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Abstract: Mortality is one of the most important epidemiological measures and a key indicator of the
effectiveness of potential treatments or interventions. In this paper, a permutation test method of
variance analysis is proposed to test the null hypothesis that the real-time fatality rates of multiple
groups were equal during the epidemic period. In light of large-scale simulation studies, the proposed
test method can accurately identify the differences between different groups and display satisfactory
performance. We apply the proposed method to the real dataset of the COVID-19 epidemic in
mainland China (excluding Hubei), Hubei Province (excluding Wuhan), and Wuhan from 31 January
2020 to 30 March 2020. By comparing the differences in the disease severity for differential cities,
we show that the severity of the early disease of COVID-19 may be related to the effectiveness of
interventions and the improvement in medical resources.
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1. Introduction

An epidemic is a disease for which observation value exceeds the expected value. Once
an epidemic affects a large population or spreads globally, it is called a pandemic [1]. In
recent decades, the incidence and mortality of emerging infectious diseases have increased
worldwide, causing significant social, political, and economic damage [2]. For example,
several large-scale epidemics that have broken out in recent years include Severe Acute Res-
piratory Syndrome (SARS), H1N1 influenza, and the ebola virus, which have undoubtedly
had a huge impact on the social, political, economic, and other aspects of the infected coun-
tries. In 2019, the initial outbreak of COVID-19 in Wuhan, Hubei Province, China, spread
rapidly around the world, posing a major threat to global public health. According to the
World Health Organization [3], through 1 January 2023, more than 656 million confirmed
cases of COVID-19 and more than 6.6 million deaths have been reported worldwide.

Mortality is an important epidemiological measurement, which is used to indicate
the severity of the disease and measure the virulence of the disease. The World Health
Organization has defined mortality as the ratio of the cumulative number of deaths to
the cumulative number of confirmed cases. Mortality is used as an indicator to measure
the severity of the disease [4]. Yip et al. [5] found that, in the early stage of the epidemic,
because the infection was not over, few patients died of the disease, so the estimated fatality
rate was low. With the development of the epidemic, more and more people died at the
end of the disease, while more and more people were diagnosed, so the estimated rate was
still low. Last [6] argued that the simple estimator is not sensitive to changes in mortality
during the epidemic and will only perform well at the end of the epidemic.

Lam et al. [7] believed that the mortality of emerging epidemics may change over
time, and the downward trend of mortality may reflect the effectiveness of government
interventions and the improvement of medical resources. Ambreen et al. [8] considered the
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impact of meteorological factors on COVID-19. Chen et al. [9] also believed that pairing
assistance is an effective way to curb COVID-19. During the outbreak of an epidemic,
Lam et al. [7] recommended using real-time fatality rate to measure the severity of the
epidemic, rather than traditional mortality. The real-time fatality rate is defined as the
probability of death based on the counting process method conditional on death or recovery.
Compared with traditional mortality, the real-time fatality rate has been proven to be more
sensitive to capturing changes in mortality during the course of an epidemic. Reich et al. [10]
defined the relative fatality rate as the ratio of the fatality rate of a group to that of another
reference group and compared the fatality rate of a specific group using a generalized linear
model framework. Chen et al. [11] used the generalized linear model framework to estimate
the fatality rate according to the maximal likelihood method. However, the assumptions
about the real-time fatality rate in their methods are very strict and may be more suitable
for chronic diseases than for emerging infectious diseases. In order to detect changes in
the real-time fatality rate, Yip et al. [12] proposed a competitive risk model implemented
by the counting process to estimate the real-time fatality rate. Yip et al. [5] considered the
chain multinomial model to estimate the real-time fatality rate. Lam et al. [7] developed a
single-sample sequential test for the null hypothesis of constant fatality rate. Qu et al. [13]
developed a multi-sample sequential test for the null hypothesis of real-time fatality rate.

