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Abstract: This paper reviews the potential use of fuzzy c-means clustering (FCM) and explores modi-
fications to the distance function and centroid initialization methods to enhance image segmentation.
The application of interest in the paper is the segmentation of breast tumours in mammograms.
Breast cancer is the second leading cause of cancer deaths in Canadian women. Early detection
reduces treatment costs and offers a favourable prognosis for patients. Classical methods, like mam-
mograms, rely on radiologists to detect cancerous tumours, which introduces the potential for human
error in cancer detection. Classical methods are labour-intensive, and, hence, expensive in terms of
healthcare resources. Recent research supplements classical methods with automated mammogram
analysis. The basic FCM method relies upon the Euclidean distance, which is not optimal for mea-
suring non-spherical structures. To address these limitations, we review the implementation of a
Mahalanobis-distance-based FCM (FCM-M). The three objectives of the paper are: (1) review FCM,
FCM-M, and three centroid initialization algorithms in the literature, (2) illustrate the effectiveness
of these algorithms in image segmentation, and (3) develop a Python package with the optimized
algorithms to upload onto GitHub. Image analysis of the algorithms shows that using one of the
three centroid initialization algorithms enhances the performance of FCM. FCM-M produced higher
clustering accuracy and outlined the tumour structure better than basic FCM.

Keywords: biogeography-based optimization algorithm; firefly algorithm; fuzzy c-means clustering;
genetic algorithm; image segmentation; mammogram

1. Introduction

Breast cancer is the second leading cause of cancer deaths in Canadian women [1].
Breast tumours are especially invasive due to their proximity to lymph nodes through
which cancerous cells metastasize to distal sites [2]. Breast cancer survival rates increase
with early detection by allowing patients to access a more diverse set of treatment options.
This is of particular importance due to the idiopathic nature of breast cancers.

Classical methods, such as mammograms, detect breast cancer by relying on radiolo-
gists to recognize and coarsely outline the apparent non-benign lesions, and to highlight
the size and location of the possible tumours [3]. The task is made difficult as abnormal
lesions may present as masses of various sizes and borders or as microcalcifications indistin-
guishable by the naked eye. Radiologists, therefore, are not immune to under-reading, mis-
reading, or missing presentations of small tumours due to noise in the mammogram [4,5].
The need for reliable interpretations thus necessitates radiologists to base their impres-
sion on multiple readings of one mammogram, making the task labour-intensive and
cost-ineffective.
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Computer-aided analyses are becoming increasingly prevalent in breast cancer iden-
tification. Newer methodologies to detect breast cancer supplement classical methods
with automated mammogram analysis focused on highlighting malignant lesions for ra-
diologists to interpret [6]. Most methods proposed are based on machine learning (ML),
where algorithms are developed to automatically recognize patterns and trends in data
without explicit programming [6,7]. A widely known algorithm used in image segmenta-
tion is fuzzy c-means (FCM) clustering [8,9]. FCM is an unsupervised machine learning
clustering algorithm that computes the probability (membership value) of a certain data
point—in this case, a pixel belonging to groups (cluster prototypes) consisting of points
with significant similarities. The idea is similar to the expectation maximization (EM)
algorithm in statistics, which is an iterative method that computes the posterior probability
for each observation and allocates it to one of several possible groups so as to maximize the
measured likelihood of a sample [10,11]. In FCM, clusters are modelled as circles. However,
FCM is an iterative method dependent on the user-determined number of clusters and
the random initialization of said clusters [12]. Both of these drawbacks may contribute to
the algorithm converging to sub-optimal solutions [12–14]. The paper seeks to overcome
these drawbacks by exploring three initialization algorithms to optimize FCM for breast
cancer segmentation.

2. Background
2.1. Euclidean-Distance-Based Fuzzy C-Means Clustering

A widely known algorithm explored in image segmentation is fuzzy c-means (FCM)
clustering. Introduced by Dunn in 1973 [15] and further iterated upon by Bezdek in
1981 [16], FCM clustering is a soft clustering algorithm that computes the probability (mem-
bership value) of a specific data point belonging to groups (cluster prototypes) consisting
of points with significant similarities [9]. In the FCM algorithm, distance calculations are
used to measure the similarity between data points to determine the probability that a data
point belongs to a cluster. The traditional FCM algorithm is based on Euclidean distance.
While Euclidean distance is optimized to detect spherical structural clusters, studies show
that it does not compute accurate clustering with high dimensional data [17].

