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Abstract: Coordinated activity in neural populations is crucial for information processing. Shedding
light on the multivariate dependencies that shape multineuronal responses is important to understand
neural codes. However, existing approaches based on pairwise linear correlations are inadequate at
capturing complicated interaction patterns and miss features that shape aspects of the population
function. Copula-based approaches address these shortcomings by extracting the dependence
structures in the joint probability distribution of population responses. In this study, we aimed to
dissect neural dependencies with a C-Vine copula approach coupled with normalizing flows for
estimating copula densities. While this approach allows for more flexibility compared to fitting
parametric copulas, drawing insights on the significance of these dependencies from large sets of
copula densities is challenging. To alleviate this challenge, we used a weighted non-negative matrix
factorization procedure to leverage shared latent features in neural population dependencies. We
validated the method on simulated data and applied it on copulas we extracted from recordings of
neurons in the mouse visual cortex as well as in the macaque motor cortex. Our findings reveal that
neural dependencies occupy low-dimensional subspaces, but distinct modules are synergistically
combined to give rise to diverse interaction patterns that may serve the population function.

Keywords: copula; weighted NMF; non-parametric vine copula; neural dependence structures

1. Introduction

Information processing in the brain relies on the coordinated activity of neuronal
circuits on multiple spatial and temporal scales. The neural population function is dynami-
cally shaped by a rich mixture of distributed and interdependent processes ranging from
representations of sensory inputs to signals related to behavioral outputs or internal states.
While past research focused mainly on characterizing neural codes by looking at properties
of single neurons, recent years have seen a shift towards a population-level approach [1–3].
This shift was largely enabled by significant advances in imaging technologies [4] and
tools for high-yield electrophysiology [5] which allowed for simultaneous recordings of
large populations of neurons. These complex high-dimensional neural datasets provide a
unique opportunity to examine the structure of population codes, but substantial challenges
still exist from a data analytic standpoint. While encoding properties of single neurons
have been studied extensively [6–8], making sense of collective population activity can
be considerably more challenging. Population responses can exhibit complex multiscale
spatiotemporal dynamics and non-trivial low- and higher-order interactions among neu-
rons [9–13]. Moreover, these features can potentially be modulated by multiple variables
related to the brain state or behavior such that it becomes difficult to determine how partic-
ular multineuronal responses are associated with certain stimuli or experimental conditions.
Thus, in order to make sense of population activity, it is necessary to understand whether
and how emergent population functions such as multivariate dependencies within neural
ensembles and with behavioral variables are important for information processing over
and above what can be performed by single neurons.
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Existing literature on neural dependencies has predominantly focused on pairwise
shared response variability between neurons, measured as linear correlations where the
noise is assumed to follow Gaussian statistics [14–18]. Typically, a distinction is made
between signal or stimulus correlations and noise correlations. The former term refers
to tuning similarities between neurons with respect to particular stimuli and the latter
term refers to shared neural variability beyond what can be accounted for by the stimuli
and would be attributed to functional connectivity [18]. While such a linear approach
has undoubtedly been useful as an approximation of neural dependencies, there are some
concerns that suggest it might be yielding an impoverished or even misleading picture.
First of all, spike trains consist of discrete spike counts that are characterized by positively
skewed distributions, especially when examined in fine temporal scales, as a typical record-
ing session of a neuron will mostly contain none or one spike within a given time bin.
Higher spike counts are progressively less likely. These properties make spike trains unsuit-
able for modeling with Gaussian distributions, which are continuous and symmetric [19].
Moreover, neural dependencies quite often deviate significantly from the elliptical shapes
that are characteristic of Gaussian joint variability models and instead tend to be heavy
tailed [20]. Finally, a number of studies have discovered that cortical neurons can interact
in groups larger than just pairs, although whether these high-order correlations limit or
enhance the information content in neural codes remains contested [10–13,21,22]. Therefore,
dissecting the structure of multivariate dependencies in neural populations is an important
goal for neuroscience and one that requires an alternative approach that can address the
aforementioned challenges.

A suitable alternative approach for studying multivariate dependencies is using cop-
ulas, a statistical tool that has been widely used in economics [23], but has received com-
paratively much less attention in neuroscience [19,24–28]. Copulas can be thought of as a
description of the structure that underlies how individual random variables are coupled
and produce the joint observations at hand. Unlike Pearson correlations which yield a
single value, copulas are probability distributions with dimension equal to the number
of entangled random variables under examination and thus can provide a much more
detailed account of neural dependencies [29]. However, there are a few considerations
when applying copulas on neural data. One challenge is that the copula theory has been
built for continuous variables, whereas data in neuroscience research are often discrete
(e.g., spike counts) or contain interactions between discrete and continuous variables with
vastly different statistics (e.g., spikes with local field potentials or behavioral measurements
such as running speed or pupil dilation). This challenge can be overcome with the use
of additional probabilistic tools such as the distributional transform [30] or continuous
convolutions [31], which transform discrete data into pseudo-continuous data such that one
can still obtain consistent copulas for discrete and mixed settings. Another consideration
with copula-based approaches is whether to use parametric or non-parametric descriptions
of copula densities for characterizing dependence structures. Parametric families of copulas
assume a certain dependence shape and are a powerful tool for inference, but they might
also impose rigid assumptions that may result in mischaracterizing the actual dependence
structure. Moreover, multivariate parametric copulas are quite limited in number and as-
sume a particular type of dependence structure for all variables that can ignore potentially
rich and heterogeneous interaction patterns. A common alternative for multivariate copula
modeling is to decompose dependencies into a cascade of unconditional and conditional
bivariate copulas organized into hierarchical tree structures called vines or pair copula
constructions [32]. This formulation allows for a joint model that can flexibly incorporate
various dependence structures. A number of previous studies have employed vine copulas
in mixed variable settings with parametric models [28,33–36], while another line of research
has explored various non-parametric alternatives that evade the need for making any
assumptions regarding dependence structures [37–40].

