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Abstract: Low-light image enhancement aims to improve the perceptual quality of images captured
under low-light conditions. This paper proposes a novel generative adversarial network to enhance
low-light image quality. Firstly, it designs a generator consisting of residual modules with hybrid
attention modules and parallel dilated convolution modules. The residual module is designed to
prevent gradient explosion during training and to avoid feature information loss. The hybrid attention
module is designed to make the network pay more attention to useful features. A parallel dilated
convolution module is designed to increase the receptive field and capture multi-scale information.
Additionally, a skip connection is utilized to fuse shallow features with deep features to extract more
effective features. Secondly, a discriminator is designed to improve the discrimination ability. Finally,
an improved loss function is proposed by incorporating pixel loss to effectively recover detailed
information. The proposed method demonstrates superior performance in enhancing low-light
images compared to seven other methods.

Keywords: generative adversarial networks; low-light image enhancement; hybrid attention module;
parallel dilated convolution module

1. Introduction

Images captured in low-light conditions, such as cloudy days and nights, exhibit low
brightness, high noise levels, and color distortion. These factors significantly impact the ac-
curacy of high-level vision tasks, including object detection [1] and image segmentation [2].
Therefore, enhancing low-light images becomes crucial for improving the accuracy of
such tasks under low-light conditions. Traditional low-light image enhancement methods
primarily rely on histogram equalization and Retinex theory. The histogram equalization
method enhances the global contrast of the image by stretching its histogram distribution.
However, it tends to amplify background noise while reducing the contrast of useful infor-
mation. Additionally, it can cause local oversaturation and loss of detailed information [3].
On the other hand, the Retinex theory method estimates the illumination component from
the original image and removes it to obtain an enhanced image. However, it may introduce
a halo phenomenon, especially in images with significant lighting variations, which affects
the visual quality of the image [4]. With the advancements in deep-learning techniques,
low-light image enhancement methods based on deep learning have been proposed. These
methods utilize paired image data to train the network and to obtain a model that can en-
hance low-light images. These methods require paired images that are low-light images and
original high-definition images. However, acquiring paired images in real-world scenarios
is challenging. Consequently, unsupervised low-light image enhancement methods based
on generative adversarial networks (GANs) have been proposed [5,6]. These methods do
not rely on paired images for training and are better suited for practical applications.

To enhance the quality of enhanced images, we propose a generative adversarial
network (GAN) for unsupervised low-light image enhancement. The network comprises
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a generator and a discriminator. The generator is responsible for generating high-quality
images, while the discriminator determines whether an image is a generated high-quality
image or an original high-quality image. By leveraging the interplay between the generator
and discriminator, we enhance the image generation capability of the generative network.
The parameters of both networks are adjusted based on the output of the discriminator.
Through iterative training, the adversarial network becomes unable to distinguish be-
tween generated and original images. Upon completion of training, we utilize the trained
generator to enhance low-light images.

The main contributions of this paper are summarized as follows:

• We designed a novel generator for enhancing low-light images. Firstly, we designed a
hybrid attention module consisting of a channel attention module and a pixel attention
module. Secondly, we utilized the hybrid attention module as a sub-module within the
design of the residual module. Thirdly, we designed a parallel dilated convolution module
to capture multiscale information. Lastly, we combined the designed residual module with
the hybrid attention module, and parallel dilated convolution module to construct the
generative network. Additionally, we employed a skip connection to fuse shallow features
with deep features, enhancing the representation of the generative network.

• We propose an adversarial network that includes two discriminators: a global discriminator
and a local discriminator. The local discriminator is constructed using six standard convo-
lution layers, while the global discriminator employs three different dilated convolution
layers, skip connections, and four standard convolution layers.

• We propose an improved loss function by introducing pixel loss into the loss function of the
generative adversarial network. It is beneficial for recovering detailed image information

In this section, we introduce the background of low-light image enhancement and our
contribution, and Section 2 presents the related work on low-light image enhancement. In
Section 3, we explain our proposed method in detail. In Section 4, we show and compare
our simulation results. In Section 5, the conclusion is given.

2. Related Work

In recent years, numerous methods have been proposed for low-light image enhance-
ment. These methods can be categorized into traditional techniques and deep-learning
approaches. The traditional methods can be further divided into two categories: low-light
image enhancement based on histogram equalization and low-light image enhancement
based on Retinex theory. The low-light image enhancement method based on histogram
equalization aims to improve the image by adjusting the distribution of pixel intensities
in the histogram, thereby altering the grayscale of each pixel. However, images enhanced
using this method often suffer from significant noise, color distortion, and loss of detailed
information [7]. The low-light image enhancement method based on Retinex theory en-
hances low-quality images by estimating the illumination component within the image
and then subtracting this estimated component from the original image. Based on Retinex
theory, the interference of noise in the reflectance component is not considered, thus leading
to artifacts and overexposure in the enhanced image [8].

With the advancement of deep-learning techniques, a multitude of low-light image
enhancement methods have been developed based on deep-learning approaches. These
methods have shown superior performance in enhancing image quality compared to tradi-
tional methods. For instance, Wei et al. introduced a data-driven Retinex-Net method [9].
Firstly, the proposed method decomposed the input image into illumination and reflectance
components. To address the issue of noise interference in the reflectance component,
the BM3D algorithm was employed, effectively mitigating the noise interference in the
Retinex-Net theory-based method. Secondly, an encoder-decoder network was utilized
to extract feature information from the illumination component, aiming to alleviate the
impact of lighting variations on the image. Lastly, the adjusted illumination and reflectance
components were combined to enhance the low-light image. However, this method cannot
effectively recover the color information of the image. Yang et al. introduced a deep recur-
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sive band network as a semi-supervised network for enhancing low-light images [10]. The
network consists of two stages: band recomposition and recursive band learning. In the
band recomposition stage, the network is trained using paired low-light and normal-light
images. The trained network reconstructs a linear band representation of an enhanced
normal-light image. In the recursive band learning stage, learnable linear transformations
and given bands are utilized to recover the color information of the image. While the
enhanced image produced by this method exhibits improved color distributions, visually
appealing contrast, and preserved detailed information, it is important to note that it does
not effectively eliminate the presence of noise. Guo et al. introduced a method called
Zero-reference deep curve estimation for low-light image enhancement [11]. This approach
utilizes a deep convolutional network to estimate the dynamic range of the higher-order
curve and applies pixel-level adjustments to generate the enhanced image. One significant
advantage of this method is that it does not rely on paired images, thus avoiding potential
degradation of image quality caused by overfitting. However, the method has a large num-
ber of image parameters, and the training and inference time is longer. Li et al. introduced
the Zero-DCE++ method [12], which is based on the Zero-DCE approach. In Zero-DCE++,
convolution layers in Zero-DCE are replaced with depthwise separable convolutions, reduc-
ing the overall number of network parameters. This modification effectively addresses the
issues associated with the large parameter count and lengthy training time of the original
Zero-DCE method. However, it is important to note that the Zero-DCE++ method may
introduce an overexposure phenomenon in the enhanced images.