Let the Euclidean distance between two vectors x = (x1, . . . , xd)
> and y = (y1, . . . , yd)

> be:

d(x, y) =

√√√√ d

∑
p=1

(xp− yp)2

In performing fuzzy c-means clustering, the goal is to minimize the objective function:

J(U, C; X, m) =
c

∑
i=1

n

∑
j=1

um
ij d2

ij

subject to
c

∑
i=1

uij = 1,∀j ∈ {1, . . . , n} (1)

n

∑
j=1

uij > 0,∀i ∈ {1, . . . , c}, (2)

where
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m is the degree of fuzziness (m > 1),

X = {x1, . . . , xn} is a set of data points,

C = {c1, . . . , cc} is the set of cluster prototypes ,

U = (uij)c×n is the fuzzy partition matrix ,

dij = d(ci, xj).

We apply the Lagrange multipliers method to solve the above optimization problem. Let
λj, 0 ≤ j ≤ n be the Lagrange multipliers in accordance with (1). Then, the Lagrangian is

L(U, C, λ; X, m) =
c

∑
i=1

n

∑
j=1

um
ij d2

ij +
n

∑
j=1

λj

(
1−

c

∑
i=1

uij

)
.

Minimizing the membership and the prototype yields the following optimal member-
ship and cluster prototype update formula for the ith prototype and jth data point

uij =
1

∑c
k=1

( dij
dkj

) 2
m−1

(3)

ci =
∑n

j=1 um
ij xj

∑n
j=1 um

ij
(4)

The pseudocode is shown in Algorithm 1 as follows [9]:

Algorithm 1 FCM

1: C : number of clusters
2: m : the degree of fuzziness (m > 1)
3: ε : the error
4: Initalize randomly the centers of clusters c(0)i
5: Begin at iteration k = 1.
6: repeat
7: Calculate the membership u(k)

ij using the centers c(k−1)
i :

8: uij =
1

∑c
k=1

(
dij
dkj

) 2
m−1

9: Calculate the membership matrix U(k) = [uij]c×n using the membership u(k)
ij .

10: Update the centers c(k)i using u(k)
ij

11: ci =
∑n

j=1 um
ij xj

∑n
j=1 um

ij

12: until ‖U(k+1) −U(k)‖ < ε

13: Return c(k)i

2.2. Mahalanobis-Distance-Based Fuzzy C-Means Clustering

Malignant breast tumours result, in part, from physiological dysfunction [3,17]. They
can be irregular, lobular, and ill-defined in ways that may not be captured using Euclidean
distance [3,17]. Mahalanobis distance is a dissimilarity metric calculated using a covariance
matrix and therefore takes into consideration the variance and correlation of data points.
By replacing the Euclidean distance in FCM with the Mahalanobis distance, one enables the
fuzzy c-means algorithm to mitigate its limitations as it permits a multivariate approach
to breast cancer detection [17]. Ref. [18] replaced Euclidean distance with Mahalanobis
distance (FCM-M) to classify arrhythmic beats on electrocardiograms. The proposed FCM-
M performed significantly better than base FCM and reduced iterations in the numerical
algorithm to an average of 53% of the base FCM.
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The Mahalanobis distance is defined as

d2(xj, ci) = (xj − ci)
TΣ−1

i (xj − ci) (5)

where Σi is the fuzzy covariance matrix. To use the Mahalanobis distance for FCM, we must
derive a new set of update functions. As outlined by Hadler [18], our objective function is
given by

J(U, C, Σ; X, m) =
c

∑
i=1

n

∑
j=1

um
ij

[
(xj − ci)

TΣ−1
i (xj − ci)− ln|Σ−1

i |
]

(6)

where the same definitions hold for U and C, constraints (1) and (2) are maintained, and
−ln|Σ−1

i | is a “regulating factor of the covariance matrix” [18]. With this formulation, one
must rederive the membership, centroid, and fuzzy covariance matrix update functions. In
this case, the Lagrangian is

L(U, C, Σ, λ; X, m) =
c

∑
i=1

n

∑
j=1

um
ij

[
(xj − ci)

TΣ−1
i (xj − ci)− ln|Σ−1

i |
]
+

n

∑
j=1

λj

(
c

∑
i=1

uij − 1

)
.

