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Abstract: As a pandemic emerges, information on epidemic prevention disseminates among the
populace, and the propagation of that information interacts with the proliferation of the disease.
Mass media serve a pivotal function in facilitating the dissemination of epidemic-related information.
Investigating coupled information–epidemic dynamics, while accounting for the promotional effect
of mass media in information dissemination, is of significant practical relevance. Nonetheless, in
the extant research, scholars predominantly employ an assumption that mass media broadcast
to all individuals equally within the network: this assumption overlooks the practical constraint
imposed by the substantial social resources required to accomplish such comprehensive promotion.
In response, this study introduces a coupled information–epidemic spreading model with mass
media that can selectively target and disseminate information to a specific proportion of high-degree
nodes. We employed a microscopic Markov chain methodology to scrutinize our model, and we
examined the influence of the various model parameters on the dynamic process. The findings
of this study reveal that mass media broadcasts directed towards high-degree nodes within the
information spreading layer can substantially reduce the infection density of the epidemic, and
raise the spreading threshold of the epidemic. Additionally, as the mass media broadcast proportion
increases, the suppression effect on the disease becomes stronger. Moreover, with a constant broadcast
proportion, the suppression effect of mass media promotion on epidemic spreading within the model
is more pronounced in a multiplex network with a negative interlayer degree correlation, compared
to scenarios with positive or absent interlayer degree correlation.

Keywords: multiplex network; epidemic spreading; information dissemination; mass media

1. Introduction

The dissemination of epidemic-related information can effectively stimulate individu-
als to cultivate a heightened sense of precaution, subsequently prompting them to adopt
protective measures to mitigate the spread of the epidemic. Conversely, the spreading of
an epidemic can foster the diffusion of pertinent information within populations, thereby
augmenting collective protective awareness. For instance, following the emergence of the
COVID-19 pandemic, corollary information began disseminating throughout the inter-
net. Upon acquiring the COVID-19-related information, individuals engaged in a myriad
of self-protective behaviors, including the utilization of masks, frequent hand-washing,
and adherence to social distancing measures [1–8]. Such self-protective actions served to
disrupt the transmission pathways of the virus, ultimately curbing the outbreak of the
epidemic [9–16]. Investigation of the coupled propagation of an epidemic and its associated
information has consistently piqued the interest of scholars, and is of considerable academic
significance [17–26].

A multitude of researchers have employed a dual-layer network structure, to establish
coupled information–epidemic propagation models, aiming to expound upon the reciprocal
relationship between the spread of epidemic-related information and the proliferation of
the epidemic itself [27–36]. Within this framework, the lower-layer network represents
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the epidemic spreading stratum, with nodes symbolizing individuals, and edges signi-
fying physical contact relationships in reality. Simultaneously, the upper-layer network
constitutes the information dissemination stratum, with nodes corresponding to the same
individuals as the lower layer, and edges illustrating information exchange relationships
amongst them [37–46]. Granell et al. introduced a coupled information–epidemic propaga-
tion model based on dual-layer networks, which delineated the interrelated transmission
phenomena of an epidemic and its associated information within the real world [47].
Granell et al. discovered the existence of a metacritical point, at which the spreading thresh-
old of the epidemics started depending on the information dissemination [47]. Building
upon this work, Guo et al. proposed a disease epidemic spreading model that accounted
for local awareness, investigating epidemic spreading accompanied by awareness cascades.
Guo et al. ascertained that the epidemic spreading threshold experienced an abrupt alter-
ation when the local awareness rate approached a specific value. These discoveries have
contributed to a more profound comprehension of decision-making processes predicated
on the behaviors of others, as well as an understanding of why certain epidemics fail to
manifest in reality [48]. Moreover, acknowledging that individuals may access epidemic
information from a diverse array of channels in real-life scenarios, numerous scholars
have undertaken comprehensive research on the repercussions of multi-source informa-
tion dissemination on epidemics within the dual-layer network. Xiao et al., for example,
put forth a coupled information–disease propagation model, incorporating time-varying
self-awareness and behavioral responses, employed to assess the impact of dynamic multi-
source information and behavioral responses on the coupling of epidemics and information
within time-varying multi-layer networks. They concluded that the efficacy of dynamic
multi-source information in impeding epidemic spreading remains circumscribed, and that
time-varying self-awareness and behavioral responses will exert a considerable influence
on suppressing epidemic spreading only when a majority of individuals can access multi-
source information, and implement corresponding behavioral reactions [49]. In addition, Li
et al. also proposed that, in addition to online information dissemination, offline interaction
and information spreading in person can be important for epidemic intervening, and can be
better analyzed in spatio-temporal interaction networks [50]. Furthermore, Li et al. found
that the nature of connection in a multiplex network [51] and in a community structure [52]
can strongly affect the spreading dynamics.

