
Citation: Sardar, N.; Khan, S.; Hintze,

A.; Mehra, P. Robustness of Sparsely

Distributed Representations to

Adversarial Attacks in Deep Neural

Networks. Entropy 2023, 25, 933.

https://doi.org/10.3390/e25060933

Academic Editors: Liang-Jian Deng,

Minyu Feng and Feng Chen

Received: 8 May 2023

Revised: 9 June 2023

Accepted: 12 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Robustness of Sparsely Distributed Representations to
Adversarial Attacks in Deep Neural Networks
Nida Sardar 1,†, Sundas Khan 1,†, Arend Hintze 1,2 and Priyanka Mehra 1,*

1 Department for MicroData Analytics, Dalarna University, 791 88 Falun, Sweden; v22nisar@du.se (N.S.);
v22sukha@du.se (S.K.); ahz@du.se (A.H.)

2 BEACON Center for the Study of Evolution in Action, Michigan State University,
East Lansing, MI 48824, USA

* Correspondence: pmh@du.se
† These authors contributed equally to this work.

Abstract: Deep learning models have achieved an impressive performance in a variety of tasks, but
they often suffer from overfitting and are vulnerable to adversarial attacks. Previous research has
shown that dropout regularization is an effective technique that can improve model generalization
and robustness. In this study, we investigate the impact of dropout regularization on the ability
of neural networks to withstand adversarial attacks, as well as the degree of “functional smearing”
between individual neurons in the network. Functional smearing in this context describes the
phenomenon that a neuron or hidden state is involved in multiple functions at the same time.
Our findings confirm that dropout regularization can enhance a network’s resistance to adversarial
attacks, and this effect is only observable within a specific range of dropout probabilities. Furthermore,
our study reveals that dropout regularization significantly increases the distribution of functional
smearing across a wide range of dropout rates. However, it is the fraction of networks with lower
levels of functional smearing that exhibit greater resilience against adversarial attacks. This suggests
that, even though dropout improves robustness to fooling, one should instead try to decrease
functional smearing.

Keywords: adversarial attacks; information smearedness; artificial neural networks; information
relay; dropout; fast gradient sign method

1. Introduction

Neural networks are a highly effective tool in the field of artificial intelligence (AI)
as they enable machines to learn and make predictions by analyzing extensive datasets.
These networks are modeled on the complex structure and functionality of the human
brain [1], featuring interconnected layers and nodes that can process intricate information.
Consequently, neural networks can accomplish sophisticated tasks such as recognizing
images [2], making predictions [3], enabling reinforcement learning [4,5], and providing
the foundation for various generative technologies [6].

Minor alterations to input data can result in incorrect outputs from fully trained neural
networks, a phenomenon known as fooling [7,8]. This can occur not only when these
networks serve as classifiers but also to recurrent neural networks [9]. Several strategies,
such as FGSM fooling [9], defensive distillation [10–12], and genetic algorithm-based
image optimization [13], have effectively induced this fooling. FGSM fooling uses the
neural network’s gradient information to produce adversarial perturbations, leading the
network to make incorrect predictions. Defensive distillation trains a secondary network
using pseudo-labels derived from a base network, and genetic algorithm-based image
optimization generates adversarial examples that mislead the network’s predictions. Such
techniques present substantial challenges to the broader implementation of neural networks,

Entropy 2023, 25, 933. https://doi.org/10.3390/e25060933 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4872-1961
https://orcid.org/0000-0001-9523-6689
https://doi.org/10.3390/e25060933
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060933?type=check_update&version=2


Entropy 2023, 25, 933 2 of 13

given their potential to manipulate systems such as self-driving cars using simple images
or to deceive security cameras via clothing print [14].

Numerous countermeasures against fooling have been suggested, each demonstrating
varying degrees of efficacy. Preprocessing or augmenting data are potential strategies [15–18],
as is the detection of manipulated images [19]. Model compression [20] or diversification of
the dataset [21] can also be employed. However, a comprehensive solution remains elusive.

The issue of fooling in neural networks underscores the necessity to enhance their ro-
bustness and generalization capabilities, thereby closing the gap between their performance
and human abilities. Addressing these issues is of paramount importance for ensuring the
dependable and secure deployment of neural networks in a variety of applications.

Interestingly, while artificial neural networks are inspired by natural brains, humans do
not display the same vulnerability to fooling. Even in the face of severely degraded images,
humans can still recognize objects, demonstrating a level of robustness that current neural
networks do not possess. Furthermore, humans often demonstrate overgeneralization
instead of overfitting, exhibiting an ability to generalize that extends beyond the training
data [22].

The vulnerability of neural networks to fooling may be attributed to the differences
in information processing compared with natural brains. In this study, we focus on the
distribution of information within the neural network. Previous research has indicated
that representations, or the information a neural network possesses about its environment,
are dispersed throughout deep-learned networks [23–26]. In contrast, neural networks
optimized using genetic algorithms do not exhibit this tendency and demonstrate greater
robustness to noise [24,27,28]. Likewise, human brains, which have been “optimized”
by evolution, employ distinct brain regions for computation [29]. We hypothesize that
distributed representations are more susceptible to fooling than localized ones.