By solving the optimization problem, we have the membership update function for a
specific cluster k and datapoint l

ukl = 1/
c

∑
i=1

[
(xl − ck)

TΣ−1
k (xl − ck)− ln|Σ−1

k |
(xl − ci)TΣ−1

i (xl − ci)− ln|Σ−1
i |

] 1
m−1

,

the centroid update function for a cluster k

ck =
∑n

j=1 um
kjxj

∑n
j=1 um

kj
,

and the update function for the fuzzy covariance matrix for a cluster k

Σk =
∑n

j=1 um
kj(xj − ck)(xj − ck)

T

∑n
j=1 um

kj
.

The pseudocode for FCM-M is adapted from [18].
As can be seen in Algorithm 2, the initial clusters play an important role. Arbitrary

centroid settings may lead to local solutions or slow convergence rates. In the following
subsections, we introduce three centroid initialization algorithms: the firefly algorithm, the
genetic algorithm, and the biogeography-based optimization algorithm.

Algorithm 2 FCM-Mahalanobis Distance

1: Initialize the number of clusters c, the degree of fuzziness m, the convergence error ε

2: Randomly initialize the membership matrix U(k) = [uij]c×n subject to constraints
(1) and (2)

3: Update the centroids according to ci =
∑n

j=1 um
ij xj

∑n
j=1 um

ij
where i = 1, 2, 3, . . . , c

4: Update the fuzzy covariance matrix according to Σi =
∑n

j=1 um
ij (xj−ci)(xj−ci)

T

∑n
j=1 um

ij

5: Update the memberships values according to 1

∑c
l=1

[
(xj−ci)

T Σ−1
i (xj−ci)−ln|Σ−1

i |

(xj−cl )
T Σ−1

l (xj−cl )−ln|Σ−1
l |

] 1
m−1

and

store in a matrix U(k+1)

6: If ‖U(k+1) −U(k)‖ < ε stop. Otherwise, continue from 3.
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2.3. Firefly Algorithm

Developed in 2008 by Xin-She Yang, the firefly algorithm (FA) is an optimization
algorithm based on the behaviour of fireflies [19]. FA is based on the following principles:

1. Fireflies are attracted to each other and tend to move towards the brightest one.
2. Fireflies are unisex; thus, fireflies are attracted to one another regardless of sex.
3. The brightness of a firefly is proportional to its attractiveness and inversely propor-

tional to distance. As distance increases, brightness decreases; therefore, the solution
is less optimal.

4. Fireflies move randomly, but their movement is biased towards brighter fireflies.

The algorithm represents potential solutions as fireflies, and then with each iteration,
updates their position based on their brightness and distance from others [19]. The bright-
ness of the firefly represents how desirable the solution is [19]. Any function may be used
as an objective function for brightness; however, for the purposes of initializing FCM, we
opt for the sum of squared Euclidean distances between pixel values and fireflies.

The movement of a firefly i who is attracted to a brighter firefly j is dictated by [19]:

xi = xi + β0e−γr2
i,j(xj − xi) + αεi (7)

where α is a randomization parameter, εi is a random vector taken from either the Gaussian
or uniform distributions, and ri,j is the Cartesian distance:

ri,j =

√√√√ d

∑
k=1

(xi,k − xj,k)2 (8)

β defines the attractiveness of a firefly and is given by:

β = β0e−γr2
(9)

where β0 is the attractiveness at r = 0 and γ is the light absorption coefficient. The
pseudocode based on [19] is shown in Algorithm 3.

Algorithm 3 Firefly Algorithm

1: Objective function f (x), x = (x1, . . . , xd)
T

2: Generate initial population of fireflies xi (i = 1, 2, . . . , n)
3: Light intensity I is given by f (xi) where f (·) is the chosen objective function
4: Define light absorption coefficient γ
5: while t < maxGeneration do
6: for 1 ≤ i ≤ n do
7: for 1 ≤ j ≤ n do
8: if Ii < Ij then
9: Move firefly i towards firefly j

10: end if
Vary attractiveness according to r

11: Evaluate new solution and update light intensity
12: end for
13: end for
14: Rank the fireflies and find the current global best g∗
15: end while

2.4. Genetic Algorithm

First introduced in 1975 by Holland [20], the genetic algorithm imitates the process
of natural selection to determine the best potential solution to the problem [20,21]. It first
creates a population of potential solutions to the problem and then uses the three principles
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characteristic of GA to combine and optimize these solutions [20,21]. The three principles
are as follows:

1. Selection, where the fitness of each solution is evaluated and the two best solutions
will reproduce.

2. Crossing, where the two solutions with the best potential exchange information to
create offspring solutions that are a combination of both the paternal and maternal
genetic information.

