62 multi-factors, are found. Then, the 792 accidents are transformed into
accident chains, which corresponded to the codes. The specific process is illustrated by two
examples, as shown in Table 1.
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Table 1. Two cases of accidents.

No. Description of Accident Relationship Accident Chain

1

1 January 2021, in Panjin Dawei District, a tanker carrying
28 tons of oil products was driving normally. Suddenly,
from the left side of the road, a car appeared crossing the
road. The tanker could not avoid it, then hit the opposite
lane of trucks. Finally, three cars burst into flames.

Non-hazmat personal reasons
→ improper avoidance→
multi-car collision→ fire

H12→ H02→ E07→ A05

2

At 2:00 a.m. on 9 May 2018, two cars driving on Provincial
Road 321 with close distance, which lead to collisions of
cars. This violent collision led to the leakage of concentrated
sulfuric acid from a hazardous materials vehicle.

Unsafe distance→multi-car
collision→ leakage H09→ E07→ A06

3.2. Modeling HMTACN

Since time sequence and dependence are key characteristics of HMTAs, this paper
builds HMTACN with the idea of non-Markov chains in higher-order network theory.
With HMTAs’ causal factors and the chains aforementioned, path dependency should be
extracted, then a network can be constructed. Based on the BuildHON+ algorithm [27], the
process of this network contains two steps. Step 1 is used to illustrate the path dependency
extraction process and step 2 is used to illustrate the network construction process.

Step 1: Path dependency extraction can be described with two paths (Figure 2). First,
all first-order sub-paths are extracted from the two accident chains and the frequency
of each sub-path is calculated in Figure 2 1©. Second, the transition probabilities of the
first-order sub-paths H12→ H02, H02→ E07 and H09→ E07 are all 1.0 by Formula (1),
indicating that the transition probabilities of these are determined. But E07 may go to A05 or



Entropy 2023, 25, 1036 5 of 19

A06 with frequency 1 in Figure 2 2©. According to P = P(E07→ A05) = P(E07→ A06) =
1/(1 + 1) = 0.5, the transition probabilities of E07 → A05 and E07 → A06 are both 0.5
with uncertain. Third, the first-order sub-paths E07→ A05 and E07→ A06 are derived
from H02 and H09, respectively. Then they are extended to H02 → E07 → A05 and
H09→ E07→ A06 in Figure 2 3©. Finally, the frequency of both second-order sub-paths is
calculated as 1 in Figure 2 4©. Since P = (E07→ A05) = P(E07→ A06) = 1/1 = 1.0, the
dependency growth stops in Figure 2 5©. Thus, E07|H02→ A05 and E07|H09→ A06 form
the second-order dependency.

Pij = P(i→ j) =
W(i→ j)

∑h W(i→ j)
(1)

where, W(i→ j) is the frequency from node i to j, and h denotes the set of nodes that node
i may go at time t + 1.
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Figure 2. Path dependency extraction. E07 can point to A05 and A06, which are marked with red
and bule respectively. The seconde-order sub-paths are marked with blue background.

Step 2: The network construction process is illustrated by an example of five path
dependencies, shown in Figure 3. First, the first-order nodes and their corresponding
edges are formed by converting the first-order path dependencies. As shown in Figure 3b,
H12→ H02 is attached to a network and converted into H12 and H02. Second, the second-
order node H02|H12 and two outgoing edges are formed by converting H02|H12→ E07
and H02|H12→ A01 in Figure 3c. Similarly, the second-order node E07|H02 and two
outgoing edges are formed by E07|H02→ A05 and E07|H02→ A03. Finally, the edges
of all higher-order nodes are reconnected. Node H02 is derived from H12 to form the
second-order node H02|H12, and reconnects H12 → H02 to “H02|H12” in Figure 3d.
Similarly, the edge H02|H12→ E07 is reconnected to the second-order node “E07|H02” in
Figure 3e.