In our previous work [41], we followed a fully non-parametric approach for capturing
single-neuron margins and copula densities by using Neural Spline Flows (NSF) [42],
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which is a class of normalizing flows [43]. We found that NSFs performed similarly to
existing non-parametric estimators while allowing for faster and more flexible sampling.
Additionally, using the NSF framework made it possible to uncover neural dependence
structures that would have been challenging to capture with common parametric copulas.
However, this flexibility of non-parametric methods comes at the cost of sacrificing ease of
summarization for these dependence structures. This is especially the case with recordings
of larger neural populations since the number of copulas in vine formulations grows
quadratically with population size. While it may seem like non-parametric copula-based
approaches result in prohibitively large numbers of objects to work with, the space of
dependence structures described by vine copula densities is usually sparse, as the majority
of pairs in the vine tree are independent [20]. Furthermore, it is plausible to suggest that
even within the subspace of non-independent pairs, dependence structures are likely to
share some features such as asymmetric tail dependence. Following this rationale, our
aim in this study was to uncover such shared low dimensional features which would be
easier to visualize and draw insights from. Finding such features requires a dimensionality
reduction technique such as non-negative matrix factorization (NMF), which is suitable
for non-negative input data and yields an interpretable parts-based representation [44].
Although NMF is usually a good choice for feature discovery problems, application on
copula densities with heavy tail dependencies that can potentially overlap with more light-
tailed ones can be challenging. NMF representations can be distorted when datasets have
overly dominant features [45]. A potential solution to this issue is to introduce a weight
matrix that has a normalizing function. A few studies have explored adding weights to
NMF specifically by multiplying the observation vectors with their inverse probabilities to
adjust the importance NMF places on them for reconstruction [46,47]. Taking into account
the approaches in the aforementioned studies, we decided to construct weight matrices for
every estimated bivariate copula density by utilizing the inverse cumulative probabilities
of single neuron spike count histograms. We thus followed a weighted non-negative matrix
factorization framework (WNMF), which we validated on synthetic data against NMF and
subsequently applied to neural recordings. Our findings shed light on the complexity of
multineuronal interactions and point to fascinating new avenues for research into neural
dependencies.

2. Materials and Methods
2.1. Copulas

Multivariate interactions in neural populations can be described probabilistically by
means of copulas. A full characterization of the multivariate statistics of population spiking
responses would require modeling the joint probability distribution for these responses.
However, one can tackle instead an alternative formulation of that problem as according to
Sklar’s theorem [48], every multivariate cumulative distribution function (CDF) Fx can be
decomposed into its margins, in this case the single-neuron distributions for spike counts
F1, . . . Fd, and a copula C (Figure 1A) such that:

Fx(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

Copulas are multivariate CDFs with support on the unit hypercube and uniform
margins and their shape encapsulates the dependence structure between random variables.
Such representations of dependence are not bound by assumptions such as linearity or
gaussianity as is the case with Pearson’s correlation coefficient [29]. Following Sklar’s
theorem, it is possible to obtain copulas from joint distributions using:

C(u1, . . . , ud) = Fx(F−1
1 (u1), . . . , F−1

d (ud)), (2)

Equivalently, one can also construct proper joint distributions by entangling margins
with copulas. Going from sample space to copula space and the opposite is possible via
the probability transform F and its generalized inverse, the quantile transform F−1. The



Entropy 2023, 25, 1026 4 of 16

probability transform maps samples to the unit interval: F(X)→ U ∼ U[0,1], where U[0,1]
denotes the uniform distribution on the unit interval. Two key properties of copulas are that
they are unique and invariant under increasing margin transformations when data come
from continuous distributions. However, these properties do not hold true for discrete
distributions [30], and additional tools are required for consistent mapping to copula space.
One such tool is the distributional transform:

G(X, V) = Fx−(x) + V(Fx(x)− Fx−(x)) (3)

where Fx−(x) = Pr(X < x) as opposed to the regular expression for the CDF,
Fx(x) = Pr(X <= x), and V is a random variable uniformly distributed on [0, 1] inde-
pendent of X. This transformation extends the probability transform by adding uniform
jitters in between discontinuous intervals in the support of discrete variables. Discrete sam-
ples that are subjected to the distributional transform result in quasi-continuous empirical
copulas, the densities of which can be estimated with tools designed for continuous data.
In practice, when one is interested in dependencies among joint observations, it is more
convenient to work with copula densities instead of cumulative distributions. Estimating
the copula densities amounts to characterizing dependence structures in joint observa-
tions. An example pair of neurons is illustrated in Figure 1A. Spiking distributions with
non-negligible tails that are transformed to copula space tend to feature probability mass
concentration in the corners. The empirical copula in this example displays asymmetric
heavy tail dependence on the upper-right corner and the copula density can be estimated
with non-parametric methods as outlined later in the text.

