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Abstract: Direction of arrival (DOA) estimation is an important research topic in array signal process-
ing and widely applied in practical engineering. However, when signal sources are highly correlated
or coherent, conventional subspace-based DOA estimation algorithms will perform poorly due to
the rank deficiency in the received data covariance matrix. Moreover, conventional DOA estimation
algorithms are usually developed under Gaussian-distributed background noise, which will deteri-
orate significantly in impulsive noise environments. In this paper, a novel method is presented to
estimate the DOA of coherent signals in impulsive noise environments. A novel correntropy-based
generalized covariance (CEGC) operator is defined and proof of boundedness is given to ensure
the effectiveness of the proposed method in impulsive noise environments. Furthermore, an im-
proved Toeplitz approximation method combined CEGC operator is proposed to estimate the DOA
of coherent sources. Compared to other existing algorithms, the proposed method can avoid array
aperture loss and perform more effectively, even in cases of intense impulsive noise and low snapshot
numbers. Finally, comprehensive Monte-Carlo simulations are performed to verify the superiority of
the proposed method under various impulsive noise conditions.

Keywords: direction of arrival estimation; coherent signals; impulsive noise; correntropy; generalized
covariance; Toeplitz approximation

1. Introduction

As a fundamental component of array signal processing, direction of arrival (DOA)
estimation has been continuously attracting much attention from researchers and been
widely applied in numerous fields such as radar, sonar, satellite navigation, wireless com-
munications, and biomedicine [1–5]. After decades of research, various high-resolution
DOA estimation methods have been proposed [6]. Among them, the subspace-based
methods are well-known and effective. Utilizing eigenvalue decomposition (EVD) or sin-
gular value decomposition (SVD), the subspace-based methods can partition received data
covariance matrices into signal subspace and noise subspace. Based on specific properties
of subspace, such as orthogonality and rotational invariance, many high-resolution meth-
ods have been proposed, such as multiple signal classification (MUSIC) [7], estimation of
signal parameters via rotational invariance techniques (ESPRIT) [8] and subspace fitting
methods [9].

Compared to other conventional DOA estimation methods such as the maximum
likelihood (ML) methods [10], the subspace-based methods are relatively computationally
efficient and highly practical. Thus, the subspace-based methods have been widely studied
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and many variants have been proposed over the past several years. However, the subspace-
based methods were originally proposed for uncorrelated signals for which the rank of the
data covariance matrix is equal to the number of signal sources. When the signal sources are
highly correlated or coherent, these methods will encounter significant difficulties. Signal
coherence is a common phenomenon that can be caused by natural multipath propagation
effects or intentional hostile jamming. This will in turn result in a rank deficiency in
the source covariance matrix and a divergence of the signal eigenvector into the noise
subspace. Therefore, conventional subspace-based methods may produce several pseudo
peaks and fail to accurately perform DOA estimation, particularly when the signal sources
are close together.

To eliminate the adverse effects caused by signal coherence, numerous methods have
been proposed [11–27]. A well-known method known as spatial smoothing (SS) or forward-
only spatial smoothing (FOSS) was proposed in Evans et al. [11] to estimate DOA regardless
of the coherence of signal sources, and a detailed analysis of the SS method was given in
Shan et al. [12]. The main concept of the SS technique is to partition the entire received
array into several overlapped subarrays and obtain a modified signal covariance matrix
through subarray averaging. The SS technique can be seen as a preprocessing procedure to
de-correlate the received signals and resolve DOA estimation of coherent sources when
combined with the subspace-based methods. However, the SS technique does not fully uti-
lize the useful information in the signal covariance matrix. Moreover, the effective aperture
of the array is significantly reduced due to the subarray’s partition and average operation,
which means the number of coherent signals that can be detected is significantly reduced.
To circumvent these problems, several modified SS methods have been proposed [13–19].
In Williams et al. [13], an improved SS method called forward/backward spatial smoothing
(FBSS) was developed to reduce aperture loss. The FBSS method utilizes both forward
subarrays and complex conjugated backward subarrays to improve the performance and is
able to estimate any K DOAs using 3K/2 sensor elements, while the SS method requires
2K sensor elements by contrast. Li [15] examined the performance of the SS as well as the
FBSS method and showed that the angular resolution can be enhanced by squaring array
covariance matrices. In Du and Kirlin [17], an improved spatial smoothing method that
can fully utilize the correlations of array outputs was presented. Pan et al. [19] proposed
an enhanced spatial smoothing (ESS) technique that fully exploits the information of both
the covariance matrices and cross-covariance matrices of the subarrays. Although these
modified SS methods can improve the performance of the SS method to a certain extent,
the problem of aperture loss remains unresolved.