3. Mutation; some of the offspring undergo random and permanent changes in their ge-
netic information to introduce novel genetic information to the population. Mutations
increase the diversity of the gene pool to better explore the search space.

The pseudocode given by [9] is shown in Algorithm 4.

Algorithm 4 Genetic Algorithm

1: Randomly generate a population P of n solutions
2: repeat
3: p′ = ∅
4: repeat
5: Selection of 2 solutions x and x′ of P
6: Crossing between the two parents x and x′ to form two children y and y′

7: Mutate y and y′ under certain conditions
8: Add y and y′ in P′

9: until (|P′| = n)
10: P = P′

11: until shutdown criteria are met

It should be noted there are many implementation styles for GA. For our Python pack-
age, we opt for roulette wheel selection, single-point crossover, and Gaussian mutation [20,21].

Iterations in GA are run until a satisfactory solution is produced or a stopping criterion
is met [21]. GA in breast cancer segmentation is often used to optimize a machine learning
model to improve its accuracy. In an effort to detect breast cancer, Ref. [22] combined GA
with a neural network (NN) and showed that combining GA with NNs was more effective
than traditional NNs. Ref. [23] combined it with mutual information (MI) to select the
best combination of cancer predictors where the intersection of the two resulted in highly
accurate predictions of breast cancer.

Ref. [13] first proposed FCM using GA to implement the concept of gradation of
membership, where one data point belongs to multiple clusters with different membership
values. Its performance is comparable to certain NN techniques as the combination of GA
and FCM overcomes the risk of getting stuck in local optima [13]. Ref. [24] also supported
the use of GA to find the initial clusters for FCM and introduced the fuzzy c-means genetic
algorithm (FGA) for segmenting grey-scale images. FGA generated fine and smooth clusters
compared to FCM and hard c-means clustering, showing great potential for segmenting
complex data [24]. To overcome the local optima, Ref. [14] uses a quantum-inspired GA
(QGA) to determine optimal initial clusters for FCM. The proposed hybrid algorithm
(QEE-FCM) demonstrated accuracy in segmentation with reduced runtime, offering the
user a balance between accuracy and computational effort [14]. Ref. [25] used GA as an
initialization algorithm for FCM for fault diagnosis in a satellite attitude determination
system (ADS). After 20 iterations, the hybrid algorithm obtained the correct partition with
an average objective function of 0.2681 compared to the 0.2755 obtained from FCM. The
hybrid algorithm, therefore, resulted in a more optimal partition than FCM.

2.5. Biogeography-Based Optimization

Biogeography-based optimization (BBO) refers to a class of algorithms based on bio-
geography, which studies the patterns of species distribution across habitats [26]. Inspired
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by the initial biogeography-based algorithm, Simon [26] proposed the metaheuristic al-
gorithm to determine the best possible solution to a given problem. Each solution to the
optimization problem is known as a “habitat” [26]. Habitats with greater fitness for the
species are known to have a high habitat suitability index (HSI). The factors that make the
habitat suitable are termed suitability index variables (SIV). In an optimization problem,
HSI represents the fitness value of the solution while SIV is its component. The mathemati-
cal model, foundational to BBO, considers the factors that affect species distribution in the
wild: migration rate between habitation, extinction rate, and mutation rate of species [26].
Since the goal of an optimization problem is to converge on an optimal solution, Simon [26]
theorized that a solution with high HSI will send some of its SIV to a solution with poor HSI;
this is termed emigration. A solution with a low HSI will accept SIV from a solution with a
high HSI; this is termed immigration. Through this process, BBO improves the fitness of
the solutions and selects the best one. Given a maximum immigration rate I, maximum
emigration rate E, and the maximum number of species N, the following formulae for the
migration process are defined.

The immigration rate with k species is given by [9]:

λk = I
(

1− k
N

)
(10)

The emigration rate with k species is given by [9]:

µk = E
(

k
N

)
(11)

The habitat probability is calculated as in [27]:

P(i) =
vi

∑n
k=1 vk

(12)

where vi is defined using

vi =

{
n!