In recent years, with the rapid development of internet technology, mass media (for
instance, the written and digital press, radio, and television) has greatly improved the
efficiency of information dissemination, playing an increasingly important role in the
coupled propagation of epidemics and their related information. Consequently, scholars
have incorporated the impact of mass media into their research on coupled information–
disease propagation. Granell et al. found that mass media could indirectly influence
the outbreak size of epidemics, by interfering with the dissemination of epidemic-related
information, thus increasing the spreading threshold of the epidemics [53]. Ma et al.
analyzed the effects of self-awareness and mass media on the spreading of epidemics,
discovering that a reduction in the proportion of asymptomatic carriers would suppress
epidemic spreading, and increase the epidemic spreading threshold [54]. Wang et al.
studied the coupled propagation of multi-types information and epidemics under the
influence of mass media, finding that accelerating the spread of positive information by
strengthening media publicity could effectively suppress epidemic spreading, and that
when positive information was not disseminated, accelerating the spread of negative
information could also alleviate the occurrence of epidemics [55].

In summary, research on the coupled propagation of epidemics and their associated
information that considers the impact of mass media has important practical significance,
and has achieved notable research results. However, in previous studies, scholars have
generally assumed that mass media engage in undifferentiated promotion efforts, targeting
all individuals within a network, neglecting the fact that such comprehensive promotion re-
quires substantial social resources, and is difficult to achieve; therefore, this study proposes
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a coupled information–disease propagation model, incorporating a selective promotion
mechanism for mass media. Within this model, mass media can selectively target a specific
proportion of high-degree nodes, for dissemination. We also developed a microscopic
Markov chain method for model analysis, and we discuss the influence of different model
parameters on the dynamic evolution process.

The organization of this paper is as follows. In Section 2, we describe in detail our
proposed coupled information–disease propagation model with its selective promotion
mechanism for mass media. In Section 3, we introduce how to develop a microscopic
Markov chain method for the analysis of our model, deriving the final transmission scope
and threshold of the disease. For Section 4, we used Monte Carlo simulations (MC) to
verify the accuracy of the theoretical predictions, and we analyzed the impact of the model
parameters on the coupled dynamics. In Section 5, we summarize the paper, and provide
an outlook for future research.

2. Model Description

This section will introduce the proposed coupled information–epidemic spreading dy-
namics with selective mass media. As shown in Figure 1, the coupled information–disease
propagation model is built on a two-layer multiplex network framework. Within this
model, the epidemic occurs in a physical-contact layer, while epidemic-related information
spreads through a virtual-contact layer. Although the nodes in the two network layers have
a one-to-one correspondence, their connectivity is unique, resulting in distinct topologies
for each layer. Based on this two-layer multiplex network framework, we incorporated a
Susceptible-Infected-Susceptible (SIS) process into the physical-contacts layer. Here, the
probability of a susceptible node becoming infected after contact with an infected node
was denoted by β, while the likelihood of an infected node recovering spontaneously
was represented by µ. For the virtual-contact layer, we applied a similar process, called
Unaware-Aware-Unaware (UAU), to describe the information diffusion. Here, each node
could be in two states: Aware (A) and Unaware (U). Unaware nodes could receive informa-
tion from aware neighbors, with a probability of λ. Meanwhile, aware nodes could forget
the information, and become unaware, with a probability of δ.

AA U
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U

U

A

A

U

S

S

I

I

I

I
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S
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          Selective 

Mass media

   Information layer
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Figure 1. Coupled information–epidemic spreading dynamics with selective mass media. The upper
(information) layer represents the virtual-contact network, which supports the dissemination of
information. Nodes have two possible states in the upper layer: unaware (U) and aware (A). The
lower (epidemic) layer represents the physical-contact layer, which supports the epidemic spreading.
Nodes in the lower layer correspond one-to-one with nodes in the upper layer, but their possible
states are: susceptible (S) and infected (I). In addition, a global node representing selective mass
media is also utilized, which is connected to all nodes, and can selectively broadcast information
to nodes.
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The evolutionary processes of these two processes interact with each other. Specifically,
when a node is infected in the SIS process, it will become aware of the infection in the
UAU information layer, with a probability of κ. In addition, the SIS process’ infectivity
rate depends on the node’s awareness in the UAU information layer. We denoted βU as
the infection probability for an unaware node, while βA = γβU represented the probability
for an aware node. The γ parameter varied from 0 (complete immunity) to 1 (information
awareness that had no impact on the epidemic). It is important to note that when γ = 1 and
κ = 0, both interactions are deactivated, making the system equivalent to running separate
single-layer networks for each process.