In addition to the SS-based methods, the Toeplitz approximation method (TAM) [20]
is an alternative to circumvent problems encountered in the DOA estimation of coherent
signals. The TAM method is proposed based on the fact that the covariance matrix of
uncorrelated stationary sources is Toeplitz and can reconstruct the covariance matrix of
coherent sources with Toeplitz structure. Compared to the SS method, the TAM method
does not reduce the effective aperture of the array and has higher resolution capability. In
Chen et al. [22], a modification of the TAM and an iterative version of the TAM were used for
bearing estimation with sensor location errors. Han et al. [23] proposed an ESPRIT-like algo-
rithm based on Toeplitz matrix reconstruction. This method can achieve accurate estimation
performance with low computational complexity; however, the method requires additional
array elements. In Qian et al. [24], a coherent DOA estimation scheme was proposed to
solve the optimization problem based on a newly designed cost function. This scheme can
adequately exploit the information of the reconstructed Toeplitz matrix and work properly
without a priori information, such as the source number. Zhang et al. [25] proposed a mul-
tiple Toeplitz matrices reconstruction method for coherent DOA estimation that adequately
applied information contained in the correlation matrices. In Zhang et al. [26], a modified
method called forward and backward partial Toeplitz matrices reconstruction (FB-PTMR)
was proposed, which exploits half of the array covariance matrix to reconstruct data in
a Toeplitz matrix. The FB-PTMR can overcome the drawbacks of other methods due to
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its neglect of phase differences and utilize more information compared to the ESPRIT-like
algorithm. Dai et al. [27] proposed a coherent DOA estimation scheme combining full-row
Toeplitz matrices reconstruction and deep learning network architecture to achieve higher
performance with lower computational cost.

The coherent DOA estimation methods mentioned above assume that ambient noise
is Gaussian-distributed. In reality, however, there are various non-Gaussian noises with
spike impulse characteristics [28–30], such as atmospheric noise, underwater noise, vehicle
ignition, multi-user interference, etc. These impulsive noises usually have heavy-tailed
distributions, which means the probability density function (PDF) decreases more slowly
and outliers are more likely to occur compared to Gaussian distribution. Under the impul-
sive noise environment, the performance of the above coherent DOA estimation methods
will severely degrade. Therefore, an appropriate distribution method is needed to model
the impulse noise. There are multiple non-Gaussian distributions used to characterize
impulsive noise with heavy-tailed PDFs, such as generalized Gaussian distribution [31],
Gaussian mixture distribution [32], and alpha-stable (α-stable) distribution [28,33]. Among
these distributions, only α-stable distribution satisfies the generalized central limit theo-
rem [33]. Meanwhile, α-stable distribution could provide a connection between Gaussian
and non-Gaussian distribution. In fact, Gaussian distributions and various non-Gaussian
distributions are special cases of the α-stable distribution family. Therefore, α-stable distri-
bution is an appropriate model for impulsive noise.

Some studies have been devoted to the problem of coherent DOA estimation in the
presence of impulsive noise. In Visuri et al. [34], two nonparametric DOA estimation
algorithms were presented in the presence of non-Gaussian noise and multipath propaga-
tion effects. These algorithms are based on multivariate spatial sign covariance matrices
and combined with SS to deal with coherent sources. The theoretical analysis and some
extensions of the algorithms are then given in Visuri et al. [35]. Rupi et al. [36] combined a
signed-power nonlinearity and SS to mitigate the effects of the heavy-tailed background
noise and reduce the measured coherence. In Li et al. [37], novel algorithms based on
fractional lower-order statistics (FLOS) and FBSS were proposed for DOA estimation of
coherent sources in the presence of impulsive noise. Liu et al. [38] presented an algorithm
which combined SS and infinity-norm normalization (INF) to estimate the DOA of coher-
ent sources in impulsive noise environments. In Li and Lin [39], SS was applied to the
phased fractional lower order moments (PFLOM) matrices and a robust algorithm called
PFLOM-SS was proposed for DOA estimation of coherent sources under impulsive noise
environments. Guan et al. [40] defined and compared three different decorrelation methods
for DOA estimation of coherent sources based on correntropy-based correlation (CRCO).
These improved SS-based methods can alleviate performance degradation to a certain
extent, but they share the inherent disadvantages of the SS-based algorithm, that is, the
effective aperture array will be reduced. Meanwhile, the performance of these methods will
deteriorate significantly when the ambient noise is highly impulsive, and the number of
snapshots is low. Therefore, further studies are required to adequately address the problem
of DOA estimation of coherent signals under impulsive noise.