(n−1−i)!(i−1)! , i = 1, . . . , d(n + 1)/2e
vn+1−i, i = d(n + 1)/2e+ 1, . . . , n,

(13)

where d(n + 1)/2e is the smallest integer that is greater than or equal to (n + 1)/2. The
mutation rate of the ith habitat is calculated as in [27]:

πi = πmax

(
1− P(i)

Pmax

)
(14)

The pseudocode is shown in Algorithm 5. Since BBO does not make assumptions about
the problem, it can be applied to problems of different natures. Furthermore, Santosa and
Safitri [28] state that BBO is good at solving continuous problems. Applications of BBO to
breast cancer include predicting breast cancer survival rates based on cancer’s pathological
features [29]. Zhang et al. [27] recommended a hybrid BBO and FCM algorithm to overcome
FCM’s reliance on initial clusters. Their proposed algorithm uses random initialization to
generate the initial clustering solutions and then implements an evolutionary algorithm to
find the optimal solution. At the end of the evolutionary algorithm, the FCM algorithm
is applied to the best initial clustering solution to segment the data [27]. The proposed
algorithm resulted in better partitioning than FCM and achieved clear clusters on test
images. However, BBO-FCM is prone to overlapping, as evidenced by small PC values [27].
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Algorithm 5 Biogeography-Based Optimization

1: Randomly generate a population P of n solutions
2: while the stop criterion is not met do
3: Evaluate the HSI of each solution
4: Calculate the number of species S, the rate of immigration λ and emigration µ for

each solution
5: for 1 ≤ i ≤ n do Use λi to decide, in a probabilistic way, to migrate towards a

solution i
6: if rand(0, 1) < λi then Replace a randomly chosen variable in solution i with

the variable in solution j
7: end if
8: end for Mutation: mutating individuals
9: end while

2.6. Cooperation of Metaheuristics

The cooperation of metaheuristics combines two or more algorithms from the class of
metaheuristics to overcome the limitations of each algorithm separately [30]. It involves
amalgamating the strengths of multiple algorithms to find an optimal solution based on
more parameters and restrictions [30]. To combine these algorithms, developers might
implement hybridization or parallelization. Hybridization uses the output of one meta-
heuristic algorithm to inform the search of the other, whereas parallelization runs both
algorithms simultaneously to foster the exchange of information between the two. One of
the key advantages of combining metaheuristic algorithms is that it minimizes the need to
accurately select the algorithm best suited to solve the optimization problem of interest [30].
Tezel and Mert [30] state that, for the best results, the two algorithms selected should
compensate for each other’s limitations.

3. Image Analysis

We implemented the above fuzzy c-means clustering algorithm and uploaded the
optimized Python package on the website: https://github.com/Danyulll/FuzzyPySeg
(accessed on 11 April 2023). The FCM function package is user-friendly and requires
specification of the fuzziness degree and number of clusters with cluster method in either
Euclidean distance or Mahalanobis distance. The other algorithms, such as FA, GA, and
BBO, are executed by stating the centroid initialization. Parallel computing was used to
decrease the computation time, shown in Tables 1–3.

The FCM-based algorithms discussed above were tested using two images. The first is
a clustering image containing six shapes. The image has clear borders for each clustering
and makes it easy to test the effectiveness of these algorithms. The second image is a digital
mammogram with potentially cancerous tumours from the VinDr-Mammo database [31].

Table 1. Comparison of the run times of the FCM Mahalanobis algorithm before and after optimiza-
tion on the BIRAD 2 image over 3 iterations.

Before Optimization After Optimization

Test Number Run Time Run Time

1 73 m 51 s 2 m 21 s
2 72 m 39 s 2 m 20 s
3 73 m 16 s 2 m 19 s

Average Time 73 m 15 s 2 m 20 s

Average Time Per Iteration 24 m 25 s 46.6 s

https://github.com/Danyulll/FuzzyPySeg
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Table 2. Comparison of the run times of the firefly algorithm before and after optimization on the
Birad 2 image over 5 iterations with a population size of 20.