Figure 1. Mixed vine copula flows and NMF decomposition. (A) Spike train samples from two
neurons can be decomposed into their margins and a copula. Empirical copulas are extracted by
transforming the samples to uniform through the distributional transform. (B) Graphical illustration
of a C-vine for 4 variables. Nodes and edges of the first tree denote the variables and bivariate
dependencies, respectively. Edges of subsequent trees denote dependencies that condition on one or
more variables. (C) Decomposition of pair copulas into non-negative coefficients for neuron pairs
and copula factors.

2.2. Pair Copula Constructions

Copula-based approaches can suffer from the curse of dimensionality with an in-
creasing number of interacting variables. Pair copula constructions [49] can tackle this
challenge by factorizing multivariate dependencies into a cascade of bivariate conditional
and unconditional copulas. Given that the space of possible factorizations is prohibitively
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large, most applications use vine copula structures, a special type of pair copula construc-
tion [32]. Vines are hierarchical sets of trees that account for a specific graph of multivariate
interactions among elements of the distributions and assume conditional independence for
the rest. A C-Vine (Figure 1B) is one in which each tree in the hierarchy has a node that
serves as a connection hub to all other nodes. This property makes the C-Vine an attractive
structure for modeling multivariate neural dependencies since functional connectivity
patterns in neural recordings tend to feature a few neurons that interact with many other
neurons [28]. The C-Vine decomposes the joint distribution f into a product of its margins
and conditional copulas c.

fX(x1, . . . , xd) =
d

∏
k=1

f (xk)
d−1

∏
j=1

d−j

∏
i=1

cj,i+j|1,...,j−1(F(xj|x1, . . . , xj−1), F(xi+j|x1, . . . , xj−1)) (4)

where ci,j|A denotes the pair copula between elements i and j given the elements in the set A,
which is empty in the first tree, but increases in the number of elements with deeper trees.

2.3. Copula Flows

As in our previous work [41], we modeled the margin and copula densities non-
parametrically using Rational-Quadratic Neural Spline Flows (NSF) [42], a specific type
of normalizing flow [43]. These flows are a class of generative models that can con-
struct arbitrary probability densities using smooth and invertible transformations to and
from simple probability distributions. In essence, this is an application of the change of
variables formula:

px(x) = pu(T−1(x))det
∣∣∣∣∂T−1(x)

∂x

∣∣∣∣, (5)

where px(x) is the density of the observations and pu is the base density of random
variable U = T−1(X), which is a known and convenient distribution such as the normal
or the uniform distribution. The transformation T is usually a composition of invertible
transformations as in an artificial neural network with a certain number of layers and
hidden units that are optimized during training. The determinant of the Jacobian matrix
for T keeps track of volume changes. The main advantage of normalizing flows lies in the
fact that they enable harnessing the flexibility of artificial neural networks for probability
density modeling, while invertibility allows for simple and efficient sampling from the
base distribution.

As previously [41], we chose the uniform distribution on [0, 1] as a base distribution
for NSF so that backward and forward flow transformations for the margins approximate
the probability/distributional and the quantile transform, respectively. The reason for
choosing NSF [42] for modeling both margin and copula densities was that they combine the
flexibility of non-affine flows while maintaining easy invertibility by approximating a quasi-
inverse with piecewise spline-based transformations around knot points of the mapping.

2.4. Sequential Estimation and Model Selection

The procedure we followed for fitting the C-vine model with NSF to data was the
same as in our previous work, where it is described in more detail [41]. Briefly, we decided
the order of the variables for the C-vine model based on a heuristic, namely, the sum of
absolute value Kendall’s taus that we calculated for each neuron in relation to every other
neuron. Then, we fit each margin with NSF and then proceeded with bivariate copulas of
the surface layer of the tree. For each subsequent layer, we estimated conditional margins
via h-functions [50]:

h(x, y) = F(x|y) = ∂C(x, y)
∂y

, (6)

whereby h(x, y) is the function that allows obtaining the conditional marginal distribution
F(x|y) by taking the partial derivative of the copula linking variables x and y with respect
to y. Then, conditional copulas can be obtained by transforming those conditional margins
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according to Equation (2). We followed the simplifying assumption [51] for the conditional
copulas and conducted a random search procedure [52] to determine the optimal number
of hidden layers, hidden units and number of spline knots for the NSF. We held out
a validation set containing 10% of the data to evaluate performance for different NSF
configurations. Lastly, since a large part of the vine was expected to contain independent
pairs of variables [20], we followed a heuristic by which we tested every empirical copula
for independence using a two-dimensional Kolmogorov–Smirnov test [53]. In essence, this
test was comparing copulas with samples from a two-dimensional uniform distribution
and deemed them independent if the two did not exhibit statistically significant differences
for p < 0.05. This heuristic reduced the computational load of fitting NSF models.