In this paper, a new coherent DOA estimation method based on correntropy-based
generalized covariance (CEGC) and Toeplitz approximation are presented. The remainder
of this paper is organized as follows. Section 2 presents some preliminary knowledge
related to our method, including the signal model and noise model. In Section 3, the proce-
dure of the proposed method is briefly introduced. In Section 4, Monte-Carlo simulations
are carried out to evaluate the performance of the proposed and other existing methods
under different conditions. Conclusions are finally drawn in Section 5.

Notation: Matrices, vectors, and scalar quantities are denoted by uppercase boldface,
lowercase boldface, and lowercase letters, respectively. (·)∗, (·)T, and (·)H denote conjugate,
transpose, and conjugate transpose, respectively. diag(·) denotes diagonal matrix. δ(·)
denotes the Dirac delta function. |·| denotes absolute value operation. max(·) denotes
maximum operation. E(·) denotes the mathematic expectation operation.
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2. Preliminaries
2.1. Signal Model of Coherent DOA Estimation

Consider a uniform linear array (ULA) consisting of M omnidirectional sensors receiv-
ing K narrow-band plane-wave signals from directions {θ1, θ2, . . . , θK}, where θk denotes
the DOA of the kth signal source.

Due to the effect of multipath propagation and other factors, there is usually a certain
degree of correlation between two signal sources. The correlation coefficient ρij between
xi(t) and xj(t) indicates the degree of correlation and can be written as:

ρij =
E
[

xi(t)x∗j (t)
]

√
E
[
|xi(t)|2

]
E
[∣∣xj(t)

∣∣2] (1)

According to the Cauchy–Schwarz inequality, we know that
∣∣ρij
∣∣ ≤ 1. When

ρij = 0, xi(t) and xj(t) are uncorrelated. When 0 <
∣∣ρij
∣∣ < 1, xi(t) and xj(t) are (par-

tially) correlated. When
∣∣ρij
∣∣ = 1, xi(t) and xj(t) are coherent (completely correlated).

If the K signal sources {x1(t), x2(t), . . . , xK(t)} are coherent, taking the first signal x1(t)
as the reference, the kth signal source at time t can be represented as

xk(t) = Akx1(t), k = 1, 2, . . . , K (2)

where Ak denotes the complex attenuation of the kth signal with respect to x1(t). Then the
signal sources matrix can be represented as:

X = [x(1), x(2), . . . , x(N)] (3)

where N is the number of snapshots. x(t) = [x1(t), x2(t), . . . , xK(t)]
T represents the signal

sources vector.
The array manifold matrix can be represented as:

A = [a(θ1), a(θ2), . . . , a(θK)] (4)

where a(θk) = [a1(θk), a2(θk), . . . , aM(θk)]
T represents the steering vector of the kth signal

source. am(θk)= ej2π sinθk(m−1)d/λ represents the component of a(θk) corresponding to the
mth sensor. d is the spacing between two adjacent sensors. λ is the wavelength.