To further enhance the quality of the enhanced image, generative adversarial networks
have been employed in low-light image enhancement. The generative adversarial networks
are a special type of deep-learning model that has found wide applications in various
tasks such as image denoising [13], image super-resolution [14,15], and image classifica-
tion [16]. In recent years, researchers have also applied generative adversarial networks
in the domain of image enhancement. Hua et al. introduced a method for joint image
quality assessment using generative adversarial networks [17]. In their approach, they
utilized a multi-term perceptual loss function that incorporated image quality assessment,
content, and texture within the generative adversarial network. This combination of loss
terms helped in reducing the presence of artifacts in the enhanced image. However, it
should be noted that this method may result in a loss of certain color feature information.
Kim et al. proposed a low-light GAN method [18]. In their approach, they incorporated
spectral normalization and a color loss function to enhance the efficiency of network
training and to improve the extraction of color information. Additionally, they employed
local illumination during the training process to address saturation issues in bright areas.
However, it is worth mentioning that the method encountered challenges associated with
underexposure. Shi et al. introduced a low-light image enhancement method that combines
Retinex theory with a generative adversarial network [19]. Their approach involves em-
ploying the U-Net network as both the decomposition and enhancement modules within
the generative network. To address the issue of image blurring, the method incorporated
a structural similarity loss. However, it is important to note that the method ignored the
impact of noise in the enhanced images. Guo et al. proposed a multiscale feature-guided
low-light image enhancement method [20]. The method employed a generative adversarial
network as the baseline, and a multiscale feature-guided attention mechanism was inte-
grated into the generator. This attention mechanism aided in removing noise information
from the image, resulting in improved performance for non-uniform-light image enhance-
ment. However, it should be noted that the enhanced images produced by this method
exhibited color deviation issues.

Yang et al. introduced a generative adversarial network method based on Vision
Transformer (VIT) [21]. The method involved two branches. The first branch employed
an iterative multi-branch network for feature extraction, while the second branch uti-
lized a reconstruction module for image enhancement. By combining the VIT generator,
which was designed based on multi-head multi-channel attention (MHMCA) and local fea-
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ture fusion module (LFFM), with a conventional convolutional discriminator, the method
effectively addressed challenges such as chromatic aberration, artifacts, and noise com-
monly encountered in low-light image enhancement. However, it is worth noting that the
method has a large number of parameters, which can contribute to longer training times.
Jiang et al. introduced the EnlightenGAN method [22]. Their approach utilized a self-
feature-preserving loss and a self-regularized attention mechanism for unsupervised low-
light image enhancement. However, the enhanced images by this method often exhibit
obvious artifacts. Li et al. proposed an effective generative adversarial network method [23].
This method designed a dense residual block and an enhancement block for low-light image
enhancement, successfully mitigating the presence of artifacts in the images. Nonetheless,
the method may face challenges when enhancing images with uneven illumination. Qu et al.
presented a generative adversarial network with a multiple discriminators method [24].
The method employed a multiscale discriminator to evaluate images from different per-
spectives and utilized a feature fusion attention module to address issues related to uneven
illumination in images. However, it is important to note that the method does not explicitly
consider the impact of noise. Rao et al. introduced a component enhancement network
based on a generative adversarial network and Retinex theory [25]. Their network used a
parallel two-branch structure to enhance both the illumination and reflectance components,
effectively mitigating the interference of noise.

Although the enhanced image quality is better using the generative adversarial
network-based method, there are still large differences between the enhanced image and
the real normal-light image, especially since the enhanced image has noise and artifacts,
and some regions are overexposed or underexposed. Such issues severely impact the
overall quality of the enhanced images. To address these limitations and further enhance
the quality of the results, we propose a novel generative adversarial network in this paper.
Experimental results demonstrate that our method effectively improves the quality of the
enhanced images.

3. Proposed Methods

The mathematical model of low-light image enhancement based on a deep-learning
module can be expressed as follows:

R̂ = F(P; θ) (1)

where P ∈ R3×H×W represents the low-light image with height H and width W, θ are the
parameters of the deep-learning module, F() is a deep-learning model, and R̂ ∈ R3×H×W

represents the enhanced image obtained from the low-light image P using the deep-learning
model F(). The loss function is used to measure the distance between the enhanced image
and the normal-light image. By employing the gradient descent method, the parameters of
the deep-learning model are iteratively optimized to minimize the loss function and obtain
the optimal network parameters. The optimal network parameters are given by:

θ̂ = argminLoss
θ

(
R̂, G

)
(2)

where G ∈ R3×H×W represents the normal-light image.
Based on (1), we designed a novel generative adversarial network to improve the

quality of enhanced images derived from low-light images in an unsupervised manner. Our
generative adversarial network comprises a generator and a discriminator. The generator
is responsible for enhancing the low-light image. It takes the original low-light image as
input and generates an enhanced image. The discriminator, on the other hand, serves
to determine whether the input image is a generated high-quality image or the original
high-quality image. The output of the generator, as well as the original high-quality image,
are used as the inputs for the discriminator. The original high-quality image and original
low-light image are not paired images. To train our network, we employ a loss function
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that measures the performances of both the generator and the discriminator. The loss
function guides the optimization process using the Adam optimizer to achieve optimal
performance for low-light image enhancement. Through multiple iterations of training,
the discriminator becomes incapable of distinguishing between high-quality images and
generated images from low-light images. After the training, we use the trained generator
to enhance the low-light image.

3.1. Proposed Generator

We designed a generator for enhancing low-light images without supervision. The
architecture of our proposed generator is shown in Figure 1. Our generator adopted the
traditional encoder-decoder structure, which has been proven to be effective in the field of
image enhancement through a large number of experiments. The generator comprises two
main components: the top-down network (Part A in Figure 1) and the bottom-up network
(Part B in Figure 1). In the top-down network, we employed downsampling operations to
reduce the feature map size, thereby increasing the receptive field of the network. This can
extract more low-frequency information that captures the general outline information of the
image. Conversely, the bottom-up network utilizes upsampling operations to enlarge the
feature map size, allowing the network to focus on high-frequency information that contains
more detailed image features. To effectively fuse the high-frequency and low-frequency
information, we incorporated short connections that connect the top-down and bottom-up
networks. These connections facilitate the exchange of information between different levels
of the network and enhance the integration of features. The overall architecture of our
generative network is depicted in Figure 1.
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Inspired by Jiang et al. [22], we performed a preprocessing operation on the original
low-light image to prevent overexposure and underexposure of the output image. Firstly,
we utilized the luminosity method to convert the original RGB image into a one-channel
grayscale map, denoted as I. Secondly, we normalized the grayscale map to the range [0, 1],
enabling us to obtain the luminance weight value of each pixel in the image. Finally, we
used the image obtained by 1-I as our attention map. This attention map assigns larger
weight values to pixels in the dark areas, while smaller weight values are assigned to pixels
in the light areas. This approach allows the network to focus more on enhancing the dark
areas of the image. The low-light image is element-wise summed with its attention map,
and the output is used as the input of the generative network. In our designed generative
network, we first used a standard convolution and LeakyReLU activation function to
increase the number of channels from 3 to 32. To extract more useful features, we designed
a residual module with a hybrid attention module, which further increased the number of
channels from 32 to 64. The input of the designed residual module is the output of the first
LeakyReLU activation.
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To extract low-frequency information, we increased the receptive field of the network
by downsampling the output of the residual module. The size of the output feature map
obtained by downsampling is half the size of the input feature map. To extract features
at different scales and depths, we designed a parallel dilated convolution module. This
module shares the same input feature map and number of output channels as the residual
module. The size of the output feature map and the number of output channels are equiva-
lent to those of the first downsampling layer. The output of the parallel dilated convolution
module and the output of the first downsampling layer are connected by concatenation
operation. For simplicity, we named the above module as module 1, which consists of
our designed residual module, parallel dilated convolution module, and downsampling
layer. To further extract low-frequency information, we constructed module 2 using the
same parallel dilated convolution module, residual module, and downsampling layer as in
module 1. Module 2 has an identical structure to module 1.