During the highly infectious epidemic outbreak, the government needs to formulate
effective interventions as soon as possible to effectively curb the spread of the disease to
reduce mortality, minimize the severity of the disease, and ensure the safety of people’s
lives. Due to various reasons, it is difficult to collect complete and detailed data. However,
it is relatively easy to obtain summary data on confirmed cases, deaths, and recoveries of
COVID-19 from the official channels of health departments in various regions.

In order to solve the above problem, it is necessary to carry out relevant statistical
tests and compare the severity of diseases between multiple groups according to a simple
data structure. Inspired by Yip et al. [12], we propose the analysis of variance using
permutation test for real-time fatality rates among different groups over a fixed time period.
With the accumulation of statistical evidence, the null hypothesis can be rejected. Under
the proposed testing procedure, we can also test the differences in real-time fatality rate
between different regions, different treatment groups, and different age groups, so as to
provide information for the health sector. We recall that Zhao et al. [14] tested the clinical
symptoms of patients using Remdesivir and other therapeutic drugs through survival
analysis of log-rank and found that the survival rate of patients using Remdesivir was
significantly improved within 8 weeks. In essence, the potential use of multi-group trials
is to compare the changes in the real-time fatality rate with Remdesivir and standard
treatment. In the empirical analysis section, we compare the differences in real-time fatality
rate among different regions. The results suggest that the effectiveness of interventions
and medical resource assistance implemented by government departments during public
health emergencies are useful and critical.

In Section 2, the test statistic is put forward to study the asymptotic distribution.
In Section 3, the relevant knowledge of the permutation test is introduced. In Section 4,
simulation experiments are carried out to evaluate the effectiveness of the proposed test
method in different scenarios. In Section 5, the proposed test procedure is applied to the
comparison of disease severity among three independent clusters during the outbreak:
mainland China (excluding Hubei Province), Hubei Province (excluding Wuhan), and
Wuhan. In Section 6, we summarize the provided results.

2. Preliminaries
2.1. Test Statistic

In this paper, days are taken as the unit, and time 0 can be set as the day where
observation is implemented for a particular group. Time [0, t] is divided into T fixed
intervals, the research objects are divided into k groups according to certain rules, and
the sample size of each group is mi (i = 1, 2, . . . , k). Information about the number of
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cases, deaths, and recoveries in the group at the end of each interval is collected in order
from T = 0. Denote the numbers of deaths, recoveries, and hospitalizations in the i-th
group at the end of day t by ni,D(t), ni,R(t), and ni,H(t), respectively. We further denote the
cumulative numbers of deaths and recoveries in the group at the end of day t by Ni,D(t)
and Ni,R(t).

Assuming that the number of confirmed cases in the i-th group at the end of day t− 1
is Hi(t− 1), they are independently and identically distributed for each confirmed patient
and will be in one of the following three states on day t: death, recovery, hospitalization.
That is,

Hi(t− 1) = ni,D(t) + ni,R(t) + ni,H(t),

assuming that the probability of death is pi,D(t), the probability of recovery is pi,R(t), and
the probability of hospitalization is pi,H(t). According to the multinomial distribution
proposed by Yip et al. [5], we have

P
(
X1 = ni,D(t), X2 = ni,R(t), X3 = ni,H(t)

)
=

Hi(t− 1)!
ni,D(t)!ni,R(t)!ni,H(t)!

pi,D(t)ni,D(t)pi,R(t)ni,R(t)pi,H(t)ni,H(t).
(1)

According to Yip et al. [12], for group i, death and recovery are regarded as two
competing risks. To consider the real-time fatality rate on day t, the real-time fatality rate is
defined as

pi(t) =
pi,D(t)

pi,D(t) + pi,R(t)
, (2)

and the kernel function of the probability density function of Equation (1) is

H(p) = pi,D(t)ni,D(t)pi,R(t)ni,R(t)pi,H(t)ni,H(t), (3)

therefore the logarithmic likelihood function of Equation (1) is

l(p) = log H(p)

=ni,D(t) log pi,D(t) + ni,R(t) log pi,R(t) + ni,H(t) log pi,H(t).
(4)