2.5. Weighted Non-Negative Matrix Factorization

NMF [44] is an algorithm that learns a parts-based representation of a data matrix X.
In our study, this matrix consists of the densities for all bivariate copulas (Figure 1C left).
More precisely, we discretized and vectorized the two-dimensional densities of the bivariate
copulas and stacked the resulting vectors. This data matrix is factorized into a product of
two other matrices, H and W, corresponding to the copula modules (Figure 1C right) and
the neuron pair coefficients (Figure 1C middle). All three matrices must be non-negative,
a constraint which leads to a sparse, parts-based representation of X because modules
can only act in a cumulative way. When using NMF, the goal is to find such a represen-
tation that approximates X with W and H having lower rank than X, thus conducting
dimensionality reduction. The rationale behind such a low-dimensional description is to
distill the multivariate neural dependencies into a set of H modules that capture interaction
patterns among neurons that are shared across the population and a set of coefficients
W that define the degree to which each neuron pair is composed of one or more of these
modules. The most common method to learn W and H such that we minimize ||X−WH||2,
i.e., the Frobenius norm of the difference between the real and the reconstructed data, is by
initializing W and H with random non-negative numbers and updating them until they
become stable. Iterative updates are implemented according the following multiplicative
update rules [44]:

Wi+1 ←Wi ·
XHT

i
Wi Hi HT

i
(7)

Hi+1 ← Hi ·
WT

i X
WT

i Wi Hi
(8)

where subscript i denotes the iteration of the optimization procedure. In our study, we used
a modified version of NMF, which we refer to throughout the text as weighted non-negative
matrix factorization (WNMF). In this framework, the input matrix was weighted in order
to aid detection of overlapping dependence structures with considerable differences in
scale. We constructed weight matrices V according to:

Vx, y = (F−1
x (x)−U)⊗ (F−1

y (y)−U) (9)

where for every neuron pair (x, y) we took the outer product of their inverse CDFs F−1
x (x),

subtracted from the uniform CDF U. In order for the weight values to transition smoothly
between high importance (tails) and low importance areas, we convolved the weight
matrices with a Gaussian window of standard deviation equal to 5 bins in density space.
Moreover, we added rotated versions of the outer product matrices such that all 4 corners of
the copula space would be weighted heavily. Our approach and aim were therefore different
from other examples of weighted NMF procedures we encountered in the literature [46,47].
Instead of weighting observation vectors according to the frequency they appear in, we
aimed to differentially scale each copula density such that erroneous reconstruction in
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the tail regions is penalized more compared to other regions. We adjusted the NMF
multiplicative update rules by adding V as follows:

Wi+1 ←Wi ·
VXHT

i
VWi Hi HT

i + α1 · |W|+ 0.5 · α2 · ||W||2
(10)

Hi+1 ← Hi ·
WT

i VX
WT

i VWi Hi + α1 · |H|+ 0.5 · α2 · ||H||2
, (11)

where we also added regularization terms for both L1 and L2 regularization, the strengths of
which were determined by the parameters α1 for L1 and α2 for L2. The values for these two
parameters were tuned using 5-fold speckled cross-validation [54]. This cross-validation
procedure is useful for optimal rank selection in dimensionality reduction analyses as it
holds out a random set of entries for each fold, which it treats as missing values that can be
used to calculate validation errors.

2.6. Synthetic Data

We validated our WNMF framework for describing dependence structures on a set
of synthetic data consisting of two-dimensional copula densities on a 100 by 100 points
grid. The densities were estimated using NSF on empirical copulas from 20,000 pairs
of dependent Poisson samples generated using the mixed vines package developed by
Onken and Panzeri [28]. The densities exhibited dependence structures that were charac-
terized by known parametric copula families, namely the Clayton copula (theta = 5) and
the Frank copula (theta = 6) [55]. The former displays asymmetric heavy tail dependence,
i.e., the concentration of probability mass in one of the corners whereas in the latter, mass is
symmetrically allocated along the correlation path. We designed 3 different test cases with
data matrices that contained 2, 4 or 6 different copula densities that were Clayton, Frank or
rotated versions of them. Each different density was present in 20 rows of each matrix.

2.7. Experimental Data

We evaluated our framework on two different datasets involving recordings of neural
activity. The first one consisted of 2-photon calcium imaging recordings in the mouse
primary visual cortex (V1), that were collected at the Rochefort lab (see [56] for more
details). Briefly, V1 layer 2/3 neurons labeled with the calcium indicator GCamP6s were
imaged while the animal was headfixed, freely running on a cylindrical treadmill and
navigating through a virtual reality environment (160 cm). Mice were trained to lick at a
specific location (120–140 cm) along the virtual corridor in order to receive a reward. Over
the course of 5 days, mice learned to lick within the reward zone and V1 responses were
modulated in conjunction with learning. Our analysis was based on the spike trains that
were deconvolved from the calcium transients (see [56] for more details). We limited our
scope of investigation to population activity (102 neurons) of mouse ST260 on day 4 of the
experiment when the animal was an expert at the task.