The designed residual module was used to extract feature information from the output
feature map of module 2. Subsequently, an upsampling layer and a standard convolution
layer with the LeakyReLU activation function were applied to increase the feature map’s
size and adjust the number of output channels. To reduce the loss of information during
upsampling, we employed a concatenation operation to merge the output feature map of
the LeakyReLU activation function with the out feature map of module 1. Next, we utilized
our proposed residual module to extract detailed information from the fused feature map.
Additionally, we still used the upsampling layer, standard convolution with LeakyReLU
activation function, and short connection and residual module to fuse shallow features and
extract more detailed information. To obtain the weight for each pixel, we used a standard
convolution with a Tanh activation function to adjust the number of output channels to
3. Finally, by multiplying the weight with the attention map and adding it to the original
low-light image, we obtained the enhanced image.

In our designed generator, as shown in Figure 1, we designed a residual module with
a hybrid attention module to extract features, as shown in Figure 2. This design effectively
extracts the deep features while preventing issues such as gradient disappearance and
gradient explosion. The designed residual module consists of two sets of hybrid attention
modules, the convolution layer with LeakyReLU activation function, a standard convo-
lution layer, and a skip connection. Such structure is more conducive to extracting more
feature information and also improves the correlation between different information. The
hybrid attention module, as shown in Figure 2, consists of a channel attention module
and a pixel attention module. The channel attention module is composed of two branches.
The first branch is a skip connection to retain input feature maps. The second branch
computes the weight of different channels of feature maps. The more important the feature
map, the larger the weight of the corresponding channel of the feature map. The final
output feature maps of channel attention are obtained by multiplying the outputs of two
branches. The second branch incorporates global average pooling, convolution layer, and
sigmoid activation function. The global average pooling converts the global information
into a 1× 1× C (C is the number of channels) feature map. The convolution layer extracts
features, and the sigmoid activation function determines feature weights.
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Figure 2. Proposed residual module with a hybrid attention mechanism.

The pixel attention module also consists of two branches. The first branch is also a
skip connection to retain input feature maps. The second branch computes the weight of
different pixels of feature maps, assigning larger weights to more important pixels. This
branch includes a convolution layer with a LeakyReLU activation function, a standard
convolution layer, and a sigmoid activation function. The convolution layer with the
LeakyReLU activation function is responsible for extracting the pixel features from the
feature map. The standard convolution layer and sigmoid activation function are used
to extract features and determine pixel weights. The final output feature maps of pixel
attention are obtained by multiplying the outputs of the two branches. Finally, the output
feature map of the hybrid attention mechanism is obtained by element-wise summation of
the output feature maps from the pixel attention module and the channel attention module.

The output of the hybrid attention module can be expressed as follows:

F(x) = C(x)⊕ P(x) (3)

where x is the input feature map of the hybrid attention module and C(x) and P(x)
are the output feature map of the channel attention module and pixel attention module,
respectively. They are expressed as follows:

C(x) = x⊗ σ{Conv2[pool(x)]} (4)

P(x) = x⊗ σ{Conv2[Conv1(x)]} (5)

where pool() represents the global average pooling operation. Conv1() represents the
convolution layer with the LeakyReLU activation function. σ(·) represents the sigmoid
activation function. Conv2() represents the convolution layer. The global average pooling
operation pool(xk) is expressed as

pool(xk) =
1

W × H

W

∑
i=1

H

∑
j=1

xk(i, j) (6)

where xk represents the feature map on the kth channel. W and H represent the width and
height of the feature map, respectively.

In the generator shown in Figure 1, the downsampling operation will lose some
features. To reduce information loss and extract more low-frequency information with
different scales, we designed a parallel dilated convolution module. This module comprises
three parallel dilated convolutions with dilated rates of 1, 3, and 5, along with a standard
convolution layer. Compared with standard convolution, dilated convolution can increase
the receptive field with the same kernel size. This enables the extraction of more effective
low-frequency information. The structure of the parallel dilated convolution module is
shown in Figure 3.
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For the generator, our proposed residual module and parallel dilated convolution
module can effectively extract various types of features in images, and the attention module
enables the extracted features to contain more abundant information. Skip connections are
introduced to fuse different depth features to extract more effective features. Compared
to other low-light image enhancement methods, our proposed network can extract more
important features, thereby enhancing the quality of the low-light images.

3.2. Proposed Discriminator

The discriminator is responsible for determining whether the input image is the
enhancement image or the original normal-light image. It improves image recovery in
generative networks by leveraging the interplay between the generator and discriminator.
To improve the discriminatory ability of the discriminator, we designed the discriminator
shown in Figure 4. This discriminator consists of a global discriminator and a local discrim-
inator. The global discriminator consists of four standard convolutions with a LeakyReLU
activation function and a residual module. The residual module comprises three cascaded
3× 3 dilated convolutions with dilated rates of 2, 3, and 5. By utilizing dilated convolutions,
the receptive field of the discriminator is increased without an increase in the number of
parameters. This improvement in the discriminative ability is achieved by capturing more
contextual information from the input image. Additionally, to mitigate pixel loss during
the cascaded dilated convolution, a shortcut connection is introduced.

Entropy 2023, 25, x FOR PEER REVIEW 9 of 19 
 

 

Fake

Real

Fake Real

Random 
cropped

 patc hes

Rea l/Fake?

Rea l/

Fake?

Global Discr iminator

Local Discriminator

 Element-wise
Sum

R=2   R=3   R=5

Dilated Conv
Conv+

LeakyReLU

 

Figure 4. Proposed discriminator. 