Dropout is a popular regularization technique that is commonly used to prevent
overfitting and promote generalization in neural networks [30]. It has been suggested that
dropout may also be effective in preventing fooling attacks, as it has been shown to mitigate
FGSM fooling [31]. However, the impact of dropout on the neural network’s representation
(that is, information about the environment, not features, see below) is not well understood.
Dropout works by randomly setting a fraction of the weights in the neural network to zero,
which forces each hidden unit to work with a randomly chosen subset of other units during
training. This encourages each unit to develop useful features independently and become
more robust to changes in the input. However, the hidden units within a layer still learn to
perform different functions from one another, and they may specialize in differentiating
between specific features [30]. As a result, the activations of the hidden units become
sparse, even in the absence of sparsity-inducing regularizers. Thus, dropout may lead to
the automatic development of sparse representations in the neural network.

In this context, the term “representations” refers to the number of features that a neural
network extracts. It is not surprising that convolutional kernels can benefit from dropout
when used correctly [32]. However, the type of representations that we are interested in
are not just individual features, but rather the information that the network has about its
environment and how that information flows through the network. By examining these
representations, we can identify the functional modules that enable the network to perform
its task by taking advantage of relay information [26] (See Section 2 for details). In other
words, even if a network has a diverse set of features, it may not necessarily distribute
them across different functions. For example, consider the MNIST task [33]. A network that
has individual detectors for each numeral may have different functional modules for each
numeral, each with several specific feature detectors. In contrast, a network with various
sub-features that are necessary to differentiate between numerals would use all or most of
its feature detectors for all numerals (see Figure 1 for an illustration).

The idea of having sparsely distributed functional modules is based on neuroscience
research [29]. In natural brains, different functions are compartmentalized into modules,
even though there are numerous feature detectors, such as in the retina [34]. In contrast, ar-



Entropy 2023, 25, 933 3 of 13

tificial neural networks trained using backpropagation recruit all weights into all functions
simultaneously, preventing the emergence of functional modules, even though distinct
feature detectors may be learned. While regularization and dropout techniques make net-
works more robust to overfitting and insensitive to fooling, they likely involve all weights
and improve feature detection. However, the effect of these methods on creating functional
modules and the degree of overlap between them is unknown.

input layer

features

hidden layer

output layer

class labels 1 32 1 32

sparsely distributed overlapping

… …

A)

B)

features / nodes features / nodes

function 1

function 2

function 3

Figure 1. Illustration of the difference between separate feature detectors and sparsely distributed
functions. Panel (A): On the top, the input layer of a neural network is connected to the hidden layer
and the output layer. Here we assume a classification task to distinguish three numerals: 1, 2, and 3.
On the left side, we have 5 feature detectors, which can be convolutional kernels or just nodes in the
hidden layer detecting a feature. The orange, red, and purple sections depict how those detectors
can contribute to the outputs. On the left, we find three distinct modules, one for each numeral,
but they do not rely on the same features. On the right, we find overlapping modules, where each of
the functional modules involves features other modules also rely on. Panel (B) shows an illustration
of a functional association matrix. Squares in white show high functional involvements between
the categorized class and the nodes of the hidden layer (feature detectors, respectively), and black
squares indicate no functional involvement between a node and a function.

The distinction between the enhanced feature detection facilitated by dropout and
the functional modules identified by the information relay method becomes particularly
salient in light of the concept of “Optimal Brain Damage” [35]. This idea entails calculating
each weight’s contribution to the training error, which can be estimated by examining
the diagonal values of the Hessian matrix. These diagonal values, associated with each
weight (parameter) of the neural network, represent the second derivative of the loss
function. If these values are low, it suggests that the weight only mildly contributes to
classification and can be pruned. This implies that by making a network sparser—through
having more weights become irrelevant (exhibit low curvature of the loss function)—the
network’s robustness is increased. Interestingly, it has been demonstrated that dropout
flattens the curvature of the loss function for each weight, thereby enabling more weights to
be pruned [36–39]. Therefore, dropout effectively induces sparsity in the weight matrices,
a phenomenon we will corroborate using our trained models.

However, it is crucial to note that the sparsity of the weight matrix does not necessarily
equate to the functional modularity of the hidden layer states. Consider a neural network
with a hidden and an output layer, defined by two weight matrices. The first matrix,
A, might have the dimensions of i = 784 input pixels by n = 20 hidden nodes, while
the second matrix, B, could have the dimensions of n = 20 hidden nodes by o = 10



Entropy 2023, 25, 933 4 of 13

output classes. Suppose we hypothesize two nodes, namely n = 1 and n = 2, forming a
functional module necessary for controlling the output of the last class, o = 9. In this case,
all weights Ai,1,2 and B1,2,9 contribute to that function. However, if we only consider the
weights—as we would do when calculating the loss function curvatures using the Hessian
matrix—we would be unable to identify which nodes, n, form functional modules, since
the value of a single output node (e.g., o = 9) depends on all weights in A and Bn,9. This
comparison underscores the differences between the concepts of sparse weight matrices
(and dropout-induced sparsity) and the functional modules we consider herein.

In this study, we explore the impact of various levels of dropout on networks trained
to perform the MNIST task and investigate the correlation between dropout and the
network’s ability to resist FGSM fooling attacks. We also assess the level of functional
compartmentalization in the network by examining relay information. We compare those
results with the effect that dropout has on making the curvature of the loss function for each
weight flatter. Our goal is to investigate whether dropout can induce or prevent functional
compartmentalization and to determine if networks with compartmentalized functional
modules are more resilient to fooling attacks.