Finally, HMTACN contains 243 nodes and 545 edges. Nodes represent causal factors
with 124 first-order nodes and 119 higher-order nodes; the maximum order is four. Edges
represent interrelationships of nodes. The HMTACN is visualized by Gephi, shown in
Figure 4a. Gephi is an open-source network analysis and visualization software that
provides a visual way to analyze complex networks. Figure 4b shows part of HMTACN,
which clearly displays detailed interactions of factors. There are five first-order nodes (A02|,
E07|, A6HM3|, H06| and V04|) representing causal factors and twenty higher-order nodes
representing path dependencies. For example, the second-order node A01|H06 represents
a second-order dependency with H06 → A01, and the third-order node V04|E07.A03
represents a path dependency with A03→ E07→ V04.
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3.3. Measurements in HMTACN Analysis
3.3.1. Degree and Strength

Degree: ki
The degree of node i is the number of edges connected to it and is calculated as shown

in Formula (2):

ki =
N

∑
j=1

ai,j (2)

where:
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N—the total number of nodes in the network;
ai,j—ai,j = 1, there is an edge between node i and j, otherwise, ai,j = 0.
Strength: Si
The strength of node i is the sum of the weights with the edges directly connected

to it, which is called “accident causal flows” in this paper. It is calculated as shown in
Formula (3):

Si =
N

∑
j=1

ai,j wi,j (3)

where:
wi,j—the weights of the edges between node i and j.

3.3.2. Weighted k-Core Decomposition

Since the weighted k-core decomposition was proposed by Antonios Garas et al. [38], it
has often been applied in multilayer to analyze the multilayer structure of networks [33,34].
And the specific stratification depends on the study subjects and data characteristics. To
further analyze the causal factors and reveal the multilayer characteristics, the weighted
k-core decomposition is used to analyze HMTACN in this paper. The calculation is shown
in Formula (4):

ki
′ = [ki

α

(
ki

∑
j

wi,j

)β

]

1
α+β

(4)

where:
ki—the degree of node i;
wij—the weight between node i and its neighboring j;
When the parameters α = β = 1, the degree and weight have a similar influence.
The steps of the weighted k-core decomposition are as follows.
Step 1: Calculate the total degree ki of all nodes.
Step 2: Gradually remove nodes with ki = 1, which belongs to the same layer of the

network.
Step 3: Gradually remove nodes with ki

′ = 1, which may be completely disconnected
from the main network.

Step 4: Remove the new nodes with ki
′ < ki and keep repeating this process until

ki
′ ≥ ks + 1 for all nodes in the network. Then mark the removed nodes as ks and

ks = ks + 1.
Step 5: The algorithm stops when all the nodes are marked with ks.

3.3.3. Measurements in HMTACN

In HMTACN, several nodes of different orders may correspond to one causal factor in
accident chains. When the HMTACN is layered using the weighted k-core decomposition,
nodes of different orders may be assigned to different layers. The following are the
corresponding measurements.

(1) Layer-degree: kil

The layer-degree of the node i is the sum of the degrees of all nodes of different orders
corresponding to causal factor i in layer l. It is calculated as Formula (5).

kil =
M

∑
m=1

km
il (5)

It should be emphasized that HMTACN is a directed network, the layer-in degree and
layer-out degree are proposed. The layer-in degree of node i is the sum of the entry degrees
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of all nodes of different orders corresponding to causal factor i in layer l. It is calculated as
Formula (6).

kil
in =

M

∑
m=1

km−in
il (6)

The layer-out degree of node i is the sum of the exit degrees of all nodes of different
orders corresponding to causal factor i in layer l. It is calculated as Formula (7):

kil
out =

M

∑
m=1

km−out
il (7)

where:
M—the total number of all nodes of different orders corresponding to node i in layer l;
km

il —the degree of the mth node corresponding to node i in layer l.

(2) Layer-strength: Sil

The layer-strength of the node i is the sum of the strengths of all nodes of different
orders corresponding to causal factor i in layer l. It is calculated as Formula (8):

Sil =
M

∑
m=1

Sm
il (8)

where:
Sm

il —the strength of the mth node corresponding to node i in layer l.

(3) Layer-ks: ksil

The layer-ks of the node i is the sum of the ks of all nodes of different orders corre-
sponding to causal factor i in layer l. It is calculated as Formula (9):

ksil =
M

∑
m=1

km
sil (9)

where:
km

sil—the ks of the mth node corresponding to node i in layer l.

(4) The ratio of causal node connection and causal flow within and between the layers

In order to deeply analyze network topology and node characteristics for different
layers, the ratio of causal node connection and the ratio of causal flow are defined from
intra-layer and inter-layer aspects, as shown in Table 2.

Table 2. The ratio of causal node connection and causal flow within and between the layers.