Using complex signal representation, the received signal ym(t) at the mth sensor can
be represented as:

ym(t) =
K

∑
k=1

xk(t)am(θk) + wm(t), m = 1, 2, . . . , M (5)

where wm(t) represents the noise at the mth sensor.
Then the received signal matrix can be represented as:

Y = [y(1), y(2), . . . , y(N)] (6)

where y(t) = [y1(t), y2(t), . . . , yM(t)]T represents the received signal vector.
Moreover, Equation (5) can be represented more compactly in matrix form as:

Y = AX + W (7)

where W = [w(1), w(2), . . . , w(N)] denotes the received noise matrix.
w(t) = [w1(t), w2(t), . . . , wM(t)]T represents the received noise vector. The purpose of
this paper is utilizing noisy received data Y to estimate the DOA {θ1, θ2, . . . , θK} of K
coherent signal sources {x1(t), x2(t), . . . , xK(t)}.
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2.2. α-Stable Distribution Noise Model

The α-stable distribution is an appropriate model of non-Gaussian impulsive noise due
to its generality. Since there is no closed-form expression for its PDF, α-stable distribution
is usually described by its characteristic function. The characteristic function of α-stable
distribution can be represented as in Shao and Nikias [33]:

φ(ω) = ejµω−γ|ω|α [1+jβsgn(ω)ζ(ω,α)] (8)

sgn(ω) =


1
0
−1

,
,
,

ω > 0
ω = 0
ω < 0

(9)

ζ(ω, α) =

{
tan πα

2 , α 6= 1
2
π log|ω|, α = 1

(10)

where µ ∈ (−∞,+∞) is the location parameter. α ∈ (0, 2] is the characteristic exponent,
and it measures the thickness of the tails of the PDF. When α = 2, α-stable distribution is
equivalent to Gaussian distribution. With the decrease of α, the noise will behave more
impulsively. β ∈ [−1, 1] is the symmetry parameter. When β = 0, the distribution is
symmetric about the center µ and is called symmetric alpha-stable (SαS) distribution.
γ ∈ (0,+∞) is the dispersion parameter and plays a role similar to that of the variance for
Gaussian distribution.

In this paper, we utilize the SαS distribution to model impulsive noise. Therefore, (8)
can be simplified as:

φ(ω) = ejµω−γ|ω|α (11)

3. Methodology

In this paper, we focus on estimating the DOAs {θ1, θ2, . . . , θK} of coherent signals
from the received array data matrix, Y, contaminated by α-stable distribution noise. First,
a novel operator called CEGC is defined. The boundedness of the CEGC operator is
proven to ensure the effectiveness of the proposed method. Subsequently, a coherent DOA
estimation method based on CEGC and Toeplitz approximation is derived in detail. The
major implementation steps of our proposed method are listed at the end of this section.

3.1. CEGC

Conventional subspace-based DOA estimation methods are based on EVD or SVD
of the data covariance matrix, which will fail under α-stable distribution noise since the
data statistics of order greater than or equal to two are unbounded in this environment. To
overcome this drawback, several modified operators are proposed, of which the FLOS [33]
is a typical example. However, the FLOS-based methods rely on prior knowledge of the
impulsive noise to select appropriate parameter and require large sample sizes to meet a
satisfactory performance. This motivates us to develop more effective operators to deal
with impulsive noise.

Recently, a local similarity measurement called correntropy has been proposed [41,42]
and has become popular in the area of non-Gaussian signal processing [43–45]. Compared
to the FLOS, correntropy can exploit more intrinsic information about infinite statistical
moments of the signal and deal with outliers without prior knowledge of the noise. The
correntropy of two random variables X and Y is defined as:

Cσ(X, Y) = E[κσ(X−Y)] (12)

where κσ(·) represents the kernel function and σ is the kernel size. Utilizing data samples
{(xi, yi)}N

i=1, correntropy can be estimated as follows:

Ĉσ(X, Y) =
1
N

N

∑
i=1

κσ(xi − yi) (13)
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As a similarity measure between two random variables, correntropy can be regarded
as a generalization of the conventional Pearson correlation [41]. Introducing nonlinear
mapping by kernel function, correntropy can transform data from the input space to an
infinite dimensional, reproducing kernel Hilbert space and effectively eliminating the
adverse effect of outliers.

Moreover, the concept of generalized covariance (GC) [46] is introduced to improve
the DOA estimation performance in the presence of α-stable distribution noise, since
conventional covariance does not converge in this environment. In fact, a series of existing
concepts such as FLOS, hyperbolic tangent, and correntropy can unify in the name of GC.
The GC of two random variables, X and Y, is defined as:

RGC(X, Y) = E
[

g1(X)

h1(X, Y)
· g2(X)

h2(X, Y)

]
(14)

where g1(·) and g2(·) represent single-variable functions. h1(·, ·) and h2(·, ·) represent dual-
variable functions, however, both can also be single-variable functions or even constants in
some cases.