2. Materials and Methods

In this section, we detail the methodology used to create a neural network that can
resist adversarial attacks. We start by describing the network’s architecture and the prepa-
ration of training and test data. We then explain how we incorporated dropout, a common
regularization technique, into network training, and how we used the Fast Gradient Sign
Method (FGSM) to generate fooled images for testing the network’s robustness. Addition-
ally, we discuss the use of relay information to identify functional modules in the network.

2.1. Architecture of the Neural Network

To conduct this study, a neural network was designed with a specific architecture.
The network consisted of three layers: an input layer with 784 neurons to handle the MNIST
images, a hidden layer with 20 neurons, and an output layer with 10 neurons to represent
the 10 different numeral classes. The hidden layer of the network also served as a dropout
layer that incorporates dropout functionality when the probability is greater than zero [30].
The highest output value neuron was used to indicate the class of the input through the
use of softmax. The threshold function used in the hidden layer was a hyperbolic tangent,
while the output layer used a sigmoid.

In theory, provided that the size of the hidden layer is sufficiently large [40,41], the net-
work should be capable of performing the MNIST task. However, factors such as smearing,
fooling, the effect of dropout, and the extent of overfitting (stability) could be influenced by
the size of the network. Therefore, a range of network sizes was examined (as detailed in
the Section 4), and an optimal size of 20 was selected for this experiment.

2.2. MNIST Dataset

The MNIST dataset is widely recognized as the “Hello world!” example for deep
learning and comprises 28× 28 pixel images of handwritten digits ranging from 0 to 9.
It contains 60,000 images for training and 10,000 images for testing the neural network.
To prepare the dataset for the dense network, the 28× 28 pixel images were converted
into a vector of 784 entries by normalizing the pixel values, which lie within the range
of [0.0, 1.0].

2.3. Training Neural Networks

To investigate the effect of dropout on the network’s robustness, 100 neural networks
were trained for each dropout value using the default Kaiming method [42] from PyTorch
to seed the networks with random weights. The Adam optimizer [43] was used with the
mean squared error (MSE) loss function. The networks were trained until they reached a
minimum accuracy of 96%.



Entropy 2023, 25, 933 5 of 13

2.4. Fooling Using Fast Gradient Signed Method

The Fast Gradient Sign Method (FGSM) is a widely used technique for generating
adversarial images capable of tricking image recognition systems. The method involves
introducing a small perturbation to the original image, causing it to be misclassified by
the system. To accomplish this, a forward and backward pass is performed, similar to
normal classification, but, instead of updating weights to improve classification accuracy,
the perturbation required to misclassify the image is calculated. The magnitude of the
perturbation is controlled by a parameter called ε, which can be set by the researcher. If ε
is set to zero, no perturbation is applied, and, as ε increases, the image is increasingly
distorted. An illustration of the FGSM process can be found in Figure 2, which shows the
original image, the perturbation, and the resulting fooled image.

original perturbation fooled

0.0 0.2
0.0

0.5

1.0

ac
cu

ra
cy

best
worst

Figure 2. The figure illustrates FGSM fooling. The three images of the numeral 6 as original data,
the perturbation computed by the FGSM fooling in red positive in blue negative values, and the
resulting fooled image where the perturbation is applied to the original image. The plot on the
right further showcases the classification accuracy across different values of ε, which represents the
magnitude of the perturbation ranging from [0.0, 0.3]. The data from the network that could be fooled
the easiest are shown as worst in black, and the most robust network is shown in green as best.

To evaluate a network’s resistance to fooling, we test its classification accuracy for
varying levels of ε (ranging from 0.0 to 0.3) using the FGSM technique. Higher accuracy for
larger ε values indicates higher robustness against fooling. The mean accuracy is calculated
for each ε value by sampling over (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3), and all 10,000 test images
are used to generate fooled images at each ε level.

2.5. Relay Information, Greedy Algorithm, and Functional Modules

An artificial neural network can be viewed as an information-theoretic channel. When
perfectly trained, the information entering the network, such as input images of numerals,
correlates flawlessly with the output classes. When not trained perfectly, this correlation
becomes weaker. Channel information quantifies this correlation using entropy measures,
and can thus determine how much information “flows” through the network. Neverthe-
less, information is transmitted from one layer to another, with different hidden nodes
potentially conveying distinct portions of the information. Relay information, IR, ref. [26]
measures the amount of information passing through a subset of nodes in the hidden layer
that is not transmitted through the remaining nodes within the same layer. The calculation
of IR (as defined in Equation (1)) necessitates the measurement of four random variables
(refer to Figure 3 panels A and B):

• Xin—the input classes;
• Xout—the classification results;
• YR—the hidden states of the subset deemed responsible for relaying the information;
• Y0—the residual set of hidden states not incorporated in YR.

IR = H(Xin; Xout; YR|Y0); , (1)

It should be noted that IR is not only an indicator of how functionally relevant a set of
nodes is, but also how much information passes through that set compared with the rest of
the nodes in the same layer. Sets of nodes with high IR are therefore highly functionally



Entropy 2023, 25, 933 6 of 13

relevant. However, given that there are 2N possible bi-partitions for N nodes, it can be
challenging to identify which set of nodes is essential. Fortunately, a greedy algorithm
can be used to address this issue. The algorithm first computes IR for all hidden nodes,
and then calculates IR for each set obtained by removing one node at a time. The node
whose removal has the least impact on IR is considered the least important and is removed.
This process is repeated until all nodes have been removed. The output is a sequence of
nodes in ascending order of importance in relaying information from inputs to outputs.
This calculation is repeated for every output class, resulting in aggregated information, IA,
for each node and each function (see Figure 3 panel C as an illustration). This information
is displayed in a matrix, M, with dimensions C× N, where C is the number of classes the
neural network classifies and N is the number of nodes. This matrix, called the functional
association matrix, shows which nodes are associated with which function (see Figure 1
panel B for an illustration).