For pi,H(t) = 1 − pi,D(t) − pi,R(t), set x1 = pi,D(t), x2 = pi,H(t), and pi,H(t) to

derivation of x1 and x2, respectively. We have ∂pi,H(t)
∂x1

=
∂pi,H(t)

∂x2
= −1, that is,

∂pi,H(t)
∂pi,D(t)

=
∂pi,H(t)
∂pi,R(t)

= −1,

so
∂ log pi,H(t)

∂pi,D(t)
=

∂ log pi,H(t)
∂pi,R(t)

= − 1
pi,H(t)

.

Removing the redundancy term, we can regard l(p) as a function of pi,D(t) + pi,R(t),
with derivations of pi,D(t) and pi,R(t) respectively on l(p), and obtain the following likeli-
hood equation:

∂l(p)
∂pi,D(t)

=
ni,D(t)
pi,D(t)

− ni,H(t)
pi,H(t)

, (5)

∂l(p)
∂pi,R(t)

=
ni,R(t)
pi,R(t)

− ni,H(t)
pi,H(t)

. (6)
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Let Equations (5) and (6) be equal to 0; their maximum likelihood estimation solution

satisfies p̂i,D(t) =
p̂i,H(t)
ni,H(t)ni,D(t) and p̂i,R(t) =

p̂i,H(t)
ni,H(t)ni,R(t), respectively. Since p̂i,D(t) +

p̂i,R(t) + p̂i,H(t) = 1, the maximum likelihood estimation value of pi,D(t) and pi,R(t) is

p̂i,D(t) =
ni,D(t)

Hi(t− 1)
, p̂i,R(t) =

ni,R(t)
Hi(t− 1)

.

Therefore, the maximum likelihood estimator of pi(t) is defined by

p̂i(t) =
p̂i,D(t)

p̂i,D(t) + p̂i,R(t)

=
ni,D(t)

ni,D(t) + ni,R(t)
.

(7)

With the passing of time, the severity of the epidemic will change, and the above-
mentioned real-time fatality rate can be used to compare the changes in the severity of the
epidemic among different groups. Therefore, the following hypothesis

H0 : p1(t) = p2(t) = . . . = pk(t), H1 : pi(t), 1 ≤ i ≤ k, not all equal

is proposed by considering death and recovery as two competing risks. It is easy to see that
the above hypothesis is equal to

H0 :
p1,D(t)
p1,R(t)

=
p2,D(t)
p2,R(t)

= . . . =
pk,D(t)
pk,R(t)

, H1 :
pi,D(t)
pi,R(t)

, 1 ≤ i ≤ k, not all equal,

when the null hypothesis holds true, and we expect that the two competing risks of
death and recovery are similar during the observation period. Therefore, we propose the
following expression of the sum of squares for factor (SA) and the sum of squares for error
(SE); that is,

SA =
k

∑
i=1

mi

(∑t
j=1

ni,D(j)
ni,R(j)

mi
−

k

∑
i=1

t

∑
j=1

ni,D(j)
ni,R(j)

kmi

)2
, fA = k− 1;

SE =
k

∑
i=1

t

∑
j=1

(ni,D(j)
ni,R(j)

−
t

∑
j=1

ni,D(j)
ni,R(j)

mi

)2
, fE =

k

∑
i=1

mi − k.

(8)

The following test statistic is obtained:

F =
SA
/

fA

SE
/

fE
=

MSA
MSE

. (9)

2.2. The Asymptotic Distribution of the Test Statistic

Assume that P = (p1, p2, . . . , pn)T is a column vector of an n-dimensional normal
random variable. Let A be an n× n real symmetric matrix; then PT AP is called the quadratic
form of A. Denote the rank of A by r. According to the knowledge of linear algebra, it can
be seen that the rank of the quadratic PT AP is r, for short rank(A) = rank(PT AP) = r.