Inspired by the advantages of correntropy and GC, a novel operator called CEGC is
proposed and defined as follows:

R = E
[

e−
|X|+|Y|

σ XY
]

(15)

where the kernel size σ > 0.
The CEGC operator retains the conventional correlation term and utilizes the expo-

nential kernel to provide further outlier suppression capabilities to adapt to an intensive
impulsive noise environment. Furthermore, it can be regarded as a specific case of GC
based on the generalized exponential kernel function. In this case, g1(X) = X, g2(Y) = Y,
h1(·, ·) = e−|X|/σ, h2(·, ·) = e−|Y|/σ. To ensure the effectiveness of the proposed method,
we prove the boundedness of the CEGC operator.

Theorem 1. If X and Y are two independent and identically distributed SαS random variables, the
CEGC between X and Y is bounded.

Proof of Theorem 1. We can obtain the CEGC between X and Y as Equation (15). It is
apparent that XY ≤ [max(|X|, |Y|)]2. Assuming |X| ≥ |Y|, we obtain:∣∣R∣∣ ≤ E

[
e−
|X|+|Y|

σ |X|2
]

≤ E
[
e−
|X|
σ |X|2

] (16)

Substituting the characteristic function (11) into (16), we obtain:∣∣R∣∣ ≤ E
[
e−
|X|
σ |X|2

]
= 1

2π

+∞∫
−∞

+∞∫
−∞

e−
|X|
σ |X|2ejµω−γ|ω|α e−jωXdXdω

≤ 1
π

+∞∫
0

+∞∫
−∞

e−
X
σ X2e−γ|ω|α dωdX

= 1
π

+∞∫
0

e−
X
σ X2dX

+∞∫
−∞

e−γ|ω|α dω

(17)

where
+∞∫
−∞

e−γ|ω|α dω = 2
+∞∫
0

e−γωα
dω = 2

α γ−
1
α Γ
(

1
α

)
= h and Γ(x) =

+∞∫
0

tx−1e−tdt denotes

the gamma function.



Entropy 2023, 25, 960 7 of 14

Next, (17) can be simplified as:

∣∣R∣∣ ≤ h
π

+∞∫
0

e−
X
σ X2dX

= 2hσ3

π < +∞
(18)

According to (18), we can infer that the CEGC between X and Y is bounded. Thus
ends the proof. �

In the next section, the CEGC is utilized to estimate the DOA rather than conventional
correlation in the covariance matrix.

3.2. Proposed Method

According to the received signal model (7) and assuming that the noise is independent
of the signals, the data covariance matrix, RY, can be written as:

RY = E
{

YYH
}

= AE
{

XXH}AH + E
{

WWH}
= ARXAH + E

{
WWH} (19)

Conventional subspace-based methods must perform EVD or SVD of the data covari-
ance matrix. When the signal sources are coherent, the source covariance matrix, RX, is
rank deficient, i.e., RX is a singular matrix and the rank of RX is lower than the number of
signal source, K. Therefore, conventional subspace-based methods cannot produce accurate
DOA estimations and modified solutions should be used to resolve this situation.

Compared with SS-based methods, the TAM [20–27] method is an effective alternative
to resolve coherent signals, since it does not reduce the effective aperture of the array and
is capable of achieving higher resolution. However, these methods will fail under α-stable
distributed noise because they are developed based on second-order statistics, which are
unbounded under α-stable distributed noise.

Combined with the operator CEGC described in Section 3.1, we can construct the
pseudo-covariance matrix, RY, of the received signal, Y, as:

RY =


R1,1 R1,2 · · · R1,M
R2,1 R2,2 · · · R2,M

...
...

. . .
...

RM,1 RM,2 · · · RM,M

 (20)

where:

Ri,j = R
(
yi, yj

∗) = 1
N

N

∑
n=1

e−
|yi |+|yj

∗|
σ yiyj

∗ (21)

Furthermore, to circumvent problems due to signal coherence, we perform Toeplitz
approximation on RY and construct a Toeplitz matrix, RTop, as:

RTop =


RTop(0) RTop(1) · · · RTop(M− 1)

RTop(−1) RTop(0) · · · RTop(M− 2)
...