(B)
Xin

Xout
Y
YR
Y0
I(Xin; Xout; Y )

Xin
Xout
Y
YR
Y0
I(Xin; Xout; Y )

Xin
Xout
Y
YR
Y0
I(Xin; Xout; Y )

Xin
Xout
Y
YR
Y0
I(Xin; Xout; Y )

IR

(A) (C)

IR = H(Xin; Xout; YR|Y0)

IR = H(Xin; Xout; YR|Y0)

4 3 2 1

IA = H(Xin; Xout; YR|Y0)IA = H(Xin; Xout; YR|Y0)

IA = H(Xin; Xout; YR|Y0)IA = H(Xin; Xout; YR|Y0)

Figure 3. Illustration of relay information. Panel (A) depicts a neural network with an input image
showing a 0 from the MNIST dataset. Information propagates through the network, represented by
the gray or black arrows (where black arrows are assumed relevant), leading to the green circled
hidden nodes being the relevant relays (YR) and the irrelevant nodes being circled orange (Y0).
Panel (B) displays IR = H(Xin; Xout; YR|Y0) as the green surface in the information-theoretic Venn
diagram, which also encompasses the input and output variables Xin and Xout. Panel (C) details how
the IR for each set of nodes of different sizes is calculated (points). The greedy algorithm commences
at the largest set size and continues to successively remove the least significant node, yielding a
sequence of nodes of increasing importance (red dots). The IA for each node is represented by the
information loss upon its removal.

2.6. Smearedness

In this context, “smearedness” refers to how the functionality of a neural network is
distributed across its nodes and the classes it recognizes. If sets of nodes are organized into
independent modules that contribute to different functions, the distribution is considered
sparse. Conversely, if nodes overlap and contribute to multiple functions, the distribution is
considered “smeared”. To quantify the smearing of each node, we use the M matrix, which
contains the aggregated information, IA, for each node and each concept. The smearing of
each node can be calculated based on this matrix, as described in Hintze et al., 2018 [23].

3. Hessian Matrix and Sparsity Induced by Dropout

The diagonal of the Hessian matrix reflects the curvature of the loss function. Its
calculation, while computationally demanding, is well-defined [44,45]. To ascertain the
Hessian matrix, one can either use random inputs and outputs, or samples from training or
testing data. The function employed in this study (the hessian from PyTorch in conjunction
with cross entropy as a loss function) computes the Jacobian of the Jacobian matrix for
all parameters (weights) of the network. This yields the Hessian matrix, the diagonal of
which delineates the curvature of the loss function for each parameter, given the input and
output data.

The resulting curvatures provide an approximate measure of the influence of each
weight change on the loss. When using random inputs, we obtain a broad understanding
of how much each weight generally impacts outputs. However, when using training



Entropy 2023, 25, 933 7 of 13

or test data, we can ascertain how much each weight is specifically implicated in the
classification task.

In this context, we are interested in discerning the contribution of each weight to
each possible classification function. Therefore, the Hessian matrix is calculated for 100
randomly selected images from each of the 10 numerals independently. This generates one
vector extracted from the Hessian diagonal for each numeral class. Each element of such a
vector illustrates the extent to which its associated weight contributes to the loss calculated
for a single class. A low value suggests that the weight is not crucial for the classification
of the specific class for which the Hessian matrix is calculated. A high value, on the other
hand, implies strong involvement in the classification of that class.

For each trained neural network, we compute the correlation coefficient, Hc, between
all those 10 vectors. A high correlation signifies that weights contribute in a similar way to
all functions, whereas a low correlation suggests that weights contribute differently to all
10 classes. In other words, a high correlation indicates a more sparse association between
weights and functions.

4. Results

For all experiments, the MNIST handwritten numeral dataset was utilized. This
dataset contains 60,000 grayscale training images and 10,000 for testing. The same dataset
has been used to verify the relay information method previously [26]; hence, it is a reliable
basis for the assessment of representational smearing. Although other fooling methods are
available, we concentrated our efforts on FGSM fooling [9] in this study.

Potential dependencies of dropout, smearing, and robustness to fooling on the size
of the network, particularly the width of the hidden layer, were considered. Therefore,
we trained neural networks with varying widths of hidden layers, ranging from 10 to
30, in increments of 2, for 20 epochs. The test and training accuracies were recorded to
check for potential overfitting effects (refer to Figure 4A). Given that dropout is intended to
prevent overfitting, it is crucial to ensure that the potential effects we observe are not simply
due to this confounding factor. Otherwise, possible effects on fooling might arise from the
prevention of overfitting and not making networks generalize more. Over the range of
network sizes tested, we found that overfitting does not play a significant role. Moreover,
networks with sizes below 20 demonstrate improved accuracy when nodes are added,
but this effect becomes less pronounced after 20 hidden nodes (20 nodes is arguably at the
inflection point), suggesting that a hidden layer of 20 nodes may indeed be a good choice.