3.3. Proposed Loss Function 

In order to improve the performance of low-light image enhancement, we proposed 

the improved loss function by introducing pixel loss. The complete loss function for our 

proposed generative adversarial networks is expressed as: 

oss Global Loc
Pe

al
GA rcepN GAN pixeal ltuL L L L L      (7)

where 
Global

GAN
L   and 

Local

GAN
L   are the loss functions of the global discriminator and local 

discriminator that are shown in Figure 4, respectively. The 
Global

GAN
L  consists of two parts: 

Global

D
L  and 

Global

G
L . They are expressed as: 

( )

2

~
[ ( ( )) 1]

feak z

Global

z p

Global

G
D G zL   (8)

( ) ( )

2 2

~ ~
[( ( ) 1)] [ ( ( ))]

real x feak z

Globa bGlob l Glo al

x p z p

al

D
L D x D G z     (9)

where G   is the generator of generative adversarial networks. 
GlobalD   is the global 

discriminator. x   and z   are the normal-light image and input low-light image of the 

generator, respectively. The ( )realp x   and ( )fakep z   are normal-light images and 

generated images by the generator, respectively. The 
Local

GAN
L consists of two parts: 

Local

D
L  

and 
Local

G
L . They are expressed as: 

( )

2

~
[ ( ( )) 1]

zfake

Loca Local

z p

l

G
D G zL    (10)

( ) ( )

2 2

~ ~
[( ( ) 1)] [ ( ( ))]

real x feak z

Local Local

x p z

a

p

Loc l

D
DL x D G z    (11)

where 
LocalD   is the local discriminator. ( )

real
p x   and ( )

fake
p z   are normal light image 

patches and generated image patches by the generative network, respectively. 

The perceptual loss is expressed as: 

, ,

2

, , 2

1 1, ,

1
( ) || ( ( )) ( ) ||

i j i j
W H

perceptual i j i j

x yi j i j

L x G x x
W H

 
 

   (12)

where x  represents the original low-light image, ( )G x  represents the enhanced light 

image, and ,i j  represents the feature map obtained from the thj  convolutional layer 

in the ith   block of the pre-trained VGG16 network. 
,i j

W   and 
,i j

H   represents the 

Figure 4. Proposed discriminator.

We used the patches obtained by randomly cropping the input image of the global
discriminator as the input of the local discriminator. It can reduce the underexposure or
overexposure of the enhanced image. Our global discriminator and local discriminator
both adopt the Markovian discriminator structure, which can obtain more information in
the image and improve the ability to discriminate between original high-quality images
and generated high-quality images.
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3.3. Proposed Loss Function

In order to improve the performance of low-light image enhancement, we proposed
the improved loss function by introducing pixel loss. The complete loss function for our
proposed generative adversarial networks is expressed as:

Loss = LGlobal
GAN + LLocal

GAN ++LPerceptual + Lpixel (7)

where LGlobal
GAN and LLocal

GAN are the loss functions of the global discriminator and local discrim-
inator that are shown in Figure 4, respectively. The LGlobal

GAN consists of two parts: LGlobal
D and

LGlobal
G . They are expressed as:

LGlobal
G = Ez∼p f eak(z) [D

Global(G(z))− 1]
2

(8)

LGlobal
D = Ex∼preal(x) [(DGlobal(x)− 1)]

2
+ Ez∼p f eak(z) [D

Global(G(z))]
2

(9)

where G is the generator of generative adversarial networks. DGlobal is the global discrim-
inator. x and z are the normal-light image and input low-light image of the generator,
respectively. The preal(x) and p f ake(z) are normal-light images and generated images by
the generator, respectively. The LLocal

GAN consists of two parts: LLocal
D and LLocal

G . They are
expressed as:

LLocal
G = Ez∼p

f ake(z)
[DLocal(G(z))− 1]

2
(10)

LLocal
D = Ex∼preal(x) [(DLocal(x)− 1)]

2
+Ez∼p f eak(z) [D

Local(G(z))]
2

(11)

where DLocal is the local discriminator. preal(x) and p f ake(z) are normal light image patches
and generated image patches by the generative network, respectively.

The perceptual loss is expressed as:

Lperceptual(x) =
1

Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

∣∣∣∣ϕi,j(G(x))− ϕi,j(x)
∣∣∣∣2

2 (12)

where x represents the original low-light image, G(x) represents the enhanced light image,
and ϕi,j represents the feature map obtained from the jth convolutional layer in the ith block
of the pre-trained VGG16 network. Wi,j and Hi,j represents the feature map dimension.
The pixel loss is used to measure the distance between the enhanced light image and the
original low-light image. It is expressed as

Lpixel =
m

∑
i=1

(x− G(x))2 (13)

where x represents the original low-light image and G(x) represents the enhanced-light image.

4. Simulation and Discussion

In this section, we conduct a comparative analysis of our method with seven low-
light enhancement methods: the Alpha-rooting method [26], the LIME method [27], the
CycleGAN method [28], the Retinex-Net method [9], the EnlightenGAN method [22], the
Zero-DCE method [11], and the Zero-DCE++ method [12]. We evaluated the performance
of these methods on both a no-reference image dataset and a full-reference image dataset.
We used NIQE (Natural Image Quality Evaluation) [29], SSIM (Structural Similarity) [30],
PSNR (Peak Signal-to-Noise Ratio) [31], and BRISQUE (Blind/Referenceless Image Spatial
Quality Evaluator) [32] as evaluation metrics. In our experiments, the batch size was 4,
and other parameters were set to zero to initialize the network parameters. For a fair
comparison, we used the same Adam optimizer and parameters β1 = 0.5 and β2 = 0.999
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as used in EnlightenGAN [22] to optimize the loss function of the network. The network
was trained with 200 epochs, a learning rate of 0.0001 for the first 100 epochs, and a linear
decrease to 0 for the next 100 epochs. The whole training process is described in Algorithm
1. We used the Ubuntu 18.04 system in our experiment. The GPU is an NVIDIA GeForce
GTX 2080Ti. The deep-learning framework is PyTorch.

Algorithm 1. Training procedure for our proposed method.

1: For K epochs do
2: For k(k is a hyperparameter, k = 1) steps do
3: Sample minibatch of m low-light image samples {z (1), . . . , z(m)} from low-light image
domain.
4: Sample minibatch of m normal-light image samples {z (1), . . . , z(m)} from normal-light
image domain.
5: Update the discriminator by Adam Optimizer:

∇D

{
E[(D(x(i))− 1)]

2
+E[D(G(z(i)))]

2
}

6: End for
7: Sample minibatch of m low-light image samples { z (1), . . . , z(m)} fromlow-light image
domain.
8: Update the generator by Adam Optimizer:

∇G

{
E[D(G(z(i)))]

2
}

9: End for

4.1. Datasets and Metrics

We used the dataset used in reference [22] as our training dataset. It has 914 low-light
images and 1016 normal-light images with size 600 × 400. We selected 150 low-light
images from the SICE dataset as the no-reference image test dataset [33]. We used the
LOL dataset that includes 500 paired low-light/normal illuminated images as the full-
reference image test dataset [9]. The Natural Image Quality Evaluation (NIQE), Structural
Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR), and BRISQUE(Blind/Referenceless
Image Spatial Quality Evaluator) are used to evaluate the performance of our method and
the other seven methods. The NIQE is a no-reference evaluation metric. NIQE can be
expressed as the distance between the MVG (Multivariate Gaussian) model of NSS (natural
scene statistics) features extracted from the test image and the MVG model of perceptual
quality features extracted from the natural image. It can be expressed as:

