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Abstract: Data clustering is one of the most influential branches of machine learning and data
analysis, and Gaussian Mixture Models (GMMs) are frequently adopted in data clustering due to
their ease of implementation. However, there are certain limitations to this approach that need to be
acknowledged. GMMs need to determine the cluster numbers manually, and they may fail to extract
the information within the dataset during initialization. To address these issues, a new clustering
algorithm called PFA-GMM has been proposed. PFA-GMM is based on GMMs and the Pathfinder
algorithm (PFA), and it aims to overcome the shortcomings of GMMs. The algorithm automatically
determines the optimal number of clusters based on the dataset. Subsequently, PFA-GMM considers
the clustering problem as a global optimization problem for getting trapped in local convergence
during initialization. Finally, we conducted a comparative study of our proposed clustering algorithm
against other well-known clustering algorithms using both synthetic and real-world datasets. The
results of our experiments indicate that PFA-GMM outperformed the competing approaches.

Keywords: clustering; Gaussian Mixture Models; metaheuristic algorithm; pathfinder algorithm

1. Introduction

Clustering is a fundamental tool in machine learning that facilitates the extraction
of underlying similarities from data by grouping similar data points into clusters based
on their features. Clustering has been widely applied in diverse domains, ranging from
network analysis and business to marketing, education, data science, and medical diag-
nosis [1]. Clustering, a fundamental technique in data analysis, involves grouping similar
objects or data points together based on some similarity metric. We explore the two primary
approaches to clustering: partitional clustering and hierarchical clustering [2]. Each method
has its own advantages and disadvantages, and the appropriate method should be chosen
based on the characteristics of the data and the problem at hand [3]. Clustering can be
conceptualized as an optimization problem that aims to categorize all data into distinct
groups, where the inter-cluster distance is maximized and the intra-cluster distance is
minimized. This process is executed using various algorithms that may produce different
clustering outcomes [4]. Gaussian Mixture Models (GMMs) are a powerful statistical tool
that enables the analysis and clustering of complex datasets that do not conform to a single
distribution. One issue with GMMs is that they require the number of components to
be specified in advance. Choosing an inappropriate number of components can lead to
overfitting or underfitting, which can compromise the accuracy of the model. It means
manual selection of cluster numbers is necessary for GMMs. GMMs have the potential
to be inadequate in capturing complex patterns within data during initialization, which
may result in suboptimal performance. To enhance the performance of GMMs, it is cru-
cial to explore other techniques and algorithms that can capture complex patterns more
efficiently [5].

The shortcomings of GMMs can be summarized as follows:
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• To perform clustering using GMMs, one needs to manually configure the cluster
numbers. However, this task can be challenging and can significantly impact the
outcome of the clustering process;

• The initialization phase of GMMs may encounter difficulties in capturing complex
structures within the data and become trapped in local convergence, leading to subop-
timal clustering performance.

The Pathfinder algorithm (PFA) is included as a solution for the deficiency of GMMs,
due to its strong global search ability and simple yet effective concept, enabling it to
converge to the optimal solution in a relatively small number of iterations [6]. We proposed
a novel clustering algorithm called PFA-GMM, which combines GMMs and PFA to address
the aforementioned issues.

• To address the issue of Gaussian Mixture Models potentially getting stuck in local con-
vergence during initialization, we introduced the powerful global searching PFA for
clustering analysis. PFA identifies the optimal solution during initialization, thereby
avoiding the local convergence trap;

• In addressing the issue of manual selection of cluster centers by GMMs, we employed
the Davies–Bouldin Index as a fitness function for PFA, allowing for the automatic
selection of cluster numbers.

The paper is structured as follows: Section 2 provides a summary of the related work
relevant to this study. Section 3 presents the theoretical basis and some related concepts.
In Section 4, we propose a new clustering algorithm based on GMMs and PFA called
PFA-GMM. Section 5 analyzes the experimental results on different datasets. Finally, we
provide a summary of our work in Section 6.

2. Related Work

Finite mixture modeling is a statistical technique that examines whether model param-
eters vary over unmeasured groups of individuals. The goal is to estimate the parameters of
a mixture distribution, which is a probability distribution that results from the combination
of two or more probability distributions [7,8].

Gaussian Mixture Models (GMMs) are a well-known method for modeling probability
distributions of continuous variables. They are flexible and powerful tools for a wide
range of applications, such as image processing, speech recognition, and data clustering.
Chen et al. [9] establish the information-theoretic threshold for the separation of cluster
centers, which ensures the exact retrieval of cluster labels in a K-component Gaussian
mixture model with equal cluster sizes. Qu et al. [10] proposed a novel GMMs-based
algorithm for anomaly detection in Hyperspectral Images with the aim of improving the
detection accuracy of anomaly pixels and an effective GMMs-based weighting approach
for fusing the extracted anomaly result. Fu et al. [11] introduce a novel embedded feature
selection approach for GMMs by incorporating a relevancy index. The relevancy index is a
metric that quantifies the probability of assigning a data point to a specific clustering group,
thereby facilitating feature selection. Patel et al. [12] compare the cluster representativeness
of K-Means and GMMs for heterogeneity in resource usage of cloud workloads. Experi-
mental results suggest that GMMs are superior to K-Means when it comes to clustering
with distinct usage boundaries. Although GMMs require more computational time, they
are more effective in fine-grained workload characterization and analysis.