1012141618202224262830
model size

0.90
0.91
0.92
0.93
0.94
0.95

ac
cu

ra
cy

A

test
train

1012141618202224262830
model size

0.220
0.225
0.230
0.235
0.240
0.245
0.250

ro
bu

st
ne

ss

1.0

1.1

1.2

1.3

1.4

sm
ea

rin
g

B

Figure 4. Properties of networks with different hidden layer sizes (10 to 30 in increments of 2) trained
on the MNIST task. Results from 30 replicates, each trained for 20 epochs, are shown. In panel (A),
training accuracy is in black, and test accuracy is in red. The shadows indicate the 95% confidence
intervals. In panel (B), fooling robustness is in black (left Y axis), and smearing is in red (right Y axis).
Again, shadows indicate 95% confidence intervals.

While assessing the impact of network size on fooling robustness (see Figure 4B, black
line), we found that the optimal robustness is achieved with networks of size 18, with an
insignificant decrease observed for networks of size 20. There seems to be a trend in the



Entropy 2023, 25, 933 8 of 13

reduction of robustness for larger networks. This further supports the choice of networks
with a hidden layer comprising 20 nodes, where the highest fooling robustness is observed.

We also measured the smearedness for networks of varying hidden layer sizes, and it
decreases as networks become larger (see Figure 4B, red line). It is important to note that
the smearedness measure, which computes partial sums over a matrix, is confounded
by the size of the matrix. Hence, measuring different values for different sizes is to be
expected. Consequently, comparing the degree of smearedness between networks of
different sizes may not be feasible in the first place. Nevertheless, we present these results
here as a reference.

When we train the neural network on the MNIST dataset with varying dropout rates,
we expect that it will affect the network’s robustness to FGSM fooling. As has been shown
previously, dropout can have a positive effect on robustness, which we can confirm in our
experiments with a dropout probability of pdropout = 0.05 (see Figure 5). However, this
effect is small and limited to a particular range of dropout probabilities. This may be due to
the specific dataset and hyperparameters used. Nonetheless, our results confirm previous
findings [46]. On the other hand, as the dropout rate increases, the network’s robustness to
fooling decreases.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dropout

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

ro
bu

st
ne

ss

+ - - - - - - - -

Figure 5. This figure shows the effect of varying dropout values on the robustness of a deep neural
network to adversarial attacks. The y-axis represents the mean accuracy of the model after an attack,
while the x-axis represents the dropout value used during training. The figure suggests that the
model is more robust to attacks at dropout values between 0.035 and 0.05. The Mann–Whitney U test
was used to analyze the significance of the results: + indicate significantly higher robustness, - for
significantly lower (p < 0.05).

While dropout is designed to mitigate overfitting, its effectiveness might vary depend-
ing on different dropout probabilities. Success or failure in preventing overfitting could
confound robustness to fooling or smearing. Similarly, to rule out that dropout has different
effects on the 10 numeral classes—for example, it might improve one class while being
ineffective on another—we compared the impact of dropout on overfitting for each of the
10 numerals separately.

Although there were minor performance differences among the 10 numeral classes (see
Figure 6), we found this effect to be minimal. We also observed that the difference between
training and testing accuracy was consistently minimal (at most around 1%). Therefore, we
anticipated that our other results, which are related to fooling or smearing and are caused by
different degrees of dropout, would not depend on whether dropout has caused networks
to behave differently with respect to different classes or overfitting/generalization.

Next, for all trained networks, the IR and the functional association matrices were
computed and the degree of functional smearing was determined. Interestingly, we found
dropout to increase significantly, smearing over a wide range of dropout rates (see Figure 7
panel A). This is a remarkable finding because it confirms our initial intuition, that dropout,
while improving feature detection, still does not lead to a better function separation,
but instead can drive functional smearing. We also found that, again as expected, robustness
to fooling negatively correlates with functional smearing (see Figure 7 panel B), and that
less smeared networks are indeed more robust to fooling. This is analogous to our initial



Entropy 2023, 25, 933 9 of 13

argument that natural brains seem to not suffer from fooling as much as their artificial
counterparts do, possibly due to them arranging functions into modules. Here we confirm
that this principle is applied to artificial neural networks. Observing that the inverse
conclusion might not apply, our results do not show that the robustness to fooling in
natural neural networks comes from being modular. Our results do not contradict this but
show the correlation for the networks trained here.

0.9

0.95

1.0
ac

cu
ra

cy

0 1 2 3 4
0.

0
0.

05 0.
1

0.
15 0.
2

0.
25 0.
3

dropout

0.9

0.95

1.0

ac
cu

ra
cy

5
0.

0
0.

05 0.
1

0.
15 0.
2

0.
25 0.
3

dropout

6

0.
0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

dropout

7

0.
0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

dropout

8

0.
0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

dropout

9

Figure 6. Mean training (black) and testing (red) accuracy of neural networks trained with different
levels of dropout (x axis). The same networks used in Figure 5 were used here. Shadows in black and
red behind the solid lines (almost negligible) indicate 95% confidence intervals. Each panel shows the
accuracy for each of the ten numerals tested. When measuring the accuracy for a numeral, the dataset
contained 500 images of the indicated numeral, and 50 images of other numerals.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dropout

1.0

1.1

1.2

1.3

1.4

1.5

1.6

sm
ea

rin
g

+ + + + + + + +A

1.1 1.2 1.3 1.4 1.5
smearing

0.16

0.18

0.20

0.22

0.24

0.26

0.28

ro
bu

st
ne

ss

B

Figure 7. Correlation between functional smearing, dropout, and robustness to fooling. Panel (A)
shows the average functional smearing over the dropout rate (black line) measured for all trained
networks (individual results for each network are shown as black dots). The gray shadow shows
the 95% confidence intervals. The + indicates where the distribution of functional smeardness at
different dropout levels is significantly larger than the distribution when no dropout is applied, and
the dashed line shows the average (p-value of a Mann–Whitney U test 0.001 for dropout 0.075, in the
other cases p < 0.1× 10−5). Panel (B) shows the correlation between the robustness to fooling (y-axis)
over the degree of smearing (x-axis), again for all trained neural networks. The dashed line shows a
linear fit to the data, and the significance of the correlation is p < 0.1× 10−9.