In addition to the two interactive processes within the model, a global node repre-
senting mass media with a selective publicity mechanism is also utilized. This node is
connected to all nodes in the UAU information layer, and can selectively broadcast infor-
mation to nodes ranked within mass media broadcast proportion η. The probability of an
unaware node becoming aware, after being exposed to mass media propaganda, is denoted
as m. Consequently, in the UAU information layer, at each time step, any node can acquire
information through the UAU process, while nodes with degree rankings within η can also
access information via mass media.

3. Theoretical Analysis
3.1. Microscopic Markov Chain Approach

In this section, we employ the microscopic Markov chain approach (MMCA), to
analytically derive our model. Based on the assumptions of the model, there are four
possible states for each node in the multiplex network: unaware and susceptible (US);
aware and susceptible (AS); unaware and infected (UI); aware and infected (AI). Figure 2
shows the state transition probability trees of the nodes, which account for all potential
state changes and their associated probabilities at each time step.
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Figure 2. Transition probability trees for four possible node states in the coupled information–
epidemic spreading model with selective mass media. Subfigures (a–d) represent the transition
probability trees of different node states UI, AI, US and AS, respectively. The roots of the trees repre-
sent the possible states of each node at time t, and the leaves represent its possible states at time t + 1.
Each time step can be divided into four continuous phases: information dissemination(UAU process);
mass media broadcasting; self-awareness of being infected; and epidemic spreading (SIS process).

During each time step, the evolution of node states can be categorized into four stages:
(I) the awareness dissemination stage, i.e., the UAU process; (II) the mass media publicity
stage; (III) the epidemic transmission stage, i.e., the SIS process; and (IV) the self-awakening
stage for infected nodes. For simplicity, we denote f X→Y

i , X, Y ∈ (U, A) as the probability
of node change from state X to Y after stage (I) and (II), and we can obtain
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f U→U
i = ri(t)(1−mi), (1)

f A→U
i = δ(1−mi), (2)

f A→A
i = 1− δ + δmi, (3)

and

f U→A
i = 1− ri(t) + ri(t)mi. (4)

In this context,

ri(t) = ∏
j
[1− aji pA

j (t)λ] (5)

represents the probability that node i does not transition from the U state to the A state
during the UAU process, where pA

i (t) denotes the probability that node j is in the A state at
time t, and aji represents the elements of the adjacency matrix of the information spreading
layer. In addition, mi(t) represents the probability that node i shifts from the U state to the
A state during stage (II), as a result of mass media influence—specifically:

mi =

{
m, η > Ri

N
0, η ≤ Ri

N
, (6)

where N is the number of nodes, and Ri is the degree ranking of node i among all the
nodes. Equation (6) indicates that only nodes with degree rankings within η can access
information via mass media.

From the transition trees in Figure 2, we can recover the MMCA equations representing
the state probability evolution of each node, as follows:

pUS
i (t + 1) = pUI

i (t) f U→U
i µ + pAI

i (t) f A→U
i µ

+ pUS
i (t) f U→U

i qU
i (t) + pAS

i (t) f A→U
i qU

i (t),
(7)

pUI
i (t + 1) = pUI

i (t) f U→U
i (1− µ)(1− κ)

+ pAI
i (t) f A→U

i (1− µ)(1− κ)

+ pUS
i (t) f U→U

i

[
1− qU

i (t)
]
(1− κ)

+ pAS
i (t) f A→U

i

[
1− qU

i (t)
]
(1− κ),

(8)

pAS
i (t + 1) = pUI

i (t) f U→A
i µ + pAI

i (t) f A→A
i µ

+ pUS
i (t) f U→A

i qA
i (t) + pAS

i (t) f A→A
i qA

i (t),
(9)

and

pAI
i (t + 1) = pUI

i (t) f U→A
i (1− µ) + f U→U

i (1− µ)κ

+ pAI
i (t) f A→A

i (1− µ) + f A→U
i (1− µ)κ

+ pUS
i (t) f U→A

i

[
1− qA

i (t)
]
+ f U→U

i

[
1− qU

i (t)
]
κ

+ pAS
i (t) f A→A

i

[
1− qA

i (t)
]
+ f A→U

i

[
1− qU

i (t)
]
κ,

(10)
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where

qA
i (t) = ∏

j
[1− bji pI

j(t)βA] (11)

and

qU
i (t) = ∏

j
[1− bji pI

j(t)βU] (12)

represents the probabilities of node i not being infected by any neighbor in the SIS process,
when i is in states A and U, respectively.