Projection pursuit is a statistical technique used for exploratory data analysis, informa-
tion visualization, and feature selection [13]. It is a broader framework that has a form of
an additive model of the derived features rather than the inputs themselves [14].

Nature-inspired algorithms, also known as metaheuristic algorithms, have gained
widespread popularity in the field of engineering due to their remarkable ability to solve
complex problems. These algorithms seek to find the optimal solution by balancing ex-
ploitation and exploration in the search space [15]. Compared to traditional clustering,
which is susceptible to local convergence and initialization, metaheuristic algorithms have
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a higher probability of achieving the optimal global solution [16]. Yapici et al. [6] proposed
the Pathfinder algorithm in 2019, a swarm intelligence algorithm inspired by the leadership
of animal hunting behavior. Animals living in groups often make decisions based on
the social hierarchy among members and may need to make decisions with or without a
leader. Varaprasad et al. [17] utilized the Pathfinder algorithm to optimize the allocation
and integration of a solar photovoltaic system. The Pathfinder algorithm was applied
to determine the optimal configuration of Interline-Photovoltaic (I-PV) systems among
multiple feeders to enhance the performance and resilience of the distribution system
operation and control while maintaining various operational and radiality constraints.
Oladipo et al. [18] employed an innovative approach to optimize the control efficiency of
electrical systems. Specifically, they combined the flower pollinated algorithm (FPA) with
the Pathfinder algorithm (PFA) to achieve maximum efficiency. By leveraging the PFA’s
ability to ensure the search for optimal solutions, the authors were able to successfully
exploit the full potential of their algorithmic approach. Tang et al. [19] have devised a novel
approach by combining two algorithms, namely the teaching–learning-based algorithm
(TLBO) and the Pathfinder algorithm (PFA), to enhance the exploration and mining abilities
of the original algorithm. TLBO facilitates the teaching phase by considering the pathfinder
of PFA as a teacher, thereby increasing the exploration ability of the algorithm. On the other
hand, it allows the followers of PFA to perform the learning phase in TLBO and apply it to
the mathematical model of PFA to enhance the mining ability of the algorithm.

3. Theoretical Background

We provide a comprehensive introduction to the Pathfinder algorithm and Gaussian
Mixture Models.

3.1. Pathfinder Algorithm

The searching, exploiting, and hunting abilities of animal swarms have always been a
focus of interest for many scientists. All behaviors in a swarm are carried out on the basis of
the common action of all individuals [20]. The hunting skills of animal swarms have long
captivated the attention of scientists. Mimicking the behavior of social movement within
animal species, the Pathfinder algorithm simulates the characteristics of searching for prey
or feeding areas under the guidance of a leader within animal herds. There is a leader
corresponding to multiple members of the population, and the members of the population
follow the leader according to the location of a neighbor and the behavior of the leader [21].
The algorithm begins by randomly initializing the positions of herd members. Afterward,
the fitness of each individual is calculated, and the position of the individual with the best
fitness is chosen as the pathfinder to be followed [22]. The pathfinder updates the location
through Equation (1), and the members update the location through Equation (2).

xK+1
i = xK

i + R1 ×
(

xK
j − xK

i

)
+ R2 ×

(
xK

p − xK
i

)
+ ε, i ≥ 2 (1)

xK+1
p = 2r3

(
xK

p − xK−1
p

)
+ A (2)

where K represents the current iteration, xK
i represents the position vector of ith member, xK

p

represents the position of the pathfinder, xK
j is the position vector of jth member, R1 is equal

to αr1, and R2 is equal to βr2, where r1, r2, r3 are random variables uniformly generated in
the range of [0, 1], and α and β are randomly selected in the range of [1, 2] over the course
of iterations. ε and A represent members and pathfinder random movement, respectively,
are given by Equations (3) and (4)

A = u2 × e
−2K

Kmαx (3)

ε =

(
1− K

Kmax

)
· u1 · Dij, Dij =

∣∣xi − xj
∣∣ (4)
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where u1 and u2 variables are set in the range [−1, 1], and members can also move to
their previous positions. Dij is the distance between two members; Kmax represents the
maximum iteration. Locating the global optimum of optimization problems is a significant
challenge. Therefore, we assume that the best solution detected thus far is the global
optimum and accept it as the food area or hunt area to be exploited by the herd. In the
Pathfinding algorithm, the objective is to locate the optimal food source or hunting ground,
also known as the global optimum. During each iteration, the pathfinder’s position is
designated as the current optimal location, and the other members of the group converge
toward it. The pseudo-code is given as follows (Algorithm 1).