NIQE =

√
((v1 − v2)

T(
∑ 1+∑ 2

2
)
−1

(v1 − v2)) (14)

where v1, v2, ∑ 1 and ∑ 2 are denoted as the mean vector and covariance matrix of the
MVG model for natural images and the MVG model for test images. The NIQE metric is
used to evaluate the quality of the enhanced image, where a lower NIQE score indicates
higher image quality. BRISQUE is a no-reference image quality assessment. It involves
extracting mean subtracted contrast normalized coefficients (MSCN) from the test image,
and fitting the MSCN values to an asymmetric generalized Gaussian distribution (AGGD).
The features of the fitted Gaussian distribution are extracted and input to a support vector
machine (SVM) for regression to obtain the assessment results of image quality. BRISQUE
can be expressed as:

F̂(m, n) =
F(m, n)− µg(m, n)

σg(m, n) + C
(15)
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where F(m, n) is the test image, F̂(m, n) is the mean subtracted contrast normalized coeffi-
cient at each pixel, µg(m, n) is the local mean signal value, and σg(m, n) is the local contrast
function. The smaller the NIQE, the higher the quality of the enhanced image. The SSIM is
used to measure the similarity of two images, which can be expressed as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(16)

where x and y represent the grayscale image of the enhanced image and the grayscale
image of the normal-light image, respectively. µx and µy represents the mean value of x
and y, respectively. σx and σy represents the variance of x and y, respectively. σxy represents
the covariance of x and y. c1 = (0.01× L)2 and c2 = (0.03× L)2 are the constant terms to
maintain stability. L is the dynamic range of pixel values. The larger the SSIM value, the
higher the quality of the enhanced image.

The PSNR is also used to measure the quality of the enhanced image. It can be
expressed as

PSNR = 20 · log10(
MAXI√

MSE
) (17)

where MAXI represents the maximum value of image pixel color and MSE represents the
mean square error, which can be expressed as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

∣∣∣∣Ien(i, j)− Igt(i, j)
∣∣∣∣2 (18)

where Ien and Igt represent the grayscale image of the enhanced image and the grayscale image
of the normal-light image. The larger the PSNR, the higher quality of the enhanced image.

4.2. Ablation Study

In this section, we performed an ablation study to evaluate the performance of each
module in our designed network. We compared our complete method with several varia-
tions, including our method without the attention module without parallel dilated convolu-
tion, without three cascaded dilated convolutions with residual structure, and without the
pixel-loss function. The full-reference image dataset is used as a test dataset. The results are
shown in Table 1. The PSNR values are 26.6451, 20.5918, 23.3964, 25.9701, and 26.1541 for
our complete method, our method without attention module, our method without parallel
dilated convolution, our method without cascaded dilated convolution, and our method
without pixel-loss function, respectively. The SSIM values are 0.8817, 0.7686, 0.7761, 0.8667,
and 0.8771 for our method and the other methods based on different modules, respectively.
The NIQE values are 4.4719, 6.7748, 5.2070, 4.8803, and 4.9612 for our method and the
other methods based on different modules, respectively. The BRISQUE values are 21.2218,
25.3088, 22.2576, 21.5149, and 40.0626 for our method and the other methods based on
different modules, respectively. Our complete method with all modules has the largest
values in PSNR and SSIM, and the smallest NIQE and BRISQUE. These results demonstrate
that each module we proposed plays a crucial role in enhancing low-light images .

Table 1. Assessment results of each module.

No_Attention No_Parallel
Dilated Conv

No_Cascaded
Dilated Conv No_Pixel Loss Ours

PSNR 20.5918 23.3964 25.9701 26.1541 26.6451

SSIM 0.7686 0.7761 0.8667 0.8771 0.8817

NIQE 6.7748 5.2070 4.8803 4.9612 4.4719

BRISQUE 25.3088 22.2576 21.5149 40.0626 21.2218
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4.3. No-Referenced Image Quality Assessment

We randomly selected two images from the no-reference dataset and two images
that were previously used in the EnlightenGAN method as input images. We compared
our proposed method with the Alpha-rooting method, the LIME method, the CycleGAN
method, the Retinex-Net method, the EnlightenGAN method, the Zero-DCE method, and
the Zero-DCE++ method. The low-light images and the enhanced images by different
methods are shown in Figure 5. Each image contains a complete image and two enlarged
detail images. The first row of images contains the original low-light images. The second
to the eighth rows are the enhanced images by the Alpha-rooting method, LIME method,
CycleGAN method, Retinex-Net method, EnlightenGAN method, Zero-DCE method,
Zero-DCE++ method, and our proposed method, respectively.
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In the first column, the images enhanced by the CycleGAN method and Retinex-Net
method exhibit noticeable image blurring. The image enhanced by the Alpha-rooting
method does not improve the brightness of the image. The image enhanced by the LIME
method improves the brightness of the image but loses some details, which affects the visual
perception. The image enhanced by the EnlightenGAN method shows color distortion.
The images enhanced by the Zero-DCE method and the Zero-DCE++ method suffer from
significant overexposure. In the second column, the images enhanced by the Alpha-rooting
method exhibit noticeable image blurring. The image enhanced by the LIME method is
overexposed. The image enhanced by the CycleGAN method appears underexposed and
blurry. The image enhanced by the Retinex-Net method exhibits artifacts. The image
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enhanced by the EnlightenGAN method is underexposed. The images enhanced by Zero-
DCE and Zero-DCE++ suffer from being overexposed. In the third and fourth columns,
the LIME method and Alpha-rooting method do not effectively improve the brightness
of the images. The images enhanced by the Retinex-Net method have better brightness,
but the colors of the enhanced images are unnatural and affect visual perception. The
images enhanced by the CycleGAN method appear noisy and more blurred. The enhanced
images by the EnlightenGAN method show some color bias. The enhanced images by the
Zero-DCE method and Zero-DCE++ method still exhibit overexposure.

In summary, the CycleGAN method generates low-quality enhanced images. The
Alpha-rooting method does not effectively improve the brightness of the image. The LIME
method often results in a loss of details in the enhanced images. The Retinex-Net method
introduces color distortion and artifacts. The EnlightenGAN method suffers from color
distortion. The Zero-DCE and Zero-DCE++ methods tend to overexpose the enhanced
images. In comparison, our proposed method demonstrates superior performance. The
images enhanced by our method exhibit better brightness and sharpness. They appear
more natural and better visually for different low-light images.