Suppose that the n observation values pi(j) (i = 1, . . . , k; j = 1, . . . , mi) in one-way
analysis of variance are n independent random variables and that pi(j) ∼ N (µi, σ2). Set
Jn is the n-order square matrix with all elements 1, In is the n-order unit matrix, and
C = diag(C1, C2, . . . , Ck) is a block diagonal matrix, where Ci = Jmi /mi; that is:
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In =



1 · · · 0 · · · 0
...

. . .
...

0 1 0
...

. . .
...

0 · · · 0 · · · 1


n×n

, Jn =



1 · · · 1 · · · 1
...

. . .
...

1 1 1
...

. . .
...

1 · · · 1 · · · 1


n×n

and

C =



Jm1 /m1 · · · 0 · · · 0
...

. . .
...

0 Jmi /mi 0
...

. . .
...

0 · · · 0 · · · Jmk /mk


n×n

.

Based on the above assumptions, the following three basic quadratic forms are ob-
tained through calculation:

PT InP = ∑k
i=1 ∑mi

j=1 pi(j)2;
PT JnP = T2, where T = ∑k

i=1 ∑mi
j=1 pi(j);

PTCP = ∑k
i=1 T2

i /mi, where Ti = ∑mi
j=1 pi(j).

(10)

Through the quadratic form in (10), Mao et al. [15] proved that SA, SE, and the sum of
squares for total (ST) are quadratic forms of normal random vectors, whose ranks are equal
to their respective degrees of freedom; therefore, we have

SA = PT A1P, A1 = C− Jn/n, rank(A1) = k− 1;

SE = PT A2P, A2 = In − C, rank(A2) = n− k;

ST = SA + SE = PT AP, A = In − Jn/n, rank(A) = n− 1.

Under the null hypothesis, we also have

SA
σ2 =

PT A1P
σ2 ∼ χ2(k− 1),

SE

σ2 =
PT A2P

σ2 ∼ χ2(n− k).

SA and SE are independent, so

F =:
SA
/
(k− 1)

SE
/
(n− k)

=
MSA
MSE

∼ F(k− 1, n− k). (11)

Here, F is the probability distribution of the test statistic required for one-way analysis
of variance. Then, for the given significance level α > 0, it can be determined that the
rejection region is

W =
{

F > F1−α(k− 1, n− k)
}

.

Since the data used in the analysis of variance need to satisfy the assumptions of
normality, homogeneity of variance and independence are needed; however, since the data
in this study do not satisfy these assumptions, we will use the permutation test for the
variance analysis, which is introduced in detail in the next section.

3. Permutation Test

When the data do not satisfy the premise assumptions of normality, homogeneity
of variance, or independence in the variance analysis, the variance analysis cannot be
conducted [16]. In this case, statistical methods based on randomization and resampling
can be used for testing. We use a widely applicable statistical method from the idea of
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randomization, which is called a permutation test. Xue et al. [17] pointed out that the
permutation test has obvious advantages over traditional statistical methods because it
does not need to make presuppositions about the distribution and is conducted solely
based on the information contained in the observed samples.

The core problem to be solved by using the permutation test for variance analysis is
how to estimate the probability distribution of the test statistic under the condition that
the null hypothesis is established. The basic thought is that if the null hypothesis that
states that there is no significant difference in the mean of the sample data from k groups is
true, then the null hypothesis cannot be overturned by calculating the observation value
(denoted as F0) of its test statistics based on the observed k independent samples. At this
time, if k samples are mixed and then randomly divided into k new samples, also known
as permutation samples, the observed values of the test statistics are calculated again and
tested, and the same inferred conclusion will be obtained.