The Effect of Dropout on the Slope of the Loss Function

We previously proposed that dropout, while successful at preventing overfitting, does
not serve as a good predictor for fooling robustness and, in fact, encourages functional
“smearing”. Unfortunately, functional “smearing” negatively correlates with fooling ro-
bustness. Therefore, the utility of dropout in preventing fooling is quite limited. At the
same time, dropout improves feature detection and reduces the significance of individual
weights, thereby allowing for network sparsity through pruning. These two ideas—of
dropout not preventing fooling effectively while also driving functional sparsity—seem to
be contradictory.



Entropy 2023, 25, 933 10 of 13

As explained in the Introduction, dropout has two roles: improving feature detectors
and enhancing the sparsity of weight matrices. On the other hand, functional modules
exist at the level of the hidden layer nodes, which are defined by the information relay
method. We have demonstrated (see Figure 7) that less smeared (more modular) functional
assignment correlates with more robust networks.

However, we can also assess how much each weight contributes to each function,
and how much dropout influences this contribution through an alternate method. The diag-
onal of the Hessian matrix, given the set of inputs and outputs to the network, indicates the
slope of the loss function for each weight (parameter) of a neural network. Particularly, low
values on this diagonal signify weights that do not contribute significantly to the measured
function. Thus, we computed the Hessian values for all networks trained with different
dropout rates. However, the Hessian matrix for each model was computed independently
for each of the 10 numeral classes, allowing us to evaluate the involvement of each weight
in each of the 10 numeral classes independently (see Section 2).

By correlating these vectors with each other (Hc), we can measure the extent to which
weights contribute to the same or different functions. High values of Hc indicate that
weights are involved in multiple functions simultaneously, while low values indicate a
clear separation (sparsity) of functions for each weight.

Our results showed that, as previously described, dropout promotes the separability of
features (see Figure 8A). Simultaneously, this separation (low Hc) makes networks more vul-
nerable to fooling (see Figure 8B). Finally, we found only a very weak correlation between
Hc and functional smearing. These results reinforce our earlier findings (Figures 5 and 7)
that dropout is a weak predictor or driver of fooling robustness, despite improving fea-
ture separation. These findings also support the notion that functional modularization,
as defined by the information relay method, is a better predictor for fooling robustness.

0.0 0.1 0.2 0.3
dropout

0.10

0.15

0.20

0.25

H
c

A

0.15 0.20 0.25
robustness

0.10

0.15

0.20

0.25

H
c

B

1.2 1.4
smearing

C

Figure 8. Correlation coefficient between Hessian matrix diagonals (Hc) obtained from models tested
on the 10 different MNIST numeral categories. Panel (A) presents the mean H̄c averaged over all
100 trained models (black line) for each degree of dropout (x-axis). The gray shadow indicates
the 95% confidence intervals. Panel (B) displays the correlation between Hc and robustness for all
trained networks as a scatter plot. The dashed line shows a linear fit to the data, and the correlation
coefficient is 0.42 with a p-value virtually zero (<0.9× 10−50). Panel (C) illustrates the correlation
between Hc (again for all tested models) and their functional smearing (x-axis). The dashed line
shows a linear fit to the data, and the correlation coefficient is 0.08 with a p-value of 0.003, indicating
a very weak correlation.

5. Discussion

Dropout is a widely employed technique for mitigating overfitting in deep learning,
and, as a result, it is also utilized to counteract fooling, such as the FGSM fooling examined
in this study. Intriguingly, dropout has been found to enhance feature detection, which is
thought to contribute to network robustness. In this research, we investigated the impact of
dropout on both fooling and functional modularization. Functional modules, defined here
as sets of nodes with high relay information, expand the concept of features by determining
which network components contribute to the identification of each class. Our findings



Entropy 2023, 25, 933 11 of 13

reveal that, while dropout improves fooling robustness as anticipated, it also influences
functional modularization. However, rather than fostering more modular systems, it results
in more functionally dispersed ones. Paradoxically, the systems exhibiting less dispersion
are more resistant to fooling.

In our previous studies [24,25,47], we demonstrated the significant influence of genetic
algorithms on the distribution of representations, elucidating that evolved neural networks
exhibit less information smearing. Despite our advancements, we have not identified a
backpropagation method that exhibits similar effects, possibly due to the novelty of the
concept of representational smearing. Notably, even dropout, with its ability of modulating
feature detection, appears to induce less functional modularity in network representations.
This observation, therefore, presents an new avenue for future research: the exploration for
a backpropagation method capable of condensing representations.

In this study, we exclusively used the MNIST dataset to demonstrate the effect, and
employed a single network architecture with one hidden layer. Future research should
explore more complex datasets, networks, and training regimes. Nevertheless, our results,
based on these data and network structure, suggest that stricter functional modulariza-
tion could potentially create networks with significantly enhanced resistance to fooling,
although the variation induced by dropout does not offer this functionality.