The NIQE values of the four enhanced images by different methods are shown in
Table 2. It is evident that the NIQE values for the 1st, 2nd, 3rd, and 4th enhanced images
using our method are lower than those obtained by the other methods. Moreover, the
average NIQE value of the enhanced images produced by our method is the smallest,
followed by the EnlightenGAN method and the Zero-DCE++ method. Similarly, the
BRISQUE values of the four enhanced images by different methods are shown in Table 3.
The BRISQUE values for the 1st, 2nd, 3rd, and 4th enhanced images using our method
are smaller than those of the other methods. Moreover, the average BRISQUE value of
the enhanced images by our method is also the smallest, followed by the Zero-DCE++
method and the EnlightenGAN method. These results indicate that our proposed method
outperforms other methods in enhancing low-light images.

Table 2. NIQE values of four enhanced images by different methods.

Alpha LIME CycleGAN Retinex-Net EnlightenGAN Zero-DCE Zero-DCE++ Ours

1st image 6.9561 6.6348 7.5064 12.4557 5.2253 8.8149 7.8973 5.1815

2nd image 7.1162 4.7842 5.8236 6.7309 3.6692 5.1637 4.5945 3.4426

3rd image 8.2354 8.3674 6.5934 10.6873 5.2263 6.3784 6.1283 5.1637

4th image 8.3671 6.3724 7.6354 11.3648 4.6992 4.4762 4.1164 3.9651

Average 7.6687 6.5397 6.8897 10.3097 4.7050 6.2083 5.6841 4.4382

Table 3. BRISQUE values of four enhanced images by different methods.

Alpha LIME CycleGAN Retinex-Net EnlightenGAN Zero-DCE Zero-DCE++ Ours

1st image 42.6327 43.6249 38.6523 44.2361 30.4125 36.2578 33.6245 30.5261

2ndimage 41.2961 40.4375 40.1263 48.2763 29.1547 30.1542 28.7163 20.5238

3rd image 36.1284 37.9658 28.1267 38.1476 23.6321 29.3697 24.3698 22.9086

4th image 39.6183 50.5563 36.2548 53.2174 35.2147 40.1236 29.7211 25.4236

Average 39.9189 43.1461 35.7900 45.9694 29.6035 33.9763 29.1079 24.8455

To quantitatively analyze the performance of different methods, we utilized all images
from the no-reference dataset as input low-light images of each method. The results are
shown in Table 4. The average NIQE values are 8.8655, 8.9884, 8.8816, 7.8564, 5.2901,
6.1564, 5.7911, and 4.8656 for the Alpha-rooting method, LIME method, CycleGAN method,
Retinex-Net method, EnlightenGAN method, Zero-DCE method, Zero-DCE++ method,
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and our proposed method, respectively. Furthermore, the average BRISQUE values are
41.0368, 40.3652, 39.6235, 41.3498, 30.2563, 28.6392, 24.3687, and 23.6987 for the Alpha-
rooting method, LIME method, CycleGAN method, Retinex-Net method, EnlightenGAN
method, Zero-DCE method, Zero-DCE++ method, and our proposed method, respectively.
From the results, it can be observed that our proposed method has the smallest average
NIQE and BRISQUE, followed by the EnlightenGAN method and Zero-DCE method.
This shows that our proposed method outperforms other methods in enhancing low-light
images based on these evaluation metrics.

Table 4. Average NIQE and BRISQUE values of enhanced images by different methods on a no-
reference dataset.

Alpha LIME CycleGAN Retinex-Net EnlightenGAN Zero-DCE Zero-DCE++ Ours

NIQE 8.8655 8.9884 8.8816 7.8564 5.2901 6.1564 5.7911 4.8656

BRISQUE 41.0368 40.3652 39.6235 41.3498 30.2563 28.6392 24.3687 23.6987

4.4. Full-Referenced Image Quality Assessment

We randomly selected two images from the no-reference dataset and one image that
was previously used in the EnlightenGAN method as input images. We compared the
LIME method, CycleGAN method, Retinex-Net method, EnlightenGAN method, Zero-
DCE method, and Zero-DCE++ method with our proposed method. The low-light images
and the enhanced images by different methods are shown in Figure 6. Each image contains
a complete image and enlarged detail images. The first row shows the original low-light
images. The second to the eighth rows display the enhanced images by the Alpha-rooting
method, LIME method, CycleGAN method, Retinex-Net method, EnlightenGAN method,
Zero-DCE method, Zero-DCE++ method, and our proposed method, respectively. The
ninth row presents the original normal light images.

In the first column, the brightness of the images enhanced with the Alpha-rooting
method is low. The images enhanced by the LIME method and the EnlightenGAN method
have better brightness, but the LIME method results in a loss of detailed information, while
the EnlightenGAN method produces underexposed images. The images enhanced by the
CycleGAN method have poor clarity. The image enhanced by the Retinex-Net method
shows obvious color distortion. The images enhanced by the Zero-DCE method and Zero-
DCE++ method suffer from overexposure. In the second column, the image enhanced
by the LIME method contains noise, such as numerous spots in the enlarged part of the
letters, which negatively affects human visual perception. The image enhanced using the
CycleGAN method exhibits blurring artifacts. The image enhanced using the Alpha-rooting
method appears to be underexposed. The images enhanced by the EnlightenGAN method
and Retinex-Net exhibit color distortion, and the Retinex-Net also introduces artifacts.
The images enhanced by the Zero-DCE method and Zero-DCE++ method still suffer from
overexposure. In the third column, the image enhanced by the Alpha-rooting method
shows obvious color distortion. The image enhanced by the CycleGAN method has low
sharpness and severe color distortion. The image enhanced by the LIME method contains a
lot of noise. The images enhanced by the Retinex-Net method and EnlightenGAN contain
color distortion. The image enhanced by the Zero-DCE method and Zero-DCE++ still
suffers from overexposure.
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On the whole, the CycleGAN method has the worst image enhancement performance,
resulting in images with high noise levels and low sharpness. The Alpha-rooting method
does not improve the brightness of the image, and the color of the image enhanced by
this method appears distorted. The EnlightenGAN method and LIME method exhibit
better performance in image enhancement. However, the EnlightenGAN generates color
distortion, while the LIME method generates significant noise. The images enhanced by the
Retinex-Net method have high brightness but also have a lot of speckles. The Zero-DCE
method and Zero-DCE++ method are prone to overexposure. In contrast, the images
enhanced by our proposed method contain a large amount of image information while
having better visual quality and better matching the real-light images.

The values of PSNR, SSIM, NIQE, and BRISQUE for three enhanced images by different
methods are shown in Table 5. For the same low illumination images, each image enhanced
with our proposed method has the largest SSIM and PSNR values as well as the smallest
NIQE and BRISQUE values. These results show that the quality of the enhanced image by
our method is better than the enhanced image by other methods.
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Table 5. Performance index of three images enhanced by different methods.