Assuming that it is necessary to test whether there is any difference between the
effect among k groups, then set a total of n = ∑k

i=1 mi (i = 1, . . . , k) experimental units,
and divide these experimental units into k parts. Each part contains mi units, and k
different treatments are applied separately. The test results obtained from each treatment
are recorded as Yi = (yi1, . . . , yij, yimi ) (i = 1, . . . , k; j = 1, . . . , mi), and the effect value is
Ui = (ui1, . . . , uij, uimi ); then the assumption to be considered is

H0 : U1 = U2 = . . . = Uk.

when assigning experimental units based on the principle of randomization. By arbitrarily
lining up n experimental units into a row and applying k different treatments to mi units in
turn, the data yij are randomly extracted from the effect uij. If the following test statistic
is used

F′ =
MSA
MSE

=
∑k

i=1 mi(yi − y)2/(k− 1)

∑k
i=1 ∑mi

j=1(yij − yi)
2(∑k

i=1 mi − k)
, (12)

then F′ is evaluated with the probability of 1
n! every time; Ui = (ui1, . . . , uij, uimi ) is arranged

in a row and divided into k parts, where the value of each part is Yi; and the value of F′ can
be calculated according to (12). By repeating this process, n! values of F′ can be obtained,
denoted as F′1, . . . , F′ni

. Arrange all F′1, . . . , F′ni
into F′(1) ≤ F′(2) ≤ . . . ≤ F′(n!) according to size,

and select an appropriate F′(g) (g = 1, . . . , n!) according to significance level α.
When F0 > F′(g), reject the null hypothesis, believing that there is a significant differ-

ence in the effect among k groups. The following is the rejection region of the permuta-
tion test:

W ′ =
{

F0 > F′1−α

}
. (13)

Equation (13) uses the quantile of the permutation distribution as the critical value to
determine the rejection region. It can be seen that both the permutation method and the
parameter method need to calculate the test statistic. The difference is that the permutation
method does not compare the test statistic with the theoretical distribution but rather
compares the test statistic with the empirical distribution obtained by the permutation
sample and judges whether there is enough evidence to reject the null hypothesis according
to the extremeness of the statistical value.

4. Simulation

A large-scale simulation is carried out to evaluate the performance of the proposed
approach, generating simulated data for daily confirmed cases, with deaths and recoveries
unknown. This simulates the real-world epidemiological data in which only aggregated
counts are reported during an epidemic outbreak. We assume that the observation period
is 50 days (T = 50), and it needs to take into account how real-time fatality rates changes
over time in practice. Therefore, we assume that, during the 50-day observation period,
when 0 < t ≤ t0, the daily number of confirmed cases follows the Poisson distribution
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of parameter λ0, and when t0 < t ≤ 50, the daily number of confirmed cases follows the
Poisson distribution of parameter λ1. In addition, the simulation scenarios are based on
the preassigned death probability and recovery probabilities on day t for group i. The daily
number of deaths and recoveries are generated according to the multinomial setting in (1),
and the real-time fatality rates are further calculated according to the generated simulation
data. Finally, the permutation test is used for variance analysis to determine the differences
in disease severity among k groups.

Under H0, the performance of the proposed test is evaluated by considering various
scenarios in which the real-time fatality rates are equal among three groups (group A,
group B, group C). From the simulation results in Table 1, we can see that the analysis
of variance using the permutation test can sensitively capture the differences in real-time
fatality rate among different groups, thus rejecting the null hypothesis of equal real-time
fatality rate.

Table 1. Simulation results.

Scenario p1,D(t) p1,R(t) p2,D(t) p2,R(t) p3,D(t) p3,R(t) p-Value Multiple Comparison

1 0.01 0.9 0.06 0.9 0.1 0.89 �0.00
√

2 0.01 0.9 0.02 0.89 0.1 0.8 �0.00 C-A,C-B
3 0.01 0.74 0.05 0.89 0.03 0.75 �0.00 B-A,C-A
4 0.01 0.74 0.04 0.8 0.02 0.75 �0.00 B-A,C-A
5 0.02 0.80 0.02 0.8 0.03 0.8 0.0316 C-B
6 0.02 0.80 0.02 0.85 0.03 0.85 0.1312 −
7 0.02 0.80 0.04 0.8 0.02 0.9 �0.00 B-A,C-B
8 0.02 0.60 0.06 0.74 0.02 0.82 �0.00 B-A,C-B
9 0.05 0.7 0.02 0.63 0.02 0.6 �0.00 B-A,C-B
10 0.05 0.65 0.05 0.67 0.04 0.7 0.672 −
11 0.05 0.6 0.1 0.74 0.04 0.7 �0.00 B-A,C-B
12 0.05 0.82 0.03 0.74 0.25 0.74 �0.00