Alternative approaches, such as elastic weight consolidation (EWC) [47], also aim to
improve network modularization in the hopes of achieving better generalization, fooling
robustness, or overcoming catastrophic forgetting. Examining the impact of these methods
on the functional modules defined in this study may yield further insights for developing
more robust functional modules in the future.

Author Contributions: N.S.: Conceptualization, methodology, validation, formal analysis, investiga-
tion, visualization. S.K.: conceptualization, methodology, validation, formal analysis, investigation,
visualization. A.H.: resources, data curation, software, supervision, conceptualization, project admin-
istration, writing, review, and editing. P.M.: formal analysis, project administration, writing, review,
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code to generate and analyze the data can be found here: https://
github.com/Hintzelab/Robustness-of-Sparsely-Distributed-Representations-to-Adversarial-Attacks-
in-Deep-Neural-Networks.

Acknowledgments: This work was supported in part by the BEACON Center for the Study of
Evolution in Action at Michigan State University. The computations were performed on resources
provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science
(UPPMAX) under Project SNIC 2020-15-48 and by the Institute for Cyber-Enabled Research at
Michigan State University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shanmuganathan, S. Artificial Neural Network Modelling: An Introduction; Springer: Berlin/Heidelberg, Germany, 2016.
2. Fu, J.; Zheng, H.; Mei, T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 4438–4446.

3. Razi, M.A.; Athappilly, K. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification
and regression tree (CART) models. Expert Syst. Appl. 2005, 29, 65–74. [CrossRef]

4. Nandy, A.; Biswas, M.; Nandy, A.; Biswas, M. Google’s DeepMind and the Future of Reinforcement Learning. In Reinforcement
Learning: With Open AI, TensorFlow and Keras Using Python; Apress: Berkeley, CA, USA, 2018; pp. 155–163.

5. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement learning. arXiv 2016,
arXiv:1611.02167.

https://github.com/Hintzelab/Robustness-of-Sparsely-Distributed-Representations-to-Adversarial-Attacks-in-Deep-Neural-Networks.
https://github.com/Hintzelab/Robustness-of-Sparsely-Distributed-Representations-to-Adversarial-Attacks-in-Deep-Neural-Networks.
https://github.com/Hintzelab/Robustness-of-Sparsely-Distributed-Representations-to-Adversarial-Attacks-in-Deep-Neural-Networks.
http://doi.org/10.1016/j.eswa.2005.01.006


Entropy 2023, 25, 933 12 of 13

6. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

7. Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable
images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 427–436.

8. Heo, J.; Joo, S.; Moon, T. Fooling neural network interpretations via adversarial model manipulation. arXiv 2019, arXiv:1902.02041.
9. Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; Abbeel, P. Adversarial attacks on neural network policies. arXiv 2017,

arXiv:1702.02284.
10. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a defense to adversarial perturbations against deep neural

networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016;
pp. 582–597.

11. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57.

12. Papernot, N.; McDaniel, P. Extending defensive distillation. arXiv 2017, arXiv:1705.05264.
13. Mao, X.; Chen, Y.; Wang, S.; Su, H.; He, Y.; Xue, H. Composite adversarial attacks. In Proceedings of the AAAI Conference on

Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 8884–8892.
14. Khalid, F.; Hanif, M.A.; Rehman, S.; Shafique, M. Security for machine learning-based systems: Attacks and challenges during

training and inference. In Proceedings of the 2018 International Conference on Frontiers of Information Technology (FIT),
Islamabad, Pakistan, 17–19 December 2018; pp. 327–332.

15. Bakhti, Y.; Fezza, S.A.; Hamidouche, W.; Déforges, O. DDSA: A defense against adversarial attacks using deep denoising sparse
autoencoder. IEEE Access 2019, 7, 160397–160407. [CrossRef]

16. Guesmi, A.; Alouani, I.; Baklouti, M.; Frikha, T.; Abid, M. Sit: Stochastic input transformation to defend against adversarial
attacks on deep neural networks. IEEE Des. Test 2021, 39, 63–72. [CrossRef]

17. Qiu, H.; Zeng, Y.; Zheng, Q.; Guo, S.; Zhang, T.; Li, H. An efficient preprocessing-based approach to mitigate advanced adversarial
attacks. IEEE Trans. Comput. 2021. [CrossRef]

18. Zeng, Y.; Qiu, H.; Memmi, G.; Qiu, M. A data augmentation-based defense method against adversarial attacks in neural networks.
In Proceedings of the Algorithms and Architectures for Parallel Processing: 20th International Conference, ICA3PP 2020,
New York City, NY, USA, 2–4 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 274–289.

19. Shan, S.; Wenger, E.; Wang, B.; Li, B.; Zheng, H.; Zhao, B.Y. Gotta catch’em all: Using honeypots to catch adversarial attacks on
neural networks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual,
9–13 November 2020; pp. 67–83.

20. Liu, Q.; Wen, W. Model compression hardens deep neural networks: A new perspective to prevent adversarial attacks. IEEE
Trans. Neural Netw. Learn. Syst. 2021. [CrossRef]

21. Kwon, H.; Lee, J. Diversity adversarial training against adversarial attack on deep neural networks. Symmetry 2021, 13, 428.
[CrossRef]

22. Geirhos, R.; Temme, C.R.; Rauber, J.; Schütt, H.H.; Bethge, M.; Wichmann, F.A. Generalisation in humans and deep neural
networks. Adv. Neural Inf. Process. Syst. 2018, 31, 7549–7561.