...
. . .

...
RTop(1−M) RTop(2−M) · · · RTop(0)

 (22)

where:

RTop(m) =


1

M−m

M−m
∑

i=1
Ri,i+m, 0 ≤ m < M

1
M+m

M+m
∑

i=1
Ri−m,i, −M < m ≤ 0

(23)
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Inspired by the SS-based methods, the FBSS technique can be applied for effective
utilization of the data matrix, and we obtain:

RTop =
1
2

(
RTop + JMR∗TopJM

)
(24)

where JM denotes the exchange matrix whose components are zeros except for components
on the anti-diagonal. Meanwhile, iterative algorithms [21,22] can also be applied to estimate
RTop to further improve the performance of the proposed method.

By performing EVD of RTop, we obtain:

RTop = USΣSUH
S + UNΣNUH

N (25)

where ΣS and ΣN are the diagonal matrices with the K largest eigenvalues and the remaining
M− K smaller eigenvalues of RTop, respectively. US and UN are the matrices composed
of eigenvectors corresponding to ΣS and ΣN, and span the signal and noise subspace of
RTop, respectively.

Furthermore, conventional subspace-based methods can be applied to estimate the
DOA. We can construct the spatial spectrum based on the classical MUSIC algorithm as:

STop(θ) =
1

aH(θ)UNUH
Na(θ)

, − π

2
≤ θ ≤ π

2
(26)

By searching K largest peaks of (26), we obtain the DOA estimation
{

θ̂1, θ̂2, . . . , θ̂K
}

.
At this point, we have achieved the proposal for coherent DOA estimation under impulsive
noise. The major implementation steps of our proposed method are summarized as follows:

Step 1: Use the array received signal matrix (6) as input to construct the pseudo-covariance
matrix, RY based on (20) and (21).

Step 2: Perform Toeplitz approximation on RY based on (22) and (23) to construct a Toeplitz
matrix, RTop.

Step 3: Construct a modified matrix, RTop based on (24).
Step 4: Perform the EVD of RTop to obtain the eigenvectors, UN, corresponding to the

noise subspace.
Step 5: Calculate the spatial spectrum function (26) and search K largest peaks to estimate

the DOA of coherent sources.

4. Simulation

In this section, the DOA estimation performance of the proposed method will be
evaluated through comprehensive simulations. The simulation results will be analyzed
in detail.

We consider a ULA with M = 10 sensors whose inter-element spacings are set as a
half wavelength. Assume K coherent narrow band signals are located in the far-field of
arrays. The number of snapshots is N = 500 except in Section 4.4.

Since the typical signal-to-noise ratio will diverge under SαS noise, the generalized
signal-to-noise ratio (GSNR) [28] is employed to measure noise intensity and is defined as:

GSNR = 10 log10
Ps

γ
(27)

where Ps is the power of signal and γ is the dispersion parameter of SαS noise.
The proposed method is compared to the FBSS method [13], TAM method [20], FLOM-

SS method [37], PFLOM-SS method [39], and CRCO-SS method [40]. For SS-based methods,
the number of sensors in the subarray is M1 = 6. The performance of different algorithms
is evaluated by two quantities called probability of resolution (PR) and root-mean-square
error (RMSE).
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In the experiments, a successful resolution of DOA is defined as:∣∣θ̂k(l)− θk
∣∣ ≤ 2

◦
, k = 1, . . . , K (28)

where θ̂k(l) are the estimated DOA values of the kth target in the lth Monte-Carlo trial.
Therefore, the PR is defined as the ratio of the number of successful resolutions to the
number of Monte-Carlo trials.

The RMSE is defined as follows:

RMSE =

√√√√ 1
KL

K

∑
k=1

L

∑
l=1

∣∣θ̂k(l)− θk
∣∣2 (29)

where L is the number of Monte Carlo trials. Unless otherwise stated, every simulation will
carry out 200 Monte Carlo trials.

The related parameters for the simulations are listed in Table 1.

Table 1. Simulation Conditions and Parameter Settings.