Alpha LIME CycleGAN Retinex-Net EnlightenGAN Zero-DCE Zero-DCE++ Ours

1st image

PSNR 20.1381 19.8378 23.0964 15.9278 21.8685 15.9880 15.4431 24.1329

SSIM 0.8032 0.7732 0.7944 0.7839 0.9213 0.8529 0.6098 0.9267

NIQE 5.9932 6.9635 7.2511 7.5961 4.9968 5.0166 4.9888 4.7602

BRISQUE 36.5827 34.5062 36.7823 28.1026 23.6384 26.8221 24.7335 23.0285

2nd
image

PSNR 19.6382 17.9721 19.8103 13.2096 23.2018 16.5817 16.3813 27.3032

SSIM 0.7886 0.7770 0.8515 0.7312 0.9208 0.8294 0.7320 0.9352

NIQE 7.6631 8.3652 8.2236 6.2358 3.9624 4.9968 4.6379 3.8891

BRISQUE 37.8260 36.5896 31.2014 24.1036 28.0457 28.0211 27.4125 24.1027

3rd image

PSNR 18.6357 17.3886 19.0584 15.8160 17.3886 17.2072 18.8322 20.5577

SSIM 0.7081 0.6572 0.6837 0.6637 0.8802 0.7673 0.6311 0.8695

NIQE 9.6635 7.6354 9.6102 5.1632 5.1022 5.8906 5.1063 4.9924

BRISQUE 31.2569 30.1265 29.6321 29.3678 30.9519 37.2673 36.1859 28.6571

Average

PSNR 19.3764 18.3995 22.6550 14.9845 20.8196 16.5923 16.8855 23.9979

SSIM 0.7815 0.7358 0.7765 0.7263 0.9074 0.8165 0.6576 0.9101

NIQE 8.9657 7.6547 8.3616 6.3317 4.6871 5.3013 4.9110 4.5472

BRISQUE 34.5632 33.7408 32.5386 29.1913 27.5453 30.7035 29.4440 25.2628

We conducted quantitative experiments to further verify the superiority of our
method’s performance. We tested different methods using all the images in the full-
reference dataset, and the corresponding values of PSNR, SSIM, NIQE, and BRISQUE
are presented in Table 6. The average PSNR values are 17.3354, 17.8337, 21.1463, 17.7947,
23.9674, 19.7008, 18.8698, and 26.6451 for the Alpha-rooting method, LIME method, Cy-
cleGAN method, Retinex-Net method, EnlightenGAN method, Zero-DCE method, Zero-
DCE++ method, and our proposed method, respectively. The proposed method achieves
the highest PSNR, followed by EnlightenGAN and CycleGAN. The average SSIM values
are 0.7022, 0.6321, 0.8322, 0.6257, 0.8640, 0.7416, 0.6463, and 0.8817 for the Alpha-rooting
method, LIME method, CycleGAN method, Retinex-Net method, EnlightenGAN method,
Zero-DCE method, Zero-DCE++ method, and our proposed method, respectively. The
proposed method has the highest SSIM, followed by EnlightenGAN and CycleGAN. The
average NIQE values are 8.9621, 8.9673, 8.1960, 6.9928, 4.8963, 6.0023, 5.3725, and 4.4719
for the Alpha-rooting method, LIME method, CycleGAN method, Retinex-Net method,
EnlightenGAN method, Zero-DCE method, d Zero-DCE++ method, and our proposed
method, respectively. The proposed method has the highest PSNR, followed by Enlight-
enGAN and Zero-DCE++. The average values of BRISQUE are 39.6477, 40.3188, 30.3485,
34.5698, 23.2056, 29.4853, 24.8423, and 21.2218 for the Alpha-rooting method, LIME method,
CycleGAN method, Retinex-Net method, EnlightenGAN method, Zero-DCE method, Zero-
DCE++ method, and our proposed method, respectively. The proposed method has the
highest PSNR, followed by EnlightenGAN and Zero-DCE++. Based on Table 6, our pro-
posed method has larger PSNR and SSIM values than other methods, and our proposed
method has smaller NIQE and BRISQUE values than other methods. This confirms that
our proposed method outperforms other methods in enhancing low-light images.
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Table 6. Performance index of all images enhanced by different methods.

Alpha LIME CycleGAN Retinex-Net EnlightenGAN Zero-DCE Zero-DCE++ Ours

PSNR 17.3354 17.8337 21.1463 17.7947 23.9674 19.7008 18.8698 26.6451

SSIM 0.7022 0.6321 0.8322 0.6257 0.8640 0.7416 0.6463 0.8817

NIQE 8.9621 8.9673 8.1960 6.9928 4.8963 6.0023 5.3725 4.4719

BRISQUE 39.6477 40.3188 30.3485 34.5698 23.2056 29.4853 24.8423 21.2218

5. Conclusions

This paper introduces a novel generative adversarial network for unsupervised low-
light image enhancement. The generator adopts the residual module, hybrid attention
module, parallel dilated convolution module, and skip connection, which can effectively
extract high-frequency information and low-frequency information in the input image. The
discriminator in our approach incorporates a global-local discriminator that is based on the
principles of a Markovian discriminative network. This design choice allows our network
to capture both global and local image characteristics effectively. To further enhance
the discriminative capabilities of the global discriminator, we introduce three cascaded
dilated convolutions to increase the receptive field. To further improve the enhancement
performance, the paper introduces an improved loss function that integrates pixel loss into
the loss function of the generative adversarial network. This addition helps in recovering
more detailed information in the enhanced images. The proposed method is evaluated
on both full-reference and no-reference datasets, and comprehensive experimental results
demonstrate its superior performance compared to seven existing methods for low-light
image enhancement.

Author Contributions: Conceptualization, L.Z. and W.Y.; methodology, L.Z. and W.Y.; software, L.Z.
and W.Y.; validation, L.Z., W.Y. and T.Z.; formal analysis, T.Z.; writing—original draft preparation,
L.Z. and W.Y.; writing—review and editing, L.Z., W.Y. and T.Z.; supervision, T.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: Foundation for Natural Science Foundation of Jilin Province under Grants (20220101190JC).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank everyone who contributed to this article.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Dai, Y.; Liu, W. GL-YOLO-Lite: A Novel Lightweight Fallen Person Detection Model. Entropy 2023, 25, 587. [CrossRef] [PubMed]
2. Wang, H.; Chen, Y.; Cai, Y.; Chen, L.; Li, Y.; Sotelo, M.A.; Li, Z. SFNet-N: An Improved SFNet Algorithm for Semantic Segmentation

of Low-Light Autonomous Driving Road Scenes. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21405–21417. [CrossRef]
3. Lim, S.; Kim, W. DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement. IEEE Trans. Multimed. 2021, 23, 4272–4284.

[CrossRef]
4. Veluchamy, M.; Bhandari, A.K.; Subramani, B. Optimized Bezier Curve Based Intensity Mapping Scheme for Low Light Image

Enhancement. IEEE Trans. Emerg. Topics Comput. 2021, 6, 602–612. [CrossRef]
5. Chen, Y.-S.; Wang, Y.-C.; Kao, M.-H.; Chuang, Y.-Y. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from

Photographs with GANs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18-23 June 2018; pp. 6306–6314.