The second dataset in our analysis was a session from electrode array recordings
of primary motor cortex (M1) responses of head restrained macaque monkeys during a
delayed reaching task [57]. We focused on the spiking activity of 81 neurons within a 900 ms
window (10 ms bins) after a go cue was given for initiating reach movements towards a
target position. There were 8 different target positions arranged in a circle. We included
only those trials during the baseline epoch where movement was successful in reaching the
cued target position.

3. Results

We propose WNMF to identify structures in C-vine models composed of non-parametric
copulas and estimated with normalizing flows. Since dependencies in a vine tree are known
to be sparse and display common features in studies using parametric methods, we aimed
to discover shared structures in copula-based models by decomposing copula densities
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into lower dimensional copula modules and neuron pair coefficients. We assessed this
approach on synthetic data generated with parametric copulas models, and on recordings
from a mouse visual cortex and macaque motor cortex.

3.1. Validation on Synthetic Data

The addition of a weighting matrix to NMF was motivated by preliminary findings we
had on synthetic data. One of these “toy” datasets we generated was composed of copula
density estimates, namely 20 examples of Frank copulas and another 20 examples of Clayton
copulas. We estimated the copula densities with NSF as outlined in the methods section
out of copula samples generated using the mixed vines package [28]. Then, we applied
standard NMF with two factors. The method was able to correctly identify the Clayton
density as one of the factors and the coefficients with high values were corresponding to
the actual entries in the data with that copula (Figure 2A, NMF factor 1). However, the
other factor that corresponded to Frank copulas did not faithfully capture the bottom left
tail region (Figure 2A, NMF factor 2 highlighted with red dashed circle). This discrepancy
was not present when the data contained Frank copulas rotated by 90° instead of non-
rotated ones. Presumably, since Frank and Clayton tail regions were not overlapping in
this example, NMF identified the Frank copula density correctly (Figure 2B, factor 2).

Figure 2. Overlapping tail dependencies are challenging for standard NMF. (A) A matrix of 20 Frank
copula flow densities and 20 Clayton copula flow densities (Top illustration) is reduced to 2 NMF
factors with coefficients (blue bar plots) and copula modules. Bottom left tail dependence structures
overlap, which does not affect the Clayton copula factor but leads to incorrect identification for the
Frank copula left tail, which is highlighted with a red dashed circle. This is in contrast to (B), where
the rotated (90°) Frank copula tail regions do not overlap with those of the Clayton copulas (top
illustration), allowing for correct detection of both copula types.

While NMF can usually separate overlapping structures due to its non-negativity
constraint, outstanding features can dominate and potentially contaminate other factors
in a low-dimensional representation [45,57]. When the outstanding features are highly
active neurons, one usually normalizes population firing rates to level the field. In the
case of copula densities, however, the main source of the issue lies in tail regions where
one may encounter massive scale differences in probability concentration among different
cases. Therefore, our approach needed to be more targeted, i.e., place more emphasis on
the representation of the tails. The weight matrices we constructed individually for each
bivariate copula were designed to accommodate for this need.
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We sought to validate whether weighting improved NMF performance by compar-
ing WNMF to standard NMF on synthetic data that were generated in the same way as
described above. There were three different cases with two, four and six copulas contained
in the data matrices, each represented by 20 entries, which resulted in matrices with 40, 80
and 120 entries, respectively. Speckled cross validation for reconstruction error relative to
the original matrices yielded similar curves for WNMF and NMF for two and four copulas
and the validation error minimum landed at the correct number of factors (Figure 3A top
and middle panels). The same was not true for the case with six different copulas, where
the optimal number of factors was not clearly indicated by the NMF validation error curve.
On the contrary, the WNMF validation error reached a clearer minimum at six, which
was the correct one, and had overall lower train and validation errors (Figure 3A bottom
panel). A different picture emerged from examining the error between the copula modules
from NMF and WNMF and the real copula densities. Under this lens, WNMF had a clear
advantage over NMF as MSE error was much lower for all cases (note the scale difference
on the vertical axes of bar plots in Figure 3B). In all three cases, the lowest error we observed
was for WNMF copula modules corresponding to Frank copulas (Figure 3B bar plots in
left column). Almost the opposite trend seemed to occur for NMF in the data containing
two and six copulas, where the error regarding Frank copula modules was slightly higher
compared to that of Clayton copula modules (Figure 3B bar plots in right column). These
results suggest that while both NMF and WNMF can identify low-dimensional structures
such that adequate overall reconstruction of data is possible, WNMF is advantageous in
terms of faithful discovery of important features of copula densities, as it can circumvent
scale differences in probability density concentration. The reason why this is not obvious
in the reconstruction error is because linear combinations of discovered features can still
achieve good reconstruction quality despite these features being misidentified. An illustra-
tion of the copula modules along with neatly grouped entry membership coefficients that
WNMF discovered in the example with four different copulas is provided in Figure 3C.