The Ratio of Causal Node Connection The Ratio of Causal Flow

Intra-layer Ra
in = Nlayer/Ntotal (10) R f

in =Flayer/Ftotal (11)

Inter-layer

Ra
out = 1− Ra

in (12) R f
out = 1− R f

in (13)

Ra
cb = Nbridge/(N total − Ncore

)
(14) R f

cb = Fbridge/(F total − Fcore

)
(15)

Ra
cp = 1− Ra

cb (16) R f
cp = 1− R f

cb (17)

Ra
bc = Ncore/(N total − Nbridge

)
(18) R f

bc = Fcore/(F total − Fbridge

)
(19)

Ra
bp = 1− Ra

bc (20) R f
bp = 1− R f

bc (21)

Where:
Nlayer—the number of neighbors of node i within the layer, for example, Ncore means

the number of neighbors in the core layer, Nbridge means the number of neighbors in the
bridge layer, and Ntotal means the total number of neighbors of node i within and between
the layers.
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Flayer—the number of causal flows of node i with neighbors in the layer, for example,
Fcore means the number of causal flows with the neighbors in the core layer of this causal
factor, Fbridge means the number of causal flows with the neighbors in the bridge layer of
this causal factor, Ftotal means the total number of causal flows that start or end within this
causal factor.

Ra
in—the ratio of causal nodes within the layers;

Ra
out—the ratio of causal nodes between layers;

R f
in—the ratio of causal flow within the layers;

R f
out—the ratio of causal flow between the layers;

Ra
cb—the ratio of causal node connection between the core layer and bridge layer,

Ra
cp, Ra

bc, Ra
bp are similar;

R f
cb—the ratio of causal flow between the core layer and bridge layer, R f

cp,R f
bc,R f

bp

are similar.

4. The Multilayer Properties of HMTACN
4.1. Multilayered Structure of HMTACN

According to the weighted k-core decomposition mentioned in Section 3.3.2, the
multilayer structure of HMTACN is proposed. Figure 5 shows the result of the layers.
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Figure 5. The result of the weighted k-core decomposition. k− shell size represents the number of
nodes with ks.

Theoretically, the nodes corresponding to each ks can be used as a separate layer, but
too many nodes are not conducive to the study. Inspired by the division of multilayer
networks in the traffic domain [29,33,34], HMTACN can be divided into three layers: the
core layer, the bridge layer and the peripheral layer by the distribution characteristics of ks.
As Figure 5 shows, the first gap appears and k− shell shows a continuous decreasing trend
when ks ≥ 15. And the corresponding nodes within this range are assigned to the core
layer, which indicates 19 nodes are the core nodes in HMTACN; when ks ≤ 2, the k− shell
reach the maximum value, and the corresponding nodes are assigned to the peripheral
layer; and when 3 ≤ ks < 15, these corresponding nodes are assigned to the bridge layer.

The multilayer structure of HMTACN is shown in Figure 6 by Gephi. The node size
represents the number of factors connected to it. Here green represents the core layer,
orange represents the bridge layer, and purple represents the peripheral layer. The color of
the edge is the color of the target node. Since the existence of higher-order nodes in the
multilayer structure of HMTACN, one cause may correspond to several different nodes and
be assigned to different layers. Also, multiple nodes in a layer may correspond to a cause.
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For example, H02 corresponds to the H02|H12, H02|E07 and H02|V10 in HMTACN,
where H02 is part of the core layer, H02|H12 and H02|E07 are part of the bridge layer and
H02|V10 is part of the peripheral layer. Therefore, node H02 belongs to three layers. It
is found that 19 causal factors belong to two layers accounting for 15.32%, and 6 causal
factors belong to three layers, accounting for 4.84%.
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In different layers, the nodes and edges present different characteristics, as shown in
Table 3.

Table 3. Detailed information on nodes and edges in different layers.