Simulations DOA (Degree) GSNR (dB) α
Number of
Snapshots

4.1 (−10, 30, 50) 0 1.3 500
4.2 (10, 30) [−5, 15] 1.3 500
4.3 (10, 30) 0 [1.0, 2.0] 500
4.4 (10, 30) 0 1.3 [100, 1000]

4.1. Spatial Spectrums Comparison

In this simulation, we will compare the spectrograms of six candidate methods under
a relatively severe SαS noise environment (α = 1.3, GSNR = 0 dB). Three coherent signals
are located at (−10

◦
, 30

◦
, 50

◦
), which are represented by red dashed lines in Figure 1. The

spectrograms of FBSS, TAM, FLOM-SS, PFLOM-SS, CRCO-SS, and the proposed method
are shown in Figure 1a–f, respectively. Every figure contains 10 Monte Carlo trials of
spatial spectrum.

Figure 1a,b are the spectrograms of FBSS and TAM, respectively. As expected, these
two algorithms cannot function properly in the presence of impulsive noise. Three DOAs
can hardly be resolved. The FLOM-SS, PFLOM-SS, and CRCO-SS methods are shown in
Figure 1c–e, respectively. They can alleviate the impact of impulse noise on DOA estimation.
However, the accuracy and stability of the algorithms must be improved. Meanwhile, it can
be seen from Figure 1f that the proposed method has the highest performance spectrograms
and all DOAs can be resolved easily.

In the following simulations, more numerical results will be given to compare
these methods.

4.2. Experiment Results vs. GSNRs

This simulation will focus on the performance comparison with a wide range of
GSNRs. Experiment results can be found in Figure 2. Detailed parameters can be found
in Table 1.

The PR of all candidate methods are shown in Figure 2a. We find that the performances
of PR are improved with the increase of GSNRs. For moderate impulsive noise environ-
ments (GSNR > 5 dB), most methods show effective performances except for SS and TAM
methods. These two methods are developed based on Gaussian noise assumptions and
cannot accurately estimate DOA under impulsive noise. With the decrease of GSNR, the
PR of FLOM-SS, PFLOM-SS, and CRCO-SS decrease rapidly. When GSNR = −5 dB, the
PR of these three methods are all below 0.1. This indicates that the SS-variant methods
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cannot resolve DOA in intense impulsive noise environment. Meanwhile, the proposed
method has relatively high PR, even when GSNR is fairly low.

Entropy 2023, 25, x FOR PEER REVIEW 10 of 15 
 

 

4.1. Spatial Spectrums Comparison 
In this simulation, we will compare the spectrograms of six candidate methods under 

a relatively severe SαS noise environment ( GSN1 R.3  d, 0 Bα == ). Three coherent signals 
are located at ( 10 ,30 ,50 )° ° °− , which are represented by red dashed lines in Figure 1. The 
spectrograms of FBSS, TAM, FLOM-SS, PFLOM-SS, CRCO-SS, and the proposed method 
are shown in Figure 1a–f, respectively. Every figure contains 10 Monte Carlo trials of spa-
tial spectrum. 

Figure 1a,b are the spectrograms of FBSS and TAM, respectively. As expected, these 
two algorithms cannot function properly in the presence of impulsive noise. Three DOAs 
can hardly be resolved. The FLOM-SS, PFLOM-SS, and CRCO-SS methods are shown in 
Figure 1c–e, respectively. They can alleviate the impact of impulse noise on DOA estima-
tion. However, the accuracy and stability of the algorithms must be improved. Meanwhile, 
it can be seen from Figure 1f that the proposed method has the highest performance spec-
trograms and all DOAs can be resolved easily. 

In the following simulations, more numerical results will be given to compare these 
methods. 

  
(a) FBSS (b) TAM 

  
(c) FLOM-SS (d) PFLOM-SS 

Entropy 2023, 25, x FOR PEER REVIEW 11 of 15 
 

 

  
(e) CRCO-SS (f) Proposed method 

Figure 1. Spatial spectrograms comparison. 

4.2. Experiment Results vs. GSNRs 
This simulation will focus on the performance comparison with a wide range of 

GSNRs. Experiment results can be found in Figure 2. Detailed parameters can be found in 
Table 1. 