Algorithm 1: Pseudo-code of the Pathfinder algorithm

1. Initialize the population
2. Calculate the fitness of initial population
3. Find the Pathfinder
4. While K < maximum number of iterations
5. α and β = random number in [1, 2]
6. Update the position of Pathfinder using Equation (1)
7. If new Pathfinder is better than old
8. Update Pathfinder
9. End
10. For i = 2 to maximum number of populations
11. Update positions of members using Equation (2)
12. End
13. Calculate new fitness of members
14. Find the best fitness
15. If best fitness < fitness of Pathfinder
16. Pathfinder = best member
17. Fitness = best fitness
18. End
19. For i = 2 to maximum number of populations
20. If new fitness of member(i) < fitness of member(i)
21. Update members
22. End
23. End
24. Generate new A and ε
25. End

3.2. Gaussian Mixture Models and Expectation Maximization

Gaussian Mixture Models (GMMs) are one of many unsupervised clustering tech-
niques that are typically trained using an Expectation–Maximization (EM) algorithm to
maximize the likelihood [23]. In GMMs, each cluster is considered an independent Gaus-
sian distribution, also known as a normal distribution. This approach is used to assign data
points to clusters based on the probability distribution [24], and the Gaussian distribution
is defined as Equation (5):

N(X|µ, Σ) =
1

(2π)
D
2
√
|Σ|

exp

{
− (X− µ)TΣ−1(X− µ)

2

}
(5)

where µ is a D dimensional mean vector, and Σ is a covariance matrix with D × D shapes.
The Gaussian distribution is a probability distribution that is defined by its mean and
standard deviation. While the unimodal Gaussian distribution is inadequate to represent
multiple density regions found in multimodal datasets, they can be effectively modeled
using GMMs. The GMMs are defined as Equation (6):
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P(X) =
K

∑
k=1

πk N(X|µk, Σk) (6)

where K is the number of Gaussian mixture distribution, and πk is the weight of kth
Gaussian distribution, where the sum of πk is one, µk denotes the mean of kth Gaussian
distribution, and Σk represents the covariance matrix of the kth Gaussian distribution. The
Gaussian mixture distribution comprises a convex combination of Gaussian distributions,
providing significantly more flexibility to model complex densities than a simple Gaussian
distribution. If we seek to obtain the maximum likelihood estimation, we need to derive
the log-likelihood function as the following Equation (7).

lnp(X|π, µ, Σ) =
N

∑
n=1

ln

{
K

∑
k=1

πk N(xn|µk, Σk)

}
(7)

we cannot obtain a closed-form solution through maximum likelihood estimation. However,
we can simplify it by introducing a latent variable, which turns out to be the EM algorithm for
GMM. The E-step and M-step for GMM are displayed as Equations (8) and (9), respectively.
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i
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)
=
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(
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∑M

i=1 Qi
(
zk

i
) , Σk =
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i=1 (xi − µk)(xi − µk)

TQi

(
zk

i

)
∑M

i=1 Qi
(
zk

i
) (9)

The fundamental principle of the EM algorithm is to revise one parameter at a time
while keeping the others fixed. The algorithm proceeds iteratively by calculating the E-step
and M-step until convergence is reached.

4. Pathfinder Algorithm Based on GMMs for Data Clustering

In this paper, we propose PFA-GMM, a new clustering algorithm that integrates the
Pathfinder algorithm with GMMs for data clustering. As GMMs are highly susceptible to
initialization, we introduce the Pathfinder algorithm to mitigate this issue. To measure the
intra-cluster compactness and inter-cluster separation, we employ the Davies–Bouldin (DB)
index as the fitness function [25].

4.1. Internal Validation Criteria

We can categorize criteria for evaluating the quality of clusters into two types: internal
validation and external validation. These criteria assess the effectiveness of clustering and
help validate the resulting clusters [26]. The fundamental distinctions between internal
validation and external validation of cluster analysis are primarily contingent upon the
utilization of external information. In practical applications, such as clustering labels, it may
be unavailable. Consequently, internal validation, which relies on the information within
the dataset, is often the sole recourse for evaluating clusters in the absence of external
information [27]. Internal validation is a method used to evaluate the effectiveness of
clustering algorithms by assessing inter-cluster separation and intra-cluster compactness.

• Compactness: It measures the proximity of intra-cluster data. Variance has been uti-
lized for measuring compactness in some methods, with lower variance representing
better compactness. Similarity also has been applied to measure compactness, such as
pairwise distance;

• Separation: The inter-cluster data distinction is measured using a similarity metric
to determine the distance between sets of clusters. This distance is used to evaluate
separation, such as the pairwise distance of intra-cluster data points and the distance
between cluster centroids.
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Davies–Bouldin (DB) index: The DB index assesses the average inter-cluster similarity
between any two clusters and their nearest counterparts. The Davies–Bouldin Index is
calculated as the average similarity of each cluster with a cluster most similar to it. The
clustering results are enhanced by minimizing this index; the lower the Davies–Bouldin
Index, the better the clusters are separated, and the better the result of the clustering
performed. This reduction in the DB value highlights the distinctiveness of each cluster,
thereby producing an optimal clustering outcome. The Davies–Bouldin Index is defined
as follows:

DB =
1
c

c

∑
i=1

max
i 6=j

{
d(xi) + d

(
xj
)

d
(
ci, cj

) }
(10)

where c represents the number of clusters; i and j are cluster labels; d(xi) and d
(

xj
)

denote
the distance of all the entities in clusters i and j; d

(
ci, cj

)
represents the distance between

cluster centroids.