Figure 3. WNMF outperforms standard NMF in identifying dependence structures with overlapping
tails. (A) Train (blue) and validation (orange) MSE over 5 folds for 1 to 8 factors. Error is computed for
the real data matrix against the reconstructed one for WNMF (left column of line plots) and for NMF
(right column of line plots). Both methods were tested on data containing either 2, 4 or 6 different
copulas. (B) Bar plots depict MSE of the real copula densities versus the copula modules identified
by WNMF (left column of bar plots) and NMF (right column of bar plots). Y axes are in logarithmic
scale. Bar colors correspond to different copula families, namely Frank (brown) and Clayton (beige),
as well as their rotated versions used in the cases with 4 and 6 copulas, namely Frank 90° (navy
blue), Clayton 90° (red), Clayton 180° (yellow) and Clayton 270° (teal). (C) Illustration of WNMF
factorization for the case of 4 copulas. Bar plots depict WNMF coefficients and density plots depict
the copula modules discovered by WNMF.
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3.2. WNMF Identifies Shared Latent Structures of Neural Dependencies in Visual Cortex

In our previous work [41], we studied neural dependencies with NSF-based C-vine
copulas in a small subset of mouse V1 layer 2/3 neurons that were recorded during a virtual
navigation task [56]. Even in this small subset we identified features such as asymmetric
tail dependencies that would have been ignored by conventional pairwise correlations
analyses. In the present study, we sought to explore the range of multivariate dependencies
encountered in the entire recorded population’s deconvolved spiking responses with the
same NSF-based C-vine copula framework. Since this approach produces a large number of
bivariate unconditional and conditional copulas, applying WNMF aids both visualization
and interpretation of neural dependencies.

We focused on the recording session on day 4 for mouse ST260 [56], where the animal
was well-acquainted with the requirements of the task, which involved running through
a virtual reality corridor and licking to receive a reward (Figure 4A top illustration). The
data consisted of deconvolved spiking activity from calcium recordings of 102 neurons
over 204 trials, binned with respect to position (bin size was 20 cm) (Figure 4A bottom
illustration). We estimated single neuron spike count marginal distributions and the
cascade of bivariate copula densities by means of NSF in a sequential fashion for each tree
across the vine. Out of the 5151 copulas, 4340 were independence copulas according to
two-dimensional Kolmogorov–Smirnov tests (p > 0.05). We found that even the remaining
811 bivariate copulas were in fact occupying a much lower dimensional subspace, as
four WNMF factors achieved an adequate approximation of the dependence structures
therein (Figure 4B). The copula modules discovered by WNMF were arranged in a way
that covered all four corners of copula space (Figure 4C WNMF copula modules). These
modules have uniform margins and thus are proper copulas as well. In order to uncover
potential groupings of neuron pairs we sorted the coefficients with respect to the module
which they are most strongly associated with. By doing so we found that these coefficients
were distributed in a way that implied it is a synergistic combination of these modules that
gives rise to a diverse set of dependence structures from simple parts (Figure 4C WNMF
coefficients). For example, a sizable part of the neuron pairs are strongly associated with the
fourth copula module, which indicates a positive codependence that is only occurring after
a certain regime of neural activity. However, this pattern seems to almost never occur in
isolation as the 2nd copula module is also a part that shapes dependence structures for this
particular group of neuron pairs and to a varying degree for each pair. Such an arrangement
suggests a flexible and graded membership of neural dependencies into groups exhibiting
different degrees of non-linear and non-Gaussian behavior. It might also allow for behavior
that is close to linear and Gaussian, with more suppressed tail dependencies.

Of additional interest was the fact that the WNMF copula modules exhibited a rather
sharp divide between the first few trees and the deeper ones. The former were predomi-
nantly associated with the first copula module (Figure 5) followed by the second and third
modules playing a bigger role in subsequent trees, while the the fourth copula module
played a more decisive role in describing neural interactions in deeper trees, potentially
implying the presence of cliques of neurons with probably similar patterns of interaction
that are being revealed by the pair copula construction.
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Figure 4. WNMF discovers structured and synergistic copula modules in mouse V1 responses.
(A) Illustration of mouse navigating a virtual environment with grating stimuli until a designated
reward zone (at 120–140 cm), where it is required to lick in order to receive a water reward. Neurons
were recorded across a number of trials on each day of the experiment and their activity was binned
with respect to the position of the mouse in the virtual corridor. (B) Average across 5 folds train
(blue) and validation (orange) MSE for WNMF across different numbers of factors. (C) WNMF
4-dimensional representation of visual cortex copula dependence structures. Blue Bar plots depict
WNMF coefficients specific to each neuron pair. Density plots depict copula modules discovered
by WNMF.