Before Optimization After Optimization

Test Number Run Time Run Time

1 1412 m 18 s 17.0 s
2 1410 m 54 s 17.1 s
3 1415 m 23 s 16.9 s

Average Time 1412 m 52 s 17.0 s

Average Time Per Iteration 470 m 57 s 3.4 s

Table 3. Comparison of the run times of the BBO algorithm before and after optimization on the
BIRAD 2 image over 20 iterations with a population size of 50.

Before Optimization After Optimization

Test Number Run Time Run Time

1 462 m 1 s 21.7 s
2 459 m 16 s 21.8 s
3 461 m 46 s 21.7 s

Average Time 461 m 1 s 21.7 s

Average Time Per Iteration 23m 3 s 1.1 s

For the clustering image, we set the number of clusters as C = 7 and the degree
of fuzziness as m = 2. We considered three noise images including salt and pepper,
Gaussian, and uniform types. In Figure 1, A0 is the initial image, and B0, C0, and D0
are the corresponding noise images of the initial image for salt and pepper (with noise
density 0.05), Gaussian (with variance 0.01), and uniform noise (with bound [−1, 1]) type,
respectively. See more information on the type of noise in the R package imgnoise. The
four initial images are shown in the first row, and their clustering effect under different
algorithms is plotted and presented in the following eight rows.

From the images under different algorithms, we can observe:

1. As observed in Figure 1(A5), arbitrary centroid settings resulted in imperfect seg-
mentation by Mahalanobis-distance-based fuzzy c-means clustering (FCM-M) as
there are random dots around the edges of the shapes. The three centroid initializa-
tion algorithms worked well in segmenting the edges of different shapes, as shown
in (A6–A8).

2. Mahalanobis distance methods perform better than Euclidean distance methods. For
example, consider the shape star in (A1); the Euclidean-distance-based fuzzy c-means
clustering (FCM-EU) contained two colours and was not clustered well, whereas in
(A5), the star shape had only one colour and all other shapes were classified effectively.
A similar outcome is noted for the star and rhombus in (A3) by the Euclidean-distance-
based firefly algorithm (FCM-EU-F) and (A7) by the Mahalanobis-distance-based
firefly algorithm (FCM-M-F). A clearer clustering was obtained when using FCM-M.

3. In practice, images may contain noise that influences the accuracy and quality of the
image segmentation. When different types of noise were applied to the images, as
seen in columns 2, 3, and 4 in Figure 1, the algorithms determined the basic clustering
for the edges of different shapes. However, the accuracy was reduced, as evidenced
by the presence of two colours in the background in (B8: FCM-M-GA). Nonetheless,
FCM-M outperforms FCM-EU in most scenarios. For example, some shapes in (B1–B4)
under Euclidean distance have unclear edges, but the same edges are clear in (B5–B8)
under Mahalanobis distance. This trend is observed in the Gaussian and uniform
noise images as well, as (C1) and (C4) have many colourful dots in the background,
but in (C5) and (C8), the background is more smooth.
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A0: Initial B0: Salt and Pepper C0: Gaussian D0: Uniform