The PR of all candidate methods are shown in Figure 2a. We find that the perfor-
mances of PR are improved with the increase of GSNRs. For moderate impulsive noise 
environments ( GSNR 5 B d> ), most methods show effective performances except for SS 
and TAM methods. These two methods are developed based on Gaussian noise assump-
tions and cannot accurately estimate DOA under impulsive noise. With the decrease of 
GSNR, the PR of FLOM-SS, PFLOM-SS, and CRCO-SS decrease rapidly. When 
GSNR 5 dB = − , the PR of these three methods are all below 0.1. This indicates that the SS-
variant methods cannot resolve DOA in intense impulsive noise environment. Mean-
while, the proposed method has relatively high PR, even when GSNR is fairly low. 

To further explore the performance, the RMSE of DOA estimation using different 
methods are compared in Figure 2b. The FBSS and TAM methods can achieve low RMSE 
results only when GSNR is high enough. The RMSE of three SS-variant methods increase 
rapidly when GSNR 0dB< . Among all candidate methods, the proposed method has the 
most effective RMSE result. 

  
(a) PR (b) RMSE 

Figure 2. Experimental results vs. GSNRs. 

4.3. Experiment Results vs. Characteristic Exponents α 
This simulation will focus on the performance comparison with a wide range of the 

characteristic exponent α. PR and RMSE results can be found in Figure 3. Detailed param-
eters can be found in Table 1. 

Figure 1. Spatial spectrograms comparison.

To further explore the performance, the RMSE of DOA estimation using different
methods are compared in Figure 2b. The FBSS and TAM methods can achieve low RMSE
results only when GSNR is high enough. The RMSE of three SS-variant methods increase
rapidly when GSNR < 0 dB. Among all candidate methods, the proposed method has the
most effective RMSE result.

4.3. Experiment Results vs. Characteristic Exponents α

This simulation will focus on the performance comparison with a wide range of
the characteristic exponent α. PR and RMSE results can be found in Figure 3. Detailed
parameters can be found in Table 1.
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From Figure 3a, we can conclude that all candidate methods can successfully resolve
the DOA when α = 2, which indicates the validity of all methods under Gaussian noise.
With the decrease of α, the impulsiveness of SαS noise is gradually enhanced and the
performance of FBSS and TAM deteriorate significantly. The FLOM-SS and PFLOM-SS
can achieve high PR when α > 1.5 and degrade severely when α approaches 1.0. This is
because FLOS-based methods need prior knowledge of the impulsive noise for a satisfactory
performance and cannot resist intense impulsive noise. The proposed method outperforms
other candidate methods and has the most effective PR result.

Figure 3b is the RMSE results of candidate methods. We find that the RMSE curve
of the proposed method fluctuates slightly even when α approaches 1.0. Three SS-variant
methods can work well in moderately impulsive noise environments. The RMSE of FBSS
and TAM methods increase rapidly with the decrease of α, which shows their vulnerability
in impulsive noise environments.

4.4. Experiment Results vs. Number of Snapshots

In this simulation, we evaluate the algorithm performance against the number of
snapshots, where α = 1.3 and GSNR = 0 dB are set. Experiment results can be found in
Figure 4. Detailed parameters can be found in Table 1.

As expected, the FBSS and TAM algorithm cannot function properly in the presence
of impulsive noise and the number of snapshots has little effect on their performance.
For FLOM-SS, PFLOM-SS, and CRCO-SS, the performance improves with the increase of
snapshots and towards stability when the number of snapshots is greater than 500. This
indicates that a certain number of snapshots are needed to reach satisfactory performance
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of the algorithms. Meanwhile, the proposed method requires fewer snapshots to achieve
stable performance and the results of PR and RMSE outperform other candidate methods.
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5. Conclusions

In this paper, we have considered the problem of coherent DOA estimation under
α-stable distributed noise. A novel operator termed CEGC was defined first. To ensure
the effectiveness of the proposed method under α-stable distributed noise, the proof of
boundedness was also provided. Later, we constructed a modified covariance matrix based
on CEGC operators and Toeplitz approximation. The modified covariance matrix can
be applied to subspace-based methods to estimate the DOA of coherent sources. Finally,
multiple simulations were carried out to evaluate the performance of the different methods.
Simulation results demonstrate that the proposed method outperforms other existing
methods in various α-stable distributed noise environments, even in the case of intense
impulsive noise and low snapshot numbers. More array models and computationally
efficient methods will be considered in our future works.
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