Figure 5. WNMF factors are distinctly grouped across different trees. (A) WNMF coefficients from
the same decomposition as Figure 4. The 4 factors have been plotted in a 2 by 2 arrangement where
each block consists of rows of color-coded values of WNMF for a particular tree, starting from tree 1
at the top until tree 101 at the bottom. Warmer and colder colors illustrate the spatial divides across
superficial and deeper trees with respect to copula modules per neuron pairs. Blank spaces denote
independent neuron pairs. (B) Same WNMF copula modules as in Figure 4 depicted again here for
illustration purposes.
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3.3. WNMF Identifies Shared Latent Structures of Neural Dependencies in Macaque Motor Cortex

Subsequently, we evaluated our framework on electrode array recordings from the
macaque primary motor cortex during a delayed center-out reaching task [57]. The ex-
periment required that upon the start of every trial the monkey would look at a screen
showing eight possible targets arranged in a circular formation (Figure 6A). Out of these
eight targets, a different one was cued at every trial and after a varying time interval a
go cue was given to the monkey. On that cue, the monkey was supposed to move a lever
to initiate movement towards the target that had been previously cued. Movements that
correctly reached the cued target were rewarded. For our analysis, we focused on one
recording session during the baseline epoch of the experiment and included only successful
trials. This part of the session contained neural spiking activity of 81 motor cortical neu-
rons, which we aligned with respect to the go cue, and specifically during a time interval
extending from 0.5 s before to 1.5 s after the go cue (Figure 6B). Similarly to the analysis
on visual neurons, we estimated single neuron spike count marginal distributions and the
cascade of bivariate copula densities by means of NSF in a sequential fashion for each tree
across the vine. Out of the 3240 copulas, 2664 were independence copulas according to two-
dimensional Kolmogorov–Smirnov tests (p > 0.05). The remaining 576 bivariate copulas
were similarly found to occupy a lower dimensional space, which could be approximated
with four WNMF factors (Figure 6C).

Figure 6. WNMF discovers main and distributed copula modules in macaque motor cortex. (A) Il-
lustration of a macaque monkey moving a lever as part of a delayed center-out reaching task [57].
Monitor has 8 different targets drawn as white squares, while the cued target is highlighted with
yellow. (B) Average firing rate (Hz) across trials of different target presentations. Horizontal axis
indicate the time interval we chose for analysis, i.e., −0.5 to 1.5 s with respect to the go cue for
movement initiation. (C) Average across 5 folds train (blue) and validation (orange) MSE for WNMF
across different numbers of factors. (D) WNMF 4-dimensional representation of motor cortex copula
dependence structures. Blue bar plots depict WNMF coefficients specific to each neuron pair. Density
plots depict copula modules discovered by WNMF.

In a somewhat similar fashion to what we observed in the case of the primary visual
neurons, these copula modules also spanned the entirety of copula space and occupied
all four corners (Figure 6D WNMF copula modules). However, there were also shapes in
this example as with module 3 and 4, the mass of which extended in areas adjacent to the
diagonal correlation path. These two modules are good examples of dependence structures
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that would be challenging for parametric copulas to capture. After sorting the coefficients
with respect to the module they are more strongly associated with, groupings were revealed
mostly for modules 1 and 2, while modules 3 and 4 seemed to have a distributed presence
across the entirety of non-independent neuron pairs.

4. Discussion

In this study, we conducted an analysis that focused on uncovering and summariz-
ing complex dependence structures in neural population responses. We built up on our
previous work [41] where we introduced a C-vine copula-based approach coupled with
normalizing flows that allows for flexible non-parametric modeling of neural dependen-
cies. Here, we extended that framework to explore the range of multivariate dependence
structures that underlie population function. As this approach yields a large number of
copulas, we proposed to leverage the fact that vine copula representations are sparse and
low dimensional [20] and apply WNMF on the copula densities to aid visualization and
interpretation of our findings. Using synthetic data, we found that WNMF outperforms
NMF in distinguishing copula densities with overlapping features. Moreover, as few as
4 WNMF factors were enough for an adequate representation of the latent dependence
structures both in a mouse visual cortex as well as in a macaque motor cortex.

To properly contextualize our findings, it is necessary to note that our framework
has several components that are worth discussing separately to appreciate where our ap-
proach deviates from other ones in the literature. Non-parametric modeling of dependence
structures allows for more flexibility compared to using parametric families of copulas,
especially when faced with arbitrary interaction patterns. While one can fit parametric
mixture models to increase their flexibility, these models can also inflate the number of
components. Doing so can potentially overestimate the complexity of the dependence
structure. It would most likely be a challenge for parametric models or mixtures of them to
fit copulas like the ones in modules 3 and 4 in Figure 6C. Moreover, the graded membership
of copula modules in different groups where probability densities at the tails are present to
different degrees (Figure 4C) would have been either difficult to capture or would require
additional mixture components. Therefore, non-parametric modeling with normalizing
flows is advantageous regarding ease of fitting and very low levels of bias towards a certain
expected dependence structure.