Layer Number of Nodes Number of Causes ksl Sil Number of Edges wl

Core 19 16 43.53 34–846 70 21.59
Bridge 73 40 5.66 3–37 67 2.13
Periphery 151 98 1.62 1–5 57 1.07
Core-bridge - - - - 176 2.82
Core-periphery - - - - 114 1.10
Bridge-periphery - - - - 61 1.03

In the core layer, there are 16 causal factors. The value of Sil has a wide range from
34 to 846. Actually, 14 causal factors have an average layer strength between 34 and 247,
and 2 causal factors have much higher Sil with 704 and 846, respectively. Obviously, the
core layer has the largest ksl value. In addition, 70 edges in the core layer bear 1511 causal
associations, with an average of 21.59 per edge, accounting for 63% of the network. In the
bridge layer, there are 40 causal factors and the value of Sil have a small variation, from
3 to 37. The 67 edges in the bridge layer bear 143 causal associations, with an average of
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2.13 per edge. There are 98 causal factors in the peripheral layer and the value of Sil is only
between 1 and 5, indicating that each causal factor in the peripheral layer appears less
frequently. The 57 edges in the peripheral layer bear 61 causal associations, with an average
of 1.07 per edge. The edges between the three layers can reflect the inter-layer relationship
of causal factors. Clearly, the relationship between the core and bridge layers is prominent
in Table 3.

4.2. Importance of Causes and Links in HMTACN
4.2.1. Importance of Causes in HMTACN

As aforementioned, HMTACN is divided into the core layer, bridge layer and periph-
eral layer based on ks. The ks value of a node can reflect the number of connected nodes,
the frequency of related edges and the ability to connect other layers. Usually, the larger
the ks is, the more important the node is. Therefore, causes are classified into seven levels
(I–VII) by dividing the nodes within different layers, shown in Table 4.

Table 4. Causes importance measurement. P represents the proportion of nodes at different levels.

Layers of Causes ks Level Number P (%) Examples of Causes

Belonging to core, bridge and periphery layers 102.6 I 5 4.03 H02, H06, E07, A01, etc.
Only belonging to core and bridge layers 42 II 1 0.81 A05
Only belonging to core and periphery layers 68.83 III 6 4.84 H12, V04, A06, A6HM3, etc.
Only belonging to core layer 24.5 IV 4 3.23 E02, E09, V03, V06
Only belonging to bridge and periphery layers 15.62 V 13 10.48 H09, V07, M08, A02, etc.
Only belonging to bridge layer 5.14 VI 21 16.94 H01, V16, E04, A6HM1, etc.
Only belonging to periphery layer 1.46 VII 74 59.68 H07, V01, A5E7, E1H3, etc.

In Table 4, there are 5 causes in level I with nodes belonging to core, bridge and
periphery layers simultaneously. And the ks value in level I is the largest. This indicates
the causes in level I are the most important causal factors in HMTACN. Among them, the
three higher-order nodes that represent dependencies A01|H09, A01|H06 and A03|H06
belong to the core layer, which cannot be captured by traditional complex networks. In
level II, only A05 belongs to core and bridge layers and its ks value is 42. However, in level
III, the ks value is 68.83 which is relatively larger than level II. This is because the ks value
of V04 is 157 and V06 is 145 which increases the average ks value in level III. In levels I, II,
III and IV, the ks value is large and node number is small relatively. Therefore, the 16 causes
within levels I to IV are core causal factors in the HMTAC system.

From level V to level VII, ks values decrease and node numbers increase successively.
Further, the causes in level V are mainly vehicle factors, and nodes in level VI cover almost
all causal factor types. In level VII, multi-factors account for 71.62%, and 47.17% are related
to environmental factors.

4.2.2. Importance of Links in HMTACN

The links importance of HMTACN is measured by wl (the average weight of the edges
in layer l) shown in Table 5. The greater wl , the greater accident causal flow, the more
important the link is.

Table 5. Links importance measurement.

Layers of Causal Links wl Level Number Examples of Causal Links

The core layer 21.59 I 70 H02→ A03, A01|H04-V06, etc.
Between the core and the bridge layer 2.82 II 176 E02→ A04, A3|H06→ V07, etc.
The bridge layer 2.13 III 67 E04→ V16, E07|H02→ A03|E07, etc.
Between the core and the periphery layer 1.10 IV 114 A01|E06→ V03, A01|H6H12→ V05, etc.
The periphery layer 1.07 V 57 A03|A02.H09→ V04|A03.A02.H09, etc.
Between the bridge and the periphery layer 1.03 VI 61 A03|E02→ E07|A03, etc.
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As shown in Table 5, at level I, the values of wl is the most with 70 links accounting
for 12.84%. Thus, it is important to focus on these links. From level II, the values of wl
decrease sharply. This means these links undertake fewer cause connections. At level II, the
number of links is the largest, accounting for 32.29%. Level III has fewer links and lower
weights. The values of wl from levels IV to VI are similar, while the number at level IV
is much larger than at levels V and VI. This indicates most of the bridge and peripheral
layer causes tend to connect with the core layer, while the links between the bridge and
peripheral layer are sparse.