√

13 0.14 0.78 0.07 0.74 0.11 �0.00 B-A,C-B
14 0.14 0.75 0.20 0.60 0.27 0.6 �0.00

√

15 0.14 0.7 0.17 0.75 0.22 0.74 �0.00 C-A,C-B
16 0.14 0.7 0.08 0.75 0.27 0.61 �0.00

√

√
: there is a difference between any two in the groups ; −: there is no difference among all groups.

Figure 1 shows the multiple comparison tests of the first four scenarios at the con-
fidence level α = 0.05. The upper left corner shows that the confidence interval of the
mean difference of each group in scenario 1 does not contain the 0 point. Therefore, we
can judge that there is a significant difference in the real-time fatality rate among the
three groups in scenario 1. The upper right corner shows the confidence interval of the
mean difference of each group in scenario 2, and only the confidence interval of the mean
difference between group A and group B contains the 0 point, which means that there is
no significant difference in the real-time fatality rate between group A and group B. The
lower left corner and the lower right corner respectively show the confidence interval of
the mean difference of each group in scenarios 3 and 4. In these two figures, the confidence
interval of mean difference of group B and group C contains the 0 point; that is, there is
no significant difference in the real-time fatality rate between group B and group C under
scenarios 3 and 4.
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Figure 1. Multiple comparison tests in the first four simulated scenarios.

5. Empirical Analysis

COVID-19 is the most widespread global pandemic to hit humanity in the past cen-
tury. It is a serious crisis for the whole world, posing a major threat to human life and
health [18,19]. The first case of COVID-19 was found in Wuhan, Hubei Province, China, in
December 2019. At present, China’s National Health Commission has renamed it as the
Novel Coronavirus Infection. Kraemer et al. [20] found that, despite restrictions on mobility
imposed in Wuhan on 23 January 2020, it still could not stop the rapid spread of COVID-19
to other cities. According to the statistics of the National Health Commission [21], as of
24:00 on 29 February 2020, a total of 79,824 confirmed cases had been reported in mainland
China, including 2870 deaths; 66,907 confirmed cases and 2761 deaths had been reported in
Hubei Province; and 49,122 confirmed cases and 2195 deaths had been reported in Wuhan.
At first glance, the mortality in mainland China is about 3.60%, the mortality in Hubei
Province is about 4.13%, and the mortality in Wuhan is about 4.47%. However, it is difficult
to estimate the mortality of an epidemic, especially for the outbreak of COVID-19. Medical
staff all over China have to make every effort to deal with this extremely infectious and
terrible disease. Next, the proposed method is applied to analyze the differences in disease
severity among different regions over time.

6. Data Description

Considering that the intervention measures implemented during the epidemic and
availability of medical resources may have a potential impact on the fatality rate in the
initial stage of COVID-19 in China, we have divided mainland China into three different
clusters, namely mainland China excluding Hubei Province, Hubei Province excluding
Wuhan, and Wuhan, and we use the real-time fatality rate to analyze the differences in
disease severity among different clusters. The daily number of confirmed cases, daily
deaths, and daily recoveries for each cluster from the official website of the National
Health Commission (http://www.nhc.gov.cn, accessed on 11 June 2020) were extracted
and summarized from 31 January 2020 to 30 March 2020.

Figure 2 shows the real-time fatality rate estimator of the three independent clusters
throughout the observation period. We can see that, in the initial stage of the COVID-19
epidemic, there are obvious differences in disease severity among different regions in mainland
China. With the passage of time, the difference in the severity of the disease gradually
decreases. In this regard, we provide some explanations to describe the observed phenomena.

http:// www.nhc.gov.cn
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Figure 2. Changes in real-time fatality rate in different clusters during the observation period.