A downside of non-parametric modeling is the large number of copulas they yield
that are not easy to make sense of, especially with larger ensembles of neurons. However,
our findings demonstrated that there is only a low fraction of non-independent copulas
in the recordings we analyzed and the rest do not need to be considered to study neural
dependencies. In our C-vine fits, most conditional elements were independent, suggesting
that the C-vine decomposition is appropriate for the data at hand. Besides the sparseness
though, we also found that the number of factors required to describe the set of non-
independent copulas was surprisingly low, albeit still allowing for a fair amount of variation
in dependencies as linear combinations of simple modules (Figure 4C).

These findings raise interesting questions regarding the function of neural dependen-
cies in multineuronal responses. These questions have so far been discussed mostly in the
context of linear correlations, which is rather limiting considering the complexity observed
in these responses. Whether the synergistic combinations we found in copula modules in
the mouse visual cortex (Figure 4C) have a functional role or aid information transmission
to downstream neurons would be something worth exploring in future research. Similarly,
it would be interesting to ask whether primary motor neurons during a reaching task
like the one at hand might predominantly take part in positive (Figure 6D module 1) or
negative codependence modes (Figure 6D module 2) while other modules may be part of
dependence structures that are maintained in the background. The scope of our analysis
does not make it possible to assess whether such modules of multineuronal dependencies
have an information enhancing or limiting role. Moreover, since we were largely interested
in validating WNMF and discovering population-wide low-dimensional features in mul-
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tivariate dependence structures, we did not include behavioral variables in our analysis.
However, complex dependencies with these variables are quite likely to exist and can be
the subject of future research directions with non-parametric copula-based approaches. An
interesting question for future research to explore is to which degree decoding behavioral
variables from neural activity might be affected positively or negatively by the presence
and shape of complicated neural dependencies, and whether describing them with WNMF
offers insights into distinctive features of information enhancing or limiting structures
which is not accessible otherwise. Moreover, particular behavioral patterns, e.g., a mouse
running as opposed to being stationary might be associated with different dependence
structures manifested in different copula modules, or changes in the dimensionality of the
space of dependence structures. Such potential research directions make a compelling case
for a more detailed exploration of the structure of neural dependencies.

Author Contributions: L.M. and A.O. conceptualized the study and designed the methodology. L.M.
conducted data analysis, visualization of findings under the supervision of A.O., and wrote the first
draft version. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Engineering and Physical Sciences Research Council
(grant [EP/S005692/1], to A.O.) and the Precision Medicine Doctoral Training Programme (Medical
Research Council grant number [MR/N013166/1], to L.M.). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Data Availability Statement: The neural datasets we used in our study are not publicly available
but can become available upon request from the authors of the original publications [56,57].

Acknowledgments: We would like to thank Nina Kudryashova for providing constructive feedback
on the analysis and visualizations. We would like to express our gratitude towards the people of the
Rochefort lab for providing the data on mouse V1 responses.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Saxena, S.; Cunningham, J.P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 2019, 55, 103–111. [CrossRef]
2. Vyas, S.; Golub, M.D.; Sussillo, D.; Shenoy, K.V. Computation through neural population dynamics. Annu. Rev. Neurosci. 2020,

43, 249–275. [CrossRef]
3. Urai, A.E.; Doiron, B.; Leifer, A.M.; Churchland, A.K. Large-scale neural recordings call for new insights to link brain and

behavior. Nat. Neurosci. 2022, 25, 11–19. [CrossRef]
4. Chen, X.; Leischner, U.; Varga, Z.; Jia, H.; Deca, D.; Rochefort, N.L.; Konnerth, A. LOTOS-based two-photon calcium imaging of

dendritic spines in vivo. Nat. Protoc. 2012, 7, 1818–1829. [CrossRef] [PubMed]
5. Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydın, Ç.;

et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232–236. [CrossRef] [PubMed]
6. Wu, M.C.K.; David, S.V.; Gallant, J.L. Complete functional characterization of sensory neurons by system identification. Annu.

Rev. Neurosci. 2006, 29, 477–505. [CrossRef] [PubMed]
7. Rolls, E.T.; Treves, A. The neuronal encoding of information in the brain. Prog. Neurobiol. 2011, 95, 448–490. [CrossRef]
8. Kass, R.E.; Amari, S.I.; Arai, K.; Brown, E.N.; Diekman, C.O.; Diesmann, M.; Doiron, B.; Eden, U.T.; Fairhall, A.L.; Fiddyment,

G.M.; et al. Computational neuroscience: Mathematical and statistical perspectives. Annu. Rev. Stat. Appl. 2018, 5, 183–214.
[CrossRef]

9. Hurwitz, C.; Kudryashova, N.; Onken, A.; Hennig, M.H. Building population models for large-scale neural recordings:
Opportunities and pitfalls. Curr. Opin. Neurobiol. 2021, 70, 64–73. [CrossRef]

10. Ohiorhenuan, I.E.; Mechler, F.; Purpura, K.P.; Schmid, A.M.; Hu, Q.; Victor, J.D. Sparse coding and high-order correlations in
fine-scale cortical networks. Nature 2010, 466, 617–621. [CrossRef]
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