In order to reveal the significant links of HMTACN, the study explores the links within
level I, shown in Table 6. In the type of vehicle causes, V04, V03 and V02 are easily leading
to A06 accidents. Especially, the link frequency of V04→ A06 is the highest, accounting
for 24.42%. In the type of accident causes, A01 → V04 is the most important link, the
value of weight is 216. In addition, A03 is easily leading to V04 and A06. In the type of
human cause, H12→ A01 is clearly the most important link, the value of weight is 210. In
addition, H02 and H06 are easily leading to A03. In the type of environmental causes, the
weights of E09→ E02, E07→ V04 and E02→ E07 are similar and smaller, indicating that
the environmental cause alone is not the most important causal factor.

Table 6. The important links within the core layer by causal type. P represents the proportion of
weight (w) of the edge in the core layer.

Cause Type Links Specific w P (%)

Vehicle
V04→ A06 tank damaged→ leakage 369 24.42
V03→ A06 valve damaged→ leakage 92 6.09
V02→ A06 valve loosed→ leakage 36 2.38

Accident
A01→ V04 collision→ tank damaged 216 14.30
A03→ V04 roll over→ tank damaged 98 6.49
A03→ A06 roll over→ leakage 49 3.24

Human
H12→ A01 non-hazmat personal reasons→ collision 210 13.90
H02→ A03 improper avoidance→ roll over 27 1.79
H06→ A03|H06 improper operation→ roll over 20 1.32

Environment
E09→ E02 rain and snow weather→ slippery road 25 1.65
E07→ V04 multi-car collision→ tank damaged 17 1.13
E02→ E07 slippery road→multi-car collision 7 0.46

4.3. Analysis of Causes and Links in Different Layers
4.3.1. Core Layer

The core layer is the crucial layer in HMTACN. To discover the characteristics of the
core layer, 16 causal factors are further analyzed by calculating the ratio of causal node
connection and causal flow within the core layer and between the core layer and other
layers. Table 7 shows the detailed calculations with Ra

in, Ra
out, Ra

cb, Ra
cp, R f

in, R f
out, R f

cb,
R f

cp, which have been defined in Section 3.3.3.
As shown in Table 7, accident types acting as intermediaries remain larger Kil in

core layer, including A03 (roll over), A01 (collision), A06 (leakage) and A05 (fire). This
indicates that these accidents occur most frequently and connect more factors, especially
roll over, collision and leakage of hazardous materials. The unsafe status of the vehicle
is relatively more in the core layer, including V04 (tank damaged), V03 (valve damaged),
V02 (valve loosed), V06 (pipe rupture) and V14 (oil tank damaged), which mainly focus on
equipment loading hazardous materials. It indicates that they connect more factors and
the damage to vehicle facilities are key reasons in the core layer, especially V04. Unsafe
behaviors of humans, like H12 (non-hazmat personal reasons), H02 (improper avoidance)
and H06 (improper operation) are the main causes, especially H12. Also, environmental
causes like E07 (multi-car collision), E02 (slippery road) and E09 (rain and snow weather)
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are important factors. In addition, multi-factors are significant similarities. For example,
A6HM3 (leakage and flammable liquid) is most likely to cause fire and explosion.

Table 7. Characteristics of the 16 causal factors in the core layer.

Type Factor Kil Ra
in Ra

out Ra
cb Ra

cp Rf
in Rf

out Rf
cb Rf

cp

Accident

A03 63 0.286 0.714 0.365 0.349 0.712 0.288 0.226 0.061
A01 57 0.386 0.614 0.351 0.263 0.893 0.107 0.080 0.027
A06 54 0.241 0.759 0.444 0.315 0.885 0.115 0.087 0.028
A05 34 0.324 0.676 0.382 0.294 0.479 0.521 0.437 0.084

Vehicle

V04 44 0.250 0.750 0.614 0.136 0.883 0.117 0.110 0.007
V03 29 0.241 0.759 0.448 0.310 0.810 0.190 0.141 0.049
V02 25 0.320 0.680 0.320 0.360 0.711 0.289 0.171 0.118
V06 15 0.400 0.600 0.467 0.133 0.833 0.167 0.130 0.037
V14 13 0.538 0.462 0.385 0.077 0.794 0.206 0.176 0.029