In the initial stage of the epidemic, most of the confirmed cases were mainly con-
centrated in Hubei Province. Given the large number of patients and the lack of clinical
experience with the disease, the local medical systems were overwhelmed. In Wuhan in
particular, many patients were not treated in time, causing the highest mortality there,
followed by Hubei Province (excluding Wuhan). On the other hand, the implementation of
strict lockdown measures in Wuhan curbed the spread of the disease to a certain extent,
providing valuable preparation time for other regions to prevent the epidemic. In the
face of the unknown, sudden, and fierce natural disasters of the epidemic, the Chinese
government decisively launched a battle of epidemic prevention and control and mobilized
all necessary resources throughout the country to support virus control in Hubei Province
and Wuhan. Leishenshan Hospital and Huoshenshan Hospital, which were used to focus
on the treatment of COVID-19 patients, had 1500 beds and 100 beds, respectively. These
two hospitals took only about ten days to realize the whole process, from the completion of
the design plan to delivery. Cities in Hubei Province received paring assistance from other
provinces [9]. As of 14 February 2020, more than 25,000 medical professionals rushed to
Wuhan. In addition, Wuhan successfully established 16 Fangcang shelter hospitals, which
eased the great pressure on the medical system [22]. Meanwhile, more than 40 designated
hospitals were set up in Wuhan, mainly to treat severe COVID-19 patients [23]. During
the observation period, the real-time fatality rate in mainland China (excluding Hubei
Province) was basically stable at a low level. With the continuous alleviation of the pressure
of medical resources in Wuhan and Hubei Province, their real-time fatality rate generally
showed a continuous downward trend. Finally, by late February 2020, the real-time fatality
rates in the three regions were no longer significantly different, and the level remained
relatively low in March 2020.

Empirical Analysis Result

In this section, the proposed permutation test is applied to the analysis of variance to
test the degree of difference in real-time fatality rates over time among different clusters.
The unit is a day, which means there are T = 60 time intervals, and the 0th day (T = 0) is
31 January 2020. A three-sample test is conducted on H0:

H0 : pChina(t) = pHubei(t) = pWuhan(t), 0 < t ≤ T

and we set the overall significance level α to 0.05.
Specifically, during the 60-day observation period, the test statistic F0 of the original

sample is first calculated. Then, we mix the three original samples, randomly assign the
original samples into three groups to obtain the permutation samples, calculate the test
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statistic Fi of the permutation samples, and repeat this n! times. Finally, Fi is arranged
in order, making the distribution of Fi the empirical distribution. The decision is made
by comparing F0 with the empirical distribution. According to Table 2, there are gener-
ally significant differences in the real-time fatality rates of the three regions during the
60-day observation period. The multiple comparison test results in Figure 3 show that the
confidence interval of the mean difference in real-time fatality rate between two or two
of the three regions does not contain the 0 point, which shows significant difference in
disease severity among the three regions during the whole observation period. According
to Table 3, we can see that the real-time fatality rate in Hubei is 0.0532 higher than in China
on average, while the real-time fatality rate in Wuhan is 0.1010 higher than in China on
average, and 0.0478 higher than in Hubei.

Table 2. Permutation test variance analysis.

Source DF SQ MSQ F p-Value

Region 2 0.30638 0.15319 13.25173 <0.00000
Residuals 177 2.04664 0.01156

Total 179 2.35302
DF = degrees of freedom; SQ = sum of squares; MSQ = sum of mean squares; F = the test statistic.

Table 3. Multiple comparison test.

Region Diff Lwr Upr p-Value

Hubei–China 0.0532 0.0068 0.0997 0.0200
Hubei–China 0.1010 0.0546 0.1474 0.0000

Wuhan–Hubei 0.0478 0.0013 0.0942 0.0421
Diff = mean difference; Lwr = lower confidence limit; Upr = upper confidence limit.
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Figure 3. Confidence intervals for mean differences in real-time fatality rate across the observation period.