6. Shi, Y.; Wang, B.; Wu, X.; Zhu, M. Unsupervised Low-Light Image Enhancement by Extracting Structural Similarity and Color
Consistency. IEEE Signal Process. Lett. 2022, 29, 997–1001. [CrossRef]

7. Lin, Y.; Lu, Y. Low-Light Enhancement Using a Plug-and-Play Retinex Model with Shrinkage Mapping for Illumination Estimation.
IEEE Trans. Image Process. 2022, 31, 4897–4908. [CrossRef] [PubMed]

8. Ren, X.; Yang, W.; Cheng, W.-H.; Liu, J. LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model. IEEE
Trans. Image Process. 2022, 29, 5862–5876. [CrossRef]

9. Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex decomposition for low-light enhancement. arXiv 2018, arXiv:1808.04560.

https://doi.org/10.3390/e25040587
https://www.ncbi.nlm.nih.gov/pubmed/37190375
https://doi.org/10.1109/TITS.2022.3177615
https://doi.org/10.1109/TMM.2020.3039361
https://doi.org/10.1109/TETCI.2021.3053253
https://doi.org/10.1109/LSP.2022.3163686
https://doi.org/10.1109/TIP.2022.3189805
https://www.ncbi.nlm.nih.gov/pubmed/35839183
https://doi.org/10.1109/TIP.2020.2984098


Entropy 2023, 25, 932 18 of 18

10. Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; Liu, J. From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light
Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA, 13–19 June 2020; pp. 3060–3069.

11. Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-Reference Deep Curve Estimation for Low-Light Image
Enhancement. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 1777–1786.

12. Li, C.; Guo, C.; Chen, C.L. Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 44, 4225–4238. [CrossRef]

13. Lv, T.; Pan, X.; Zhu, Y.; Li, L. Unsupervised medical images denoising via graph attention dual adversarial network. Appl. Intell.
2021, 51, 4094–4105. [CrossRef]

14. Li, X.; Wu, Y.; Zhang, W.; Wang, R.; Hou, F. Deep learning methods in real-time image super-resolution: A survey. J. Real Time
Image Proc. 2020, 17, 1885–1909. [CrossRef]

15. Ha, V.K.; Ren, J.; Xu, X.; Liao, W.; Zhao, S.; Ren, J.; Yan, G. Optimized highway deep learning network for fast single image
super-resolution reconstruction. J. Real Time Image Proc. 2020, 17, 1961–1970. [CrossRef]

16. Ren, Z.; Zhang, Y.; Wang, S. A Hybrid Framework for Lung Cancer Classification. Electronics 2022, 11, 1614. [CrossRef] [PubMed]
17. Hua, W.; Xia, Y. Low-Light Image Enhancement Based on Joint Generative Adversarial Network and Image Quality Assessment.

In Proceedings of the 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics,
Beijing, China, 13–15 October 2018; pp. 1–6.

18. Kim, G.; Kwon, D.; Kwon, J. Low-Lightgan: Low-Light Enhancement Via Advanced Generative Adversarial Network with Task-Driven
Training. In Proceedings of the International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 2811–2815.

19. Shi, Y.; Wu, X.; Zhu, M. Low-light Image Enhancement Algorithm Based on Retinex and Generative Adversarial Network. arXiv
2019, arXiv:1906.06027.

20. Guo, L.; Wan, R.; Su, G. Multi-Scale Feature Guided Low-Light Image Enhancement. In Proceedings of the International
Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021; pp. 554–558.

21. Yang, S.; Zhou, D.; Cao, J.; Guo, Y. Rethinking Low-Light Enhancement via Transformer-GAN. IEEE Signal Process. Lett. 2022, 29, 1082–1086.
[CrossRef]

22. Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement
Without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [CrossRef]

23. Li, F.; Zheng, J.; Zhang, Y. Generative adversarial network for low-light image enhancement. IET Image Process. 2021, 15, 1542–1552.
[CrossRef]

24. Qu, Y.; Chen, K.; Liu, C.; Ou, Y. UMLE: Unsupervised Multi-discriminator Network for Low Light Enhancement. In Proceedings
of the International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 4318–4324.

25. Rao, N.; Lu, T.; Zhou, Q. Seeing in the Dark by Component-GAN. IEEE Signal Process. Lett. 2021, 28, 1250–1254. [CrossRef]
26. Grigoryan, A.M.; Agaian, S.S. Alpha-rooting and correlation method of image enhancement. Multimodal Image Exploit. Learn.

2022, 12100, 147–156.
27. Guo, X.; Li, Y.; Ling, H. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE Trans Image Process. 2017,

26, 982–993. [CrossRef] [PubMed]
28. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2223–2232.
29. Appina, B. A ‘Complete Blind’ No-Reference Stereoscopic Image Quality Assessment Algorithm. In Proceedings of the 2020

International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 19–24 July 2020; pp. 1–5.
30. Alqawasmi, K. Estimation of ARMA Model Order Utilizing Structural Similarity Index Algorithm. In Proceedings of the 8th

International Conference on Control, Decision and Information Technologies, Istanbul, Turkey, 17–20 May 2022; pp. 1087–1090.
31. Javaheri, A.; Brites, C.; Pereira, F.; Ascenso, J. Improving Psnr-Based Quality Metrics Performance for Point Cloud Geometry. In

Proceedings of the 27th International Conference on Image Processing (ICIP 2020), Abu Dhabi, United Arab Emirates, 25–28
October 2020; pp. 3438–3442.

32. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process.
2012, 21, 4695–4708. [CrossRef] [PubMed]

33. Cai, J.; Gu, S.; Zhang, L. Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images. IEEE Trans Image Process
2018, 27, 2049–2062. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2021.3063604
https://doi.org/10.1007/s10489-020-02016-4
https://doi.org/10.1007/s11554-019-00925-3
https://doi.org/10.1007/s11554-020-00973-0
https://doi.org/10.3390/electronics11101614
https://www.ncbi.nlm.nih.gov/pubmed/36568860
https://doi.org/10.1109/LSP.2022.3167331
https://doi.org/10.1109/TIP.2021.3051462
https://doi.org/10.1049/ipr2.12124
https://doi.org/10.1109/LSP.2021.3079848
https://doi.org/10.1109/TIP.2016.2639450
https://www.ncbi.nlm.nih.gov/pubmed/28113318
https://doi.org/10.1109/TIP.2012.2214050
https://www.ncbi.nlm.nih.gov/pubmed/22910118
https://doi.org/10.1109/TIP.2018.2794218
https://www.ncbi.nlm.nih.gov/pubmed/29994747

	Introduction 
	Related Work 
	Proposed Methods 
	Proposed Generator 
	Proposed Discriminator 
	Proposed Loss Function 

	Simulation and Discussion 
	Datasets and Metrics 
	Ablation Study 
	No-Referenced Image Quality Assessment 
	Full-Referenced Image Quality Assessment 

	Conclusions 
	References