Human
H12 15 0.333 0.667 0.333 0.333 0.911 0.089 0.068 0.021
H02 14 0.214 0.786 0.500 0.286 0.537 0.463 0.370 0.093
H06 12 0.500 0.500 0.417 0.083 0.878 0.122 0.102 0.020

Environment
E07 15 0.533 0.467 0.400 0.067 0.714 0.286 0.265 0.020
E02 14 0.286 0.714 0.429 0.286 0.500 0.500 0.426 0.074
E09 14 0.429 0.571 0.286 0.286 0.711 0.289 0.178 0.111

Multi-factor A6HM3 12 0.417 0.583 0.250 0.333 0.860 0.140 0.070 0.070

To visualize the characteristics of the core layer, calculations of Table 6 are drawn in
Figures 7 and 8.

Figure 7 shows that Ra and R f are not direct relation to the node higher-order degree
(kil) in the core layer. Except for E09 (rain and snow weather), A05 (fire) and V03 (valve
damaged), the causal factors show that Ra

in is much smaller than Ra
out, but R f

in is much
larger than R f

out. This suggests that interactions between causal factors within the core
layer are more likely to lead to accidents than with the bridge and periphery layers. In
addition, E09 and A05 show that Ra

in > Ra
out and R f

in > R f
out, indicating that they tend to

interact with causal factors in the core layer. It is worth noting that only the V03 Ra
in < Ra

out

but R f
in < R f

out indicates that it is more closely connected to other layers. This can be
attributed to both causal factors of E11 (high temperature) and E13 (other environmental
reasons) in the bridge layer that are more likely to cause valve damage. It is found that the
core layer has the strongest effect in HMTACN.
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Figure 7. (a) Ra
in and Ra

out of casual factors in core layer vs. layer-degree. (b) R f
in and R f

out of
casual flows in core layer vs. layer-degree within the layer.

Figure 8 shows that the causal factors have the characteristics of Ra
cp < Ra

cb and
R f

cp < R f
cb on the whole, indicating that the interaction between the core layer and the
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bridge layer is stronger than that between the periphery layer. Further, there are 4 edges
with strength greater than 10 between the core layer and bridge layer, and 4 higher-order
nodes that represent dependencies are generated: A01|H02, A03|E02, A01|A03, A01|E02.
This illustrates two findings. Firstly, H02 (improper avoidance) → A01 (collision), E02
(slippery road)→ A03 (roll over), A03 (roll over)→ A01 (collision), E02 (slippery road)→
A01 (collision) are the crucial causal links between the core layer and bridge layer. Similar
findings have been found in previous studies [4]. Secondly, the dependency may have been
missed by previous studies using complex networks. Such as A01|H02, collision usually
depends on the generation of improper avoidance leading to chain accidents.
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4.3.2. Bridge Layer

Similar to the core layer analysis, Figure 9 shows the ratios within the bridge layer and
between the bridge layer and the other two layers. In the bridge layer, most of the causal
factors show Ra

in < Ra
out and R f

in < R f
out, indicating that the bridge layer is more inclined

to interact with outside the layer. Also, most causal factors in the bridge layer have the
characteristics of Ra

bc > Ra
bp and R f

bc > R f
bp on the whole (in Figure 10), indicating that

they tend to interact with the core layer.
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To further explore important characteristics of causal factors in the bridge layer, these
top 14 causal factors with larger Ra

bc have been analyzed, shown in Table 8. These 14 causal
factors have 76 edges with the core layer, accounting for 59.38% of all edges between the
bridge layer and core layer. In addition, the value of Ra

out, R f
out, Ra

bc and R f
bc are much

larger than 0.5. Except for E13 (other environmental reasons) and E2H1 (slippery road
and fast driving), M07 (inadequate safety check and maintenance) has the largest Ra

bc,
followed by M08 (other management reasons). Causal factors connecting to M07 and M08
are V02 (valve loosed), V03 (valve damaged), V04 (tank damaged), V06 (pipe rupture), A05
(fire) and A06 (leakage), indicating that M07 and M08 need only one step to interact with
these causal factors. But other causes require two or more steps. This indicates that the
influence of the management factor is greater and the problem is more serious. In short, the
interaction between the bridge layer and core layer is far closer than the periphery layer.