4.2. PFA-GMM

PFA-GMM comprises three components. First, the proposed method selects cluster
centers from the dataset by calculating fitness values to determine the number of resulting
clusters, and PFA-GMM introduces the Pathfinder algorithm for clustering analysis. The
population is initialized based on the candidate cluster centers. The PFA’s global search
ability is leveraged to discover multiple optimal solutions. These optimal solutions are then
utilized as the initial cluster centers. By doing so, the PFA-GMM algorithm successfully
accomplishes the task of automatically selecting the cluster centers, thus eliminating the
subjectivity that arises from manual selection processes.

Second, the candidate solutions are iteratively applied to data clustering using the
EM algorithm. By updating the population through the Pathfinder algorithm, it is pos-
sible to obtain the optimal solution during initialization and avoid getting trapped in
local convergence.

Finally, the Pathfinder algorithm dynamically updates an optimal population and
pathfinder until the termination condition is achieved. Additionally, searching for an
optimal solution for data clustering. According to the above description, the main frame of
PFA-GMM is presented below (Algorithm 2):

Algorithm 2: Pseudo-code of PFA-GMM

Input: The set of data pointsX = {x1, x2, · · · , xn}, Maximum iterations, Population numbers
Output: The optimal clustering result
1. Initialize the population
2. Select data points randomly and determine the number of clusters C
3. Generate the initial population and applying through GMM
4. Calculate the fitness function according to EM
5. Choose population with the best fitness value as Pathfinder
6. While K < maximum number of iterations
7. For i = 1 to maximum number of populations
8. Update positions of members using Equation (2)
9. Calculate fitness value of members through EM
10. End
11. If best fitness < fitness of Pathfinder
12. Pathfinder = best member
13. Fitness = best fitness
14. End
15. α and β = random number in [1, 2]
16. Generate new A and ε
17. Update the position of Pathfinder using Equation (1)
18. If new Pathfinder is better than old
19. Update Pathfinder
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20. Calculate fitness value
21. End
22. Assign data points to final cluster centroids

Suppose that N denotes the total number of points, P represents the number of popula-
tions, T is the time of iteration, and D is the dimension of the dataset. The time complexity
of PFA-GMM mainly depends on the following parts: (1) Calculating the covariance matrix
by EM algorithm at the initialization stage is O

(
D3 ∗ P

)
; (2) calculating the fitness values by

EM algorithm during iteration is O
(
T
(

P + D3)); and (3) assigning data points to clusters
takes O(NlogN). Thus, the overall time complexity is O

(
D3 ∗ P + T

(
P + D3)+ NlogN

)
.

5. Experimental Results and Analysis

In this section, we have validated the performance of PFA-GMM and compared it
with other related clustering algorithms, including K-means [2], DBSCAN [28], GMM [23],
Fuzzy C- means (FCM) [29], and Affinity Propagation (AP) [30]. To ensure a comprehensive
comparison, we have also combined K-means with the Pathfinder algorithm. Additionally,
we have adopted some metaheuristic algorithms such as Particle Swarm Optimization
(PSO) [31], PSO-FCM [32], Genetic Algorithm (GA) [33], Artificial Bee Colony (ABC) [34],
and Differential Evolution (DE) [35]. The parameters for the compared algorithms have
been listed in Table 1. All datasets used in this section have been obtained from UCI
datasets and synthetic datasets [36]. Furthermore, the numerical experiment to verify the ef-
fectiveness of the proposed algorithm includes the mean, standard deviation, and Wilcoxon
rank-sum test [37] for fitness values. The iteration and population are set as 100 and 10,
respectively. All the algorithms were coded in the Python programming language on
Windows 10 with AMD Ryzen 5 2500U@2GHz and 8G RAM.

Table 1. Parameter values of compared algorithms.

Algorithm Parameter Value

PSO C1, C2, Weight factor 0.5, 0.5, 1.2
PSO-FCM C1, C2, Weight factor 2.0, 2.0, 0.4

GA Crossover factor, Mutation factor 0.8, 0.01
ABC Predetermined cycles 5
DE Weight factor, Crossover probability 0.3, 0.8

5.1. Clustering Evaluation Criteria

We have adopted four evaluation indices to test the performance of the clustering
results, including Accuracy (ACC) [38], Normalized Mutual Information (NMI) [39], Rand
Index (RI) [40], and Adjusted Rand Index (ARI) [41].

Accuracy (ACC): ACC means the proportion of correct labels to actual labels. The
range of ACC is [0, 1]. When ACC equals 1, which tells that all the correct labels are found
by the algorithm, the ACC is defined as follows:

ACC =
∑K

i=1 xi

|N| (11)

where xi is a sample that is classified correctly, K is the number of clusters, and N is the
number of data points in the dataset.