23. Hintze, A.; Kirkpatrick, D.; Adami, C. The Structure of Evolved Representations across Different Substrates for Artificial
Intelligence. arXiv 2018, arXiv:1804.01660.

24. Hintze, A.; Adami, C. Cryptic information transfer in differently-trained recurrent neural networks. In Proceedings of the 2020
7th International Conference on Soft Computing & Machine Intelligence (ISCMI), Stockholm, Sweden, 14–15 November 2020;
pp. 115–120.

25. Bohm, C.; Kirkpatrick, D.; Hintze, A. Understanding memories of the past in the context of different complex neural network
architectures. Neural Comput. 2022, 34, 754–780. [CrossRef] [PubMed]

26. Hintze, A.; Adami, C. Detecting Information Relays in Deep Neural Networks. arXiv 2023, arXiv:2301.00911.
27. Kirkpatrick, D.; Hintze, A. The role of ambient noise in the evolution of robust mental representations in cognitive systems. In

Proceedings of the ALIFE 2019: The 2019 Conference on Artificial Life, Online, 29 July–2 August 2019; MIT Press: Cambridge,
MA, USA, 2019; pp. 432–439.

28. Hintze, A.; Adami, C. Neuroevolution gives rise to more focused information transfer compared to backpropagation in recurrent
neural networks. Neural Comput. Appl. 2022, 1–11. [CrossRef]

29. Sporns, O.; Betzel, R.F. Modular Brain Networks. Annu. Rev. Psychol. 2016, 67, 613–640. [CrossRef]
30. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
31. Wang, S.; Wang, X.; Zhao, P.; Wen, W.; Kaeli, D.; Chin, P.; Lin, X. Defensive dropout for hardening deep neural networks under

adversarial attacks. In Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
San Diego, CA, USA, 5–8 November 2018; pp. 1–8.

32. Cai, S.; Shu, Y.; Chen, G.; Ooi, B.C.; Wang, W.; Zhang, M. Effective and efficient dropout for deep convolutional neural networks.
arXiv 2019, arXiv:1904.03392.

http://dx.doi.org/10.1109/ACCESS.2019.2951526
http://dx.doi.org/10.1109/MDAT.2021.3077542
http://dx.doi.org/10.1109/TC.2021.3076826
http://dx.doi.org/10.1109/TNNLS.2021.3089128
http://dx.doi.org/10.3390/sym13030428
http://dx.doi.org/10.1162/neco_a_01469
http://www.ncbi.nlm.nih.gov/pubmed/35016223
http://dx.doi.org/10.1007/s00521-022-08125-0
http://dx.doi.org/10.1146/annurev-psych-122414-033634


Entropy 2023, 25, 933 13 of 13

33. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

34. Zhang, Y.; Kim, I.J.; Sanes, J.R.; Meister, M. The most numerous ganglion cell type of the mouse retina is a selective feature
detector. Proc. Natl. Acad. Sci. USA 2012, 109, E2391–E2398. [CrossRef] [PubMed]

35. LeCun, Y.; Denker, J.; Solla, S. Optimal brain damage. Adv. Neural Inf. Process. Syst. 1989, 2, 598–605.
36. Wei, C.; Kakade, S.; Ma, T. The implicit and explicit regularization effects of dropout. In Proceedings of the International

Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 10181–10192.
37. Zhang, Z.; Zhou, H.; Xu, Z.Q.J. Dropout in training neural networks: flatness of solution and noise structure. arXiv 2021,

arXiv:2111.01022.
38. Zhang, Z.; Zhou, H.; Xu, Z. A Variance Principle Explains Why Dropout Finds Flatter Minima. 2021. Available online:

https://openreview.net/forum?id=Ctjb37IOldV (accessed on 1 May 2023).
39. Zhang, Z.; Xu, Z.Q.J. Implicit regularization of dropout. arXiv 2022, arXiv:2207.05952.
40. Kolmogorov, A.N. On the representation of continuous functions of many variables by superposition of continuous functions of

one variable and addition. In Proceedings of the Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1957;
Volume 114, pp. 953–956.

41. Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the International Conference on
Neural Networks, San Diego, CA, USA, 21–24 June 1987; Volume 3, pp. 11–14.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Bishop, C. Exact calculation of the Hessian matrix for the multilayer perceptron. Neural Comput. 1992, 4, 494–501. [CrossRef]
45. Pearlmutter, B.A. Fast exact multiplication by the Hessian. Neural Comput. 1994, 6, 147–160. [CrossRef]
46. Vivek, B.; Babu, R.V. Single-step adversarial training with dropout scheduling. In Proceedings of the 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 947–956.
47. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-

Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1073/pnas.1211547109
http://www.ncbi.nlm.nih.gov/pubmed/22891316
https://openreview.net/forum?id=Ctjb37IOldV
http://dx.doi.org/10.1162/neco.1992.4.4.494
http://dx.doi.org/10.1162/neco.1994.6.1.147
http://dx.doi.org/10.1073/pnas.1611835114

	Introduction
	Materials and Methods
	Architecture of the Neural Network 
	MNIST Dataset
	Training Neural Networks
	Fooling Using Fast Gradient Signed Method
	Relay Information, Greedy Algorithm, and Functional Modules
	Smearedness

	Hessian Matrix and Sparsity Induced by Dropout
	Results
	Discussion
	References