Table 8. Characteristics of the top 14 causal factors of Ra
bc ranking in the bridge layer.

Factor kil Ra
in Ra

out R f
in R f

out Ra
bc Ra

bp R f
bc R f

bp

E2H1 3 0.000 1.000 0.000 1.000 1.000 0.000 1.000 0.000
E13 2 0.000 1.000 0.000 1.000 1.000 0.000 1.000 0.000
M07 5 0.000 1.000 0.000 1.000 0.800 0.200 0.952 0.048
M08 8 0.000 1.000 0.000 1.000 0.750 0.250 0.818 0.182
A6HM1 3 0.333 0.667 0.333 0.667 0.667 0.000 0.667 0.000
H04 8 0.125 0.875 0.083 0.917 0.625 0.250 0.750 0.167
V15 13 0.231 0.769 0.111 0.889 0.615 0.154 0.815 0.074
V07 18 0.167 0.833 0.100 0.900 0.611 0.222 0.767 0.133
E11 5 0.000 1.000 0.000 1.000 0.600 0.400 0.600 0.400
M01 5 0.000 1.000 0.000 1.000 0.600 0.400 0.600 0.400
E3H3 5 0.400 0.600 0.074 0.926 0.600 0.000 0.926 0.000
A07 12 0.083 0.917 0.050 0.950 0.583 0.333 0.750 0.200
A02 18 0.278 0.722 0.182 0.818 0.556 0.167 0.764 0.055
A01 60 0.333 0.667 0.358 0.642 0.550 0.117 0.597 0.044

In the bridge layer, the value of Sil is less than 28 for most causal factors, except V16
(packaging issues), V12 (tire overheating), and H09 (unsafe distance). Therefore, these
causal factors have been analyzed furthermore in Table 9. It is found that V16 only belongs
to the bridge layer and has the largest value of Kil and Sil in the bridge layer, so the
packaging issue is the most significant causal factor in the bridge layer. Moreover, only
node V16 has a higher Kil

in than Kil
out, which indicates that many causal factors can lead to

the packaging issues, such as H04 (improper braking), A03 (roll over), A01 (collision), V15
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(other vehicle reasons) and E04 (poor road). In addition, the value of R f
out and R f

bc of V16,
V12 and H09 are relatively larger, which illustrates that they are more closely connected
with the core layer.

Table 9. Characteristics of the three largest factors of Sil in the bridge layer.

Factor Kil Sil Kil
in Kil

out Ra
in Ra

out Rf
in Rf

out Ra
bc Ra

bp Rf
bc Rf

bp

V16 17 37 13 4 0.588 0.412 0.270 0.730 0.235 0.176 0.649 0.081
V12 5 33 2 3 0.400 0.600 0.091 0.909 0.200 0.400 0.848 0.061
H09 7 32 3 4 0.429 0.571 0.219 0.781 0.429 0.143 0.750 0.031

4.3.3. Periphery Layer

Similar to the core layer analysis, Figure 11 shows the ratio within the peripheral layer
and between the periphery layer and the other two layers.
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As shown in Figure 11, the trends of Ra and R f in the periphery layer are basically the
same without obvious patterns. This is because these causal factors within the periphery
layer appear less frequently in accident chains and most of them are multi-factors. Moreover,
68% of multi-factors are related to environmental factors. This explains that environmental
factors often work in conjunction with other causal factors to cause accidents, so the
abnormal environment should be alerted in time.

Furthermore, there are 44 causal factors with Ra
out = R f

out = 1 in the periphery layer,
which illustrates that these causal factors are only correlated with other layers. And among
them, 31 causal factors only belong to the periphery layer, 19 of them are multi-factors, and
most of them interact with E01 (downhill road), E02 (slippery road) and E03 (turning road).

5. Discussion

In this study, the method combining higher-order and multilayer networks is applied
to the field of hazardous materials transportation accidents for the first time. A total of
792 accidents occurring on roads from 2017 to 2021 are analyzed. The hazardous materials
transportation accident causation network (HMTACN) is constructed using a higher-order
network and divided into three layers using weighted k-core decomposition: the core layer,
bridge layer, and peripheral layer.