Normalized Mutual Information (NMI): NMI is a measure of the mutual dependence
between two random variables, which is expressed as a ratio of the Mutual Information
score and the average entropy of the two variables. Mutual Information measures the
amount of information obtained about one random variable by observing the other variable,
while entropy quantifies the expected amount of information held in a random variable.
The NMI is defined as follows:
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NMI(X, Y) =
I(X, Y)√

H(X)H(Y)
(12)

where I(X, Y) represents the mutual information of variable X and variable Y, H(X) and
H(Y) are the information entropy of variable X and variable Y, respectively. The NMI
score ranges between 0 and 1, where a score of 1 indicates perfect correlation and a score of
0 indicates no correlation.

Rand Index (RI): RI is a similarity measure used to compare two different clustering
methods. RI combines two sources of information, object pairs put together and object
pairs assigned to different clusters in both partitions.

RI =
a + b(

n
2

) (13)

RI can be viewed as a measure of binary classification accuracy over the pairs of
elements in a set, where a is the number of pairs correctly labeled as belonging to the same

subset, and b is the number of pairs correctly labeled as belonging to different subsets.
(

n
2

)
is the number of unordered pairs in a set of n elements. RI gives a value between 0 and 1,
where 0 indicates that two clustering methods do not agree on the clustering of any pair of
elements, and 1 indicates that two clustering methods perfectly agree on the clustering of
every pair of elements.

Adjusted Rand Index (ARI): The ARI is a corrected-for-chance version of the Rand
Index. The ARI rescales the index, taking into account that random chance will cause
some objects to occupy the same clusters, so the RI will never actually be zero. The
ARI is an improvement over the RI because it considers the expected value of the RI for
random clustering.

ARI =
RI− E(RI)
1− E(RI)

(14)

where RI is the Rand Index and E(RI) is the expected value of the Rand index when the
partitions are made at random while keeping the same marginal clustering distributions.

5.2. Experiments on Synthetical Datasets

Six synthetic datasets are selected for variety (the features and instances of datasets are
displayed below). The clustering result has been displayed as color figures in Figures 1–6;
we highlighted the best value for each dataset in bold. Table 2 shows the ARI, NMI, and
ACC index values obtained by the proposed algorithm and other compared algorithms for
synthetical datasets.

Table 2 shows that PFA-KM achieved superior results on Jain and Pathbased datasets,
while PFA-GMM obtained the best results on S2, Compound, Four lines, and Aggregation
datasets. Also the GMM algorithm leverages posterior probabilities for a soft assignment.

The clustering algorithms of K-means and its variants in the Aggregation dataset fail
to consider the connectivity between clusters. K-means allocates data points to the nearest
cluster center without regard for the boundaries between the points and the centers. As
a result, PFA-GMM produces the most accurate clustering results among the algorithms
tested. However, PFA-GMM still misallocates some boundary points to the wrong clusters.

In the S2 dataset, the PFA-GMM algorithm outperformed other algorithms. In contrast,
the K-means algorithm failed to correctly differentiate data points of the close relationship
between some clusters, which K-means identified as the same distribution. This issue led
to a poor clustering result, which other algorithms also experienced since they shared the
same problem as K-means regarding cluster differentiation.
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Figure 1. Clustering results on synthetic dataset-Aggregation. Figure 1. Clustering results on synthetic dataset-Aggregation.

In the Compound dataset, PFA-GMM obtained a better result than other algorithms,
but it is not completely consistent with the actual distribution of the Compound dataset.
However, most of the algorithms failed to differentiate clusters in the lower left corner of
Figure 2.
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Figure 2. Clustering results for the eight methods on synthetic dataset-Compound. Figure 2. Clustering results for the eight methods on synthetic dataset-Compound.

In the Four Lines dataset, while K-means and its variants fail to accurately discriminate
clusters due to their allocation of some data points to the wrong cluster centers based on
the mean of data points, PFA-GMM results in the closest approximation to the actual
distribution of the dataset.
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Figure 3. Clustering results for the eight methods on synthetic dataset-Pathbased. 
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In the Pathbased dataset, PFA-KM obtained a better result than other algorithms; most
of the algorithms cannot assign data points correctly because this dataset contains manifold
clusters, which most algorithms cannot differentiate accurately. K-means calculates the
mean of data points and consider it as a proper candidate center that fails to recognize the
cluster and allocates data points incorrectly.
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In the Jain dataset, the clustering results of PFA-KM seem to closely resemble the
actual distribution of the data. However, handling this dataset can be challenging due to
the presence of non-convex clusters and closely related clusters. Most algorithms struggle
to handle such datasets.
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In order to evaluate the performance of our PFA-GMM algorithm, we not only employ
ACC, ARI, and NMI index values but also use the Davies–Bouldin (DB) Index and Rand
Index (RI) for comparing the performance with different algorithms. The Rand Index is a
measure of the similarity between two algorithms on clustering. Both indexes range from
0 to 1, and the DB index value closer to 0 demonstrates better results. Table 3 shows the RI
and DB index values obtained by the proposed algorithm and other compared algorithms
for synthetical datasets.
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Table 2. Clustering results of the algorithms on synthetic datasets.