Further, in order to measure the effectiveness of the intervention measures imple-
mented by the Chinese government and the impact of improved medical resources on
disease severity, we conduct a temporal examination of the real-time fatality rates in Hubei
and Wuhan before and after assistance. First, the proposed method is performed for the
period from 31 January 2020 to 26 February 2020, when T = 27. According to the results in
Figure 4, before the aid to Hubei and Wuhan and at the initial stage of the aid, the confi-
dence interval of the mean difference of the real-time death rate between the three regions
does not contain the 0 point, suggesting that there are still significant differences in the
real-time fatality rate between the three regions.
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In the late assistance period, the same inspection procedure is carried out from
27 February 2020 to 30 March 2020, when T = 33. As shown in Figure 5, during this
period, the confidence interval of the mean difference in the real-time fatality rate in the
three regions contains the 0 point, suggesting that there is no significant difference in the
real-time fatality rate in the three regions. It can be considered that the accessibility of
medical resources in different regions is roughly the same, and the intervention policies
implemented by the Chinese government have effectively alleviated the disease severity.
The result shown in Figure 5 further confirms similar real-time fatality rates in the three
regions from late February 2020 to late March 2020.
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Figure 4. Confidence intervals for mean differences in real-time fatality rate among three regions
before and at the beginning of the assistance.
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Figure 5. Confidence intervals for mean differences in real-time fatality rate among three regions in
the post-assistance period.

7. Conclusions

In this paper, a non-parametric test procedure is proposed. The non-parametric
test method generally does not involve population parameters, and its assumptions are
much less than those of a parametric test. Therefore, nonparametric tests are used to
compare differences in real-time fatality rates among independent groups during epidemic
outbreaks. Since implementing effective interventions can inhibit the spread of the disease
to some extent, thereby reducing the disease severity and saving more lives, our approach
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can validate the effectiveness of interventions. The asymptotic distribution of the test
statistic under the null hypothesis allows analysis of variance to be performed using
the permutation test, and the null hypothesis can be rejected when there are significant
differences in disease severity among groups. At the same time, our simulations show
that the proposed test can accurately identify inter-group differences in disease severity
for various scenarios. The test procedure proposed in this paper is applied to the data
of the initial stage of the COVID-19 epidemic in mainland China to test the difference in
the severity of the disease among the three independent clusters. The results show that
there is a significant difference in the real-time fatality rate of the three clusters during the
whole observation period. Through the discussion of time segments, we found that with
the implementation of effective intervention measures and the improvement in medical
resources, there is no significant difference in the real-time fatality rate of the three clusters
in the later stage of observation. We can see that the severity of COVID-19 in mainland
China may be related to the implementation of interventions and the availability of medical
resources, which reflects the important role of effective interventions and medical resources
in reducing the real-time fatality rate.

Our method can be applied to the case of k samples. In essence, this allows researchers
to study more clinical questions in concrete real-life situations, such as investigating the
extent of differences in the real-time fatality rate between multiple sex groups or age groups,
which may help study other factors that influence the real-time fatality rate of diseases.
It is important to note that different treatment regimens are used clinically for different
groups, and investigating the extent to which mortality varies between treatment groups
can help healthcare providers determine the most effective treatment regimens. The method
proposed in this paper can be one of the important methods to evaluate the efficacy of
different treatment regimens. The test procedure is based on the information contained in
the observed sample and is not limited by the population distribution. Surveillance data
from authorities during outbreaks is always incomplete, with some data such as gender
and age being difficult to obtain, especially in areas with low awareness of protection and
inadequate healthcare systems. Despite the post-pandemic period, detailed data on the
COVID-19 are still difficult to obtain, and for most regions, only daily confirmed cases,
deaths, and recoveries are recorded and aggregated. It is most important for the health
department to use the simplest data structures to gain a deeper understanding of the
disease so that rapid interventions can be taken to curb the spread of the disease early and
reduce mortality.
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