A1: FCM-EU B1: FCM-EU C1: FCM-EU D1: FCM-EU

A2: FCM-EU-B B2: FCM-EU-B C2: FCM-EU-B D2: FCM-EU-B

A3: FCM-EU-F B3: FCM-EU-F C3: FCM-EU-F D3: FCM-EU-F

A4: FCM-EU-GA B4: FCM-EU-GA C4: FCM-EU-GA D4: FCM-EU-GA

A5: FCM-M B5: FCM-M C5: FCM-M D5: FCM-M

A6: FCM-M-B B6: FCM-M-B C6: FCM-M-B D6: FCM-M-B

A7: FCM-M-F B7: FCM-M-F C7: FCM-M-F D7: FCM-M-F

A8: FCM-M-GA B8: FCM-M-GA C8: FCM-M-GA D8: FCM-M-GA

Figure 1. (A0) Initial image. (B0) Salt and pepper noise. (C0) Gaussian noise. (D0) Uniform noise.
(A1–A8): Euclidean-distance-based fuzzy c-means clustering (FCM-EU), Euclidean-distance-based
biogeography-based optimization (FCM-EU-B), Euclidean-distance-based firefly algorithm (FCM-EU-F),
Euclidean-distance-based genetic algorithm (FCM-EU-GA), Mahalanobis-distance-based fuzzy c-means clus-
tering (FCM-M), Mahalanobis-distance-based biogeography-based optimization (FCM-M-B), Mahalanobis-
distance-based firefly algorithm (FCM-M-F), and Mahalanobis-distance-based genetic algorithm (FCM-M-
GA), for (A0). Similar for (B1–B8), (C1–C8), and (D1–D8) and for (B0), (C0), and (D0), respectively.
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We then applied the above algorithms to a mammogram in order to evaluate its
performance in breast cancer detection. In the initial image, Figure 2A, the tumour region
varies little from the surrounding area. However, locating the areas of greater density
and using the information from the VinDr-Mammo database, we confirmed the tumour
area [31]. The area detected by human eyes should be confirmed by optimized segmentation
algorithms using the same degree of fuzziness m = 2 and the number of clusters C = 3. As
we can see from Figure 2,

1. The three centroid initialization algorithms resulted in clearer clustering groups than
the arbitrary centroid settings. As shown in the second row in Figure 2, C(FCM-
EU-B), D(FCM-EU-F), and E(FCM-EU-GA) better captured the white regions than B
(FCM-EU), making the image clustering more accurate. Similarly, G (FCM-M-B), H
(FCM-M-F), and I (FCM-M-GA) captured the tumour region with clearer segmentation
than F (FCM-M).

2. FCM-M resulted in a higher-quality segmentation of the tumour region from its
surroundings than FCM-EU. Comparing D to the Euclidean-distance-based firefly
algorithm (FCM-EU-F) and H to the Mahalanobis-distance-based firefly algorithm
(FCM-M-F), we found that FCM-M-F can clearly locate the tumour region with the
help of additional spots in a different colour, and hence it highlights the region with
greater clarity than FCM-EU-F.

3. A similar observation is made for non-tumour regions. FCM-M classified the details
of the image better than FCM-EU. The implementation of centroid initialization
algorithms further improved the quality of the segmentation. For example, the
nipples in Figure 2B–E were classified with two colours; however, human eyes detect
that there should not be two colours in that area. Nipples are clustered well in H
and I with only one colour. In addition, the upper edge of the breast should not have
been identified as separate from other tissues in the breast. This works well in H
and I. However, in Figure 2B–E, the Euclidean-distance-based function segmented
them separately. In Figure 2F, with the arbitrary centroid settings, the upper edge of
the breast was separated from the other breast tissue, as supported by the different
colours. This is improved in H and I when using the firefly and genetic algorithms.

A: Initial

Figure 2. Cont.
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B: FCM-EU C: FCM-EU-B D: FCM-EU-F E: FCM-EU-GA

F: FCM-M G: FCM-M-B H: FCM-M-F I: FCM-M-GA

Figure 2. (A) Initial image. (B) Euclidean-distance-based fuzzy c-means clustering (FCM-EU).
(C) Euclidean-distance-based biogeography-based optimization (FCM-EU-B). (D) Euclidean-distance-
based firefly algorithm (FCM-EU-F). (E) Euclidean-distance-based genetic algorithm (FCM-EU-GA).
(F) Mahalanobis-distance-based fuzzy c-means clustering (FCM-M). (G) Mahalanobis-distance-based
biogeography-based optimization (FCM-M-B). (H) Mahalanobis-distance-based firefly algorithm
(FCM-M-F). (I) Mahalanobis-distance-based genetic algorithm (FCM-M-GA).

4. Conclusions and Limitations

Several studies have highlighted the potential of fuzzy c-means clustering (FCM)
in breast cancer image segmentation [8,9]. However, FCM has notable drawbacks in
determining optimal initialization and the number of clusters. This review paper explores
FCM with respect to Mahalanobis distance and Euclidean distance functions in addition
to three promising initialization algorithms that address the limitations of base FCM.
We compared the different FCM algorithms using two images, assessing the quality of
segmentation in each. Combining one of the three centroid initialization algorithms with
basic FCM enhanced the quality of the segmentation significantly. Mahalanobis-distance-
based FCM produced images with higher clustering accuracy than the Euclidean-distance-
based FCM. The difference in accuracy may be acquitted to the consideration of correlation
in data in the Mahalanobis distance function. The image analysis suggests that the discussed
algorithms show potential for the computer-aided segmentation of breast tumours in
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medical imaging. Future research will address several limitations of the above algorithms.
In particular, we will focus on quantifying the accuracy of the segmentation using metrics,
improving their robustness in images with noise, and reducing computational time.
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