DATASET Algorithm ARI NMI ACC DATASET Algorithm ARI NMI ACC

Aggregation
(788 × 2)

PFA-GMM 0.97 0.93 0.94

S2
(5000 × 2)

PFA-GMM 0.97 0.94 0.93
PFA-KM 0.75 0.84 0.69 PFA-KM 0.80 0.87 0.77

GMM 0.87 0.93 0.91 GMM 0.66 0.79 0.56
K-MEANS 0.65 0.81 0.61 K-MEANS 0.53 0.79 0.59

FCM 0.73 0.73 0.67 FCM 0.40 0.68 0.42
DBSCAN 0.35 0.00 0.00 DBSCAN 0.07 0.00 0.00

AP 0.39 0.71 0.35 AP 0.41 0.69 0.44
PSO 0.61 0.68 0.49 PSO 0.69 0.79 0.63

PSO-FCM 0.83 0.84 0.72 PSO-FCM 0.97 0.94 0.93
GA 0.35 0.00 0.00 GA 0.07 0.00 0.00

ABC 0.82 0.75 0.67 ABC 0.76 0.82 0.67
DE 0.42 0.16 0.05 DE 0.14 0.28 0.06

Compound
(399 × 2)

PFA-GMM 0.88 0.86 0.84

Patbased
(300 × 2)

PFA-GMM 0.47 0.31 0.14
PFA-KM 0.78 0.80 0.77 PFA-KM 0.75 0.55 0.47

GMM 0.86 0.85 0.83 GMM 0.45 0.21 0.13
K-MEANS 0.55 0.68 0.46 K-MEANS 0.55 0.55 0.45

FCM 0.61 0.60 0.44 FCM 0.70 0.48 0.42
DBSCAN 0.40 0.00 0.00 DBSCAN 0.37 0.00 0.00

AP 0.36 0.63 0.30 AP 0.28 0.52 0.24
PSO 0.50 0.49 0.31 PSO 0.48 0.26 0.18

PSO-FCM 0.66 0.70 0.54 PSO-FCM 0.75 0.55 0.47
GA 0.40 0.00 0.00 GA 0.37 0.00 0.00

ABC 0.65 0.48 0.42 ABC 0.72 0.53 0.45
DE 0.59 0.33 0.26 DE 0.51 0.20 0.10

Four Lines
(511 × 2)

PFA-GMM 1.00 0.99 0.99

Jain
(373 × 2)

PFA-GMM 0.68 0.28 0.13
PFA-KM 0.73 0.68 0.51 PFA-KM 0.88 0.55 0.59

GMM 0.57 0.42 0.33 GMM 0.58 0.20 0.01
K-MEANS 0.66 0.83 0.72 K-MEANS 0.28 0.40 0.17

FCM 0.64 0.64 0.48 FCM 0.86 0.51 0.51
DBSCAN 0.29 0.00 0.00 DBSCAN 0.74 0.00 0.00

AP 0.24 0.52 0.18 AP 0.18 0.36 0.10
PSO 0.57 0.65 0.47 PSO 0.72 0.29 0.19

PSO-FCM 0.85 0.76 0.67 PSO-FCM 0.88 0.55 0.59
GA 0.29 0.00 0.00 GA 0.74 0.00 0.00

ABC 0.38 0.50 0.23 ABC 0.74 0.01 0.01
DE 0.47 0.48 0.26 DE 0.42 0.38 0.26

Table 3. The DB index and RI results of each algorithm on synthetical datasets.

DATASET Algorithm DB RI DATASET Algorithm DB RI

Aggregation
(788 × 2)

PFA-GMM 0.12 0.98

S2
(5000 × 2)

PFA-GMM 0.08 0.94
PFA-KM 0.12 0.92 PFA-KM 0.09 0.94

GMM 0.45 0.84 GMM 0.09 0.94
K-MEANS 0.13 0.89 K-MEANS 0.11 0.93

FCM 0.19 0.89 FCM 0.12 0.84
DBSCAN 0.34 0.22 DBSCAN 0.47 0.07

AP 0.17 0.84 AP 0.41 0.69
PSO 0.15 0.89 PSO 0.09 0.94

PSO-FCM 0.13 0.91 PSO-FCM 0.04 0.93
GA 0.23 0.77 GA 0.36 0.07

ABC 0.13 0.83 ABC 0.08 0.93
DE 0.14 0.61 DE 0.08 0.34
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Table 3. Cont.

DATASET Algorithm DB RI DATASET Algorithm DB RI

Compound
(399 × 2)

PFA-GMM 0.14 0.92

Patbased
(300 × 2)

PFA-GMM 0.22 0.74
PFA-KM 0.15 0.90 PFA-KM 0.22 0.75

GMM 0.77 0.87 GMM 1.75 0.56
K-MEANS 0.17 0.83 K-MEANS 0.23 0.74

FCM 0.20 0.85 FCM 0.38 0.69
DBSCAN 0.42 0.25 DBSCAN 0.49 0.33

AP 0.17 0.80 AP 0.06 0.73
PSO 0.22 0.73 PSO 0.22 0.72

PSO-FCM 0.16 0.84 PSO-FCM 0.23 0.75
GA 0.44 0.74 GA 0.35 0.58

ABC 0.16 0.81 ABC 0.23 0.73
DE 0.22 0.75 DE 0.36 0.59

Four Lines
(511 × 2)