As a result, 16 key causes covering five types of causes are identified through the
analysis of the core layer. In the bridge layer, the management factors including M07
(inadequate safety check and maintenance) and M08 (other management reasons), the
vehicle factors including V16 (packaging issues) and V12 (tire overheating), the human
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factor including H09 (unsafe distance) are critical causes of accidents. The analysis of the
peripheral layer indicated that environmental factors often contributed to accidents in
conjunction with other factors. The important results of each layer will be discussed from
the perspective of several cause types, including vehicle, human, environment, accident
types and management factors.

(i) Vehicle factors such as V04 (tank damaged), V03 (valve damaged), V02 (valve
loosed), V06 (pipe rupture) and V14 (oil tank damaged) contribute to hazardous material
accidents, as the damage to vehicle facilities can lead to leaks and increase the probability
of accidents. These factors are associated with the maintenance condition, aging, and
manufacturing quality of the vehicles. Therefore, it is necessary to implement regular
maintenance programs to ensure the integrity of vehicle tanks, valves, and pipelines. Also,
promptly repair or replace any damaged components to prevent leaks, and strengthen
quality control measures during the manufacturing process to ensure vehicles are built
to high standards. In addition, V16 (packaging issues) and V12 (tire overheating) are
also important causes of accidents. This is consistent with the findings of Ma et al. [39]
that packaging problems are an important cause of hazardous materials transportation
accidents. Therefore, the packaging of hazardous materials should be improved.

(ii) Human factors, including H12 (non-hazmat personnel reasons) by non-hazmat
personnel, H02 (improper avoidance), H06 (improper operation) and H09 (unsafe distance)
by hazardous material transport personnel, have a high likelihood of causing accidents.
These are consistent with the findings of Oggero et al. [40] that valve failure in machinery
and improper human operation are the major causes of accidents. Human factors are
influenced by driver experience, training, awareness, and attitude. Therefore, develop-
ing comprehensive training programs for both non-hazardous personnel and hazardous
material transport personnel is important. Also, it is necessary to emphasize emergency
response protocols and defensive driving techniques and implement stringent screening
and qualification processes to ensure that personnel have the appropriate competencies.

(iii) Environmental factors such as E07 (multi-car collision), E02 (slippery road) and E09
(rain and snow weather) often work in conjunction with other factors to cause hazardous
material accidents. Poor road conditions increase the probability of human error. Therefore,
it is necessary to establish effective communication channels to provide real-time weather
updates and road condition alerts to drivers.

(iv) Different accident types, such as A03 (roll over), A01 (collision), A06 (leakage)
and A05 (fire), have different causes and potential impacts. For example, roll over can
cause traffic congestion and road blockages, collisions can result in vehicle damage and
personal injuries, leakage can lead to environmental pollution and health risks, and fire can
trigger explosions. Therefore, developing and enforcing strict safety standards covering
the handling, storage and transportation of hazardous materials is crucial.

(v) Management factors play a significant role in HMTACN, and the lack of manage-
ment leads to an increased probability of all factors and accidents [20]. Therefore, it is
necessary to implement comprehensive safety checks, maintenance and quality control
measures to ensure the integrity of vehicles and their components.

6. Conclusions

In conclusion, this study proposes a new accident causation method that combines
higher-order and multilayer networks. Unlike previous methods, this approach considers
the interactions and dependencies of factors, allowing for more accurate identification of
key causes by considering the interactions and dependencies of factors. The method also
conducts a quantitative analysis of complex accident causation systems, particularly when
dealing with a large amount of accident data. Based on the findings, recommendations are
discussed to mitigate the risks of hazardous material road transportation accidents. Imple-
menting these measures can help reduce accidents and enhance the safety of hazardous
material transportation.
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According to this study, the significant causes and links should be given hierarchical
attention due to their different roles in the hazardous materials transportation accident
causation network. Overall, this study contributes to the understanding of hazardous
material transportation accidents and provides valuable insights for developing effective
preventive measures.

This paper considered the static indicators of hazardous materials transportation
accidents causation network. Further research should focus on analyzing the complex
interactions and propagations of causes and links. Additionally, the application of sur-
rogate safety measures, such as traffic conflict analysis, for dynamic safety evaluation
of hazardous materials transportation deserves further study. In the future, the major
causes and relationships may be changed, so more detailed and updated dynamic data on
hazardous materials transportation accidents should be studied continuously.
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