PFA-GMM 0.07 1.0

Jain
(373 × 2)

PFA-GMM 0.48 0.57
PFA-KM 0.19 0.83 PFA-KM 0.39 0.79

GMM 0.27 1.0 GMM 0.53 0.51
K-MEANS 0.07 0.91 K-MEANS 0.53 0.51

FCM 0.30 0.75 FCM 0.81 0.59
DBSCAN 0.54 0.25 DBSCAN 0.59 0.61

AP 0.32 0.83 AP 0.65 0.46
PSO 0.33 0.83 PSO 0.53 0.51

PSO-FCM 0.35 0.82 PSO-FCM 0.39 0.78
GA 0.45 0.59 GA 0.59 0.61

ABC 0.46 0.57 ABC 0.58 0.62
DE 0.38 0.62 DE 0.63 0.48

5.3. Experiments on Real-World Datasets

Ten datasets from the UCI machine learning repository were used to evaluate algo-
rithm performance. Each algorithm ran independently ten times, and the best value, worst
value, mean, and standard deviation of fitness value were calculated and displayed in
Table 4. Table 5 shows the Wilcoxon signed rank test for our proposed algorithm with
other algorithms.

Table 4. Results obtained from 10 runs using real-world datasets.

Algorithm
(Number × Feature)

Spect
(267 × 22)

Seeds
(210 × 7)

Iris
(150 × 4)

Breast
(699 × 9)

Glass
(214 × 9)

PFA-GMM

Best 0.8058 0.3209 0.2033 0.5876 0.0512
Worst 0.8058 0.4650 0.3456 1.0417 0.0809
Mean 0.8058 0.3609 0.3010 0.6707 0.0603
Std. 0.0000 0.0397 0.0433 0.1443 0.0087

PFA-KM

Best 1.1421 0.3268 0.2303 0.8663 0.2151
Worst 1.1791 0.3297 0.3321 1.0950 0.4132
Mean 1.1585 0.3288 0.2723 0.9406 0.2632
Std. 0.0127 0.0011 0.0440 0.0998 0.0604

PSO

Best 1.0737 0.3286 0.2303 0.8069 0.2882
Worst 2.1367 0.7367 0.7684 1.4967 0.4787
Mean 1.4930 0.4889 0.4553 1.1616 0.3921
Std. 0.2983 0.1318 0.1503 0.2063 0.0582

PSO-FCM

Best 1.1227 0.3317 0.3242 1.1236 0.3117
Worst 1.4690 0.3363 0.3247 1.6832 0.3432
Mean 1.2241 0.3332 0.3244 1.3712 0.3279
Std. 0.1166 0.0017 0.0002 0.1896 0.0096
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Table 4. Cont.

Algorithm
(Number × Feature)

Spect
(267 × 22)

Seeds
(210 × 7)

Iris
(150 × 4)

Breast
(699 × 9)

Glass
(214 × 9)

GA

Best 0.8218 0.2488 0.1902 0.5347 0.2022
Worst 1.1003 0.3350 0.2529 1.0344 0.2815
Mean 1.0089 0.2985 0.2136 0.7128 0.2527
Std. 0.0957 0.0304 0.0221 0.1294 0.0225

ABC

Best 0.3079 0.1756 0.1798 0.1907 0.1531
Worst 0.8413 0.3021 0.2303 0.6749 0.2628
Mean 0.5714 0.2315 0.1996 0.3864 0.2095
Std. 0.1727 0.0392 0.0176 0.1808 0.0384

DE

Best 1.1238 0.3412 0.2999 0.9923 0.2284
Worst 1.6833 0.7104 0.6976 1.5695 0.5714
Mean 1.3066 0.4789 0.4749 1.2934 0.4302
Std. 0.1587 0.1161 0.1260 0.1534 0.0944

Algorithm
(Number × Feature)

Heart
(303 × 13)

Liver
(345 × 6)

Wine
(178 × 13)

Zoo
(101 × 16)

Banknote
(1372 × 4)

PFA-GMM

Best 0.2673 0.1176 0.1983 0.1230 0.3596
Worst 0.4289 0.4183 0.2975 0.1742 0.6053
Mean 0.2834 0.1927 0.2261 0.1571 0.5016
Std. 0.0485 0.0794 0.0274 0.0137 0.1089

PFA-KM

Best 1.0394 0.1819 0.4875 0.1539 0.6004
Worst 1.0394 0.5950 0.4937 0.1583 0.6004
Mean 1.0394 0.2232 0.4913 0.1560 0.6004
Std. 0.0000 0.1240 0.0029 0.0015 0.0000

PSO

Best 1.0871 0.7896 0.5331 0.1927 0.5152
Worst 2.2302 1.7341 1.3147 0.3888 0.8781
Mean 1.6378 1.0881 0.8028 0.2905 0.6749
Std. 0.3839 0.2783 0.2102 0.0539 0.1150

PSO-FCM

Best 1.0908 0.7688 0.4701 0.1917 0.5998
Worst 2.1732 0.8308 0.4801 0.3179 0.6064
Mean 1.3155 0.7945 0.4752 0.2315 0.6023
Std. 0.3145 0.0187 0.0026 0.0313 0.0020

GA

Best 0.1545 0.1306 0.4699 0.1833 0.2714
Worst 1.1754 0.5463 0.4956 0.2547 0.4616
Mean 0.9042 0.3455 0.4787 0.2250 0.3775
Std. 0.3762 0.1507 0.0065 0.0212 0.0673

ABC

Best 0.2558 0.2558 0.2081 0.1523 0.1845
Worst 0.8741 0.6353 0.4676 0.1983 0.6263
Mean 0.5053 0.4117 0.3322 0.1668 0.2944
Std. 0.1933 0.1418 0.1014 0.0137 0.1259

DE

Best 0.9603 1.0209 0.4824 0.2177 0.5461
Worst 2.1271 1.8712 1.2315 0.4304 0.8467
Mean 1.4722 1.3898 0.7852 0.3022 0.6600
Std. 0.3907 0.3084 0.2398 0.0612 0.0993

In this experiment, the results indicate that the optimal value of PFA-GMM on Glass,
Liver, Wine, and Zoo datasets is superior to that of other algorithms. Similarly, the optimal
value of ABC on Spect, Seeds, Iris, Breast, and Banknote datasets is better than that of other
algorithms. Additionally, the GA algorithm outperforms other algorithms on the Heart
dataset. On the other hand, the worst value of PFA-GMM on Glass, Heart, Liver, and Wine
datasets is lower than that of other algorithms, while the worst value of ABC on Spect,
Seeds, Iris, and Breast datasets is lower than other algorithms. In the case of PFA-KM, the
worst value is lower than other algorithms on Zoo and Banknote datasets.
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Table 5. p-values produced by the Wilcoxon rank-sum test.

Algorithm
PFA-GMM vs.

PFA-GMM PFA-KM PSO PSO-FCM GA ABC DE

Spect 0.001953 0.001953 0.001953 0.001953 0.001953 0.009766 0.001953
Seeds 0.001953 0.003906 0.001953 0.037109 0.003906 0.001953 0.019531

Iris 0.001953 0.232422 0.001953 0.037109 0.009766 0.001953 0.005859
Breast 0.001953 0.001953 0.001953 0.001953 0.232422 0.019531 0.001953
Glass 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
Heart 0.001953 0.001953 0.001953 0.001953 0.009766 0.064453 0.001953
Liver 0.001953 0.461451 0.001953 0.001953 0.037109 0.951915 0.001953
Wine 0.001953 0.001953 0.001953 0.001953 0.001953 0.027344 0.001953
Zoo 0.001953 0.556641 0.001953 0.001953 0.001953 0.431641 0.001953

Banknote 0.001953 0.232422 0.001953 0.232422 0.037109 0.037109 0.009766

Furthermore, the mean of ABC on Spect, Seeds, Iris, Breast, and Banknote datasets
is better than that of other algorithms. In contrast, the mean of PFA-GMM on Glass,
Heart, Liver, and Wine datasets is better than other algorithms. Additionally, PFA-KM
performs better than other algorithms in the Zoo dataset. In general, the mean of this data
outperforms other algorithms.

The standard deviation of PFA-GMM on Spect, Glass, and Liver datasets is superior
to that of other algorithms. Similarly, the standard deviation of ABC is better than other
algorithms on the Seeds dataset, and the standard deviation of PSO-FCM is better than
other algorithms on the Iris dataset. Lastly, the standard deviation of PFA-KM is better
than other algorithms on the Breast, Heart, Wine, Zoo, and Banknote datasets.

A statistical method known as the Wilcoxon rank-sum test was used to analyze the
fitness results from 10 independent runs. Table 5 shows the values generated by the test
for pairwise comparison between PFA-GMM and other algorithms. The test compares
the hypothesis that there is no significant difference between two values sampled from
continuous distributions to the hypothesis that there is a significant difference. The results
are statistically significant if the values in Table 5 are below 0.05.

6. Conclusions

In this paper, we introduce a novel clustering method by combining the Pathfinder
algorithm with the GMM algorithm. The proposed algorithm aims to leverage the strengths
of both algorithms to enhance the clustering performance. To evaluate the clustering
performance, we compared our method, named PFA-GMM, with traditional clustering
algorithms and swarm intelligence algorithms. We adopted ACC, NMI, and ARI clustering
criteria to evaluate the performance of six synthetic datasets. Moreover, we calculated the
fitness value for testing the performance of PFA-GMM on ten UCI datasets. Our proposed
algorithm outperforms other algorithms on most datasets.

It is worth noting that PFA-GMM is based on an iterative algorithm, and therefore its
running time on a large sample dataset will be relatively longer than that of traditional
clustering methods. In future research, we will focus on improving the time complexity
of this algorithm. Furthermore, we aim to enhance the accuracy of this algorithm on
non-convex data and improve its performance on complex datasets. To achieve this, we
plan to study allocation strategies to assign data points correctly and enhance their ability
to cope with different shapes and density datasets.
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