By iterating Equations (7) to (10), the stationary state of the full system can be obtained
from any initial condition.

3.2. Threshold Analysis

Based on the MMCA equations of the system, we can proceed to analytically derive
the epidemic threshold βU

c . Epidemics can break out when βU > βU
c , and will die out

otherwise.
The fraction of nodes in state I can be calculated as

ρI =
1
N

N

∑
i=1

pI
i =

1
N

N

∑
i=1

(
pUI

i + pAI
i

)
. (13)

When the system reaches the stationary state, i.e., t→ ∞, we have pXY
i (t + 1) = pXY

i (t + 1) =
pXY

i , X, Y ∈ (U, A) for all node i: thus, it can be obtained that

pI
i = pI

i(1− µ)

+ pUS
i

{
ri(1−mi)

(
1− qU

i

)
+ [1− ri(1−mi)]

(
1− qA

i

)}
+ pAS

i

{
δ(1−mi)

(
1− qU

i

)
+ [1− δ(1−mi)]

(
1− qA

i

)} (14)

by adding Equations (8) and (10) to Equation (13). When βU is close to the thresh-
old βU

c , the probability of nodes being infected is close to zero; therefore, in this case,
Equations (11) and (12) can be approximated as

qU
i ≈ 1− βU ∑

j
bjiεj = 1− σi, (15)

and

qA
i ≈ 1− γβU ∑

j
bjiεj = 1− γσi, (16)

where pI
i = εi � 1, and

σi = βU ∑
j

bjiεj. (17)

Then, substituting Equations (15) and (16) into Equation (14), we can obtain

εi =εi(1− µ)

+ pUS
i {ri(1−mi)σi + [1− ri(1−mi)]γσi}

+ pAS
i {δ(1−mi)σi + [1− δ(1−mi)]γσi}.

(18)
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In addition, as εi = pUI
i + pAI

i � 1, then pU
i , and pA

i can be approximated as

pU
i = pUS

i + pUI
i ≈ pUS

i (19)

and

pA
i = pAS

i + pAI
i ≈ pAS

i , (20)

respectively. Substituting Equations (19) and (20) into Equation (18) leads to

εi =εi(1− µ)

+
[

pU
i ri(1−mi) + pA

i δ(1−mi)
]
σi

+
{

pU
i [1− ri(1−mi)] + pA

i [1− δ(1−mi)]γσi

}
.

(21)

Then, removing the O(εi) terms in Equations (7) and (9), and combining Equations (19) and (20),
we obtain

pU
i = pU

i ri(1−mi) + pA
i δ(1−mi) (22)

and

pA
i = pU

i [1− ri(1−mi)] + pA
i [1− δ(1−mi)]. (23)

Thus, substituting Equations (22) and (23) into Equation (21), we can obtain

εi = (1− µ)εi + pU
i σi + pA

i γσi

= (1− µ)εi +
(

pU
i σi + pA

i γ
)

βU ∑
j

bjiεj.
(24)

Denoting δij as the element of the identity matrix, Equation (24) can be rewritten as

∑
j

[
βU
(

pU
i + γpA

i

)
bji − µδij

]
εj = 0. (25)

Defining matrix H with elements

hij =
(

pU
i + γpA

i

)
bji, (26)

nontrivial solutions of Equation (25) are associated with eigenvectors of the matrix H, for
which the most prominent real eigenvalues equal µ/βU. As a result, the epidemic threshold
can be ascertained by the largest real eigenvalue of matrix H, i.e.,

βU
c =

µ

Λmax(H)
. (27)

4. Simulation

In this section, we first validate the accuracy of the theoretical predictions, by com-
paring the results of the Microscopic Markov Chain Approximation (MMCA) approach
to the Monte Carlo (MC) simulations. Then, we explore the impact of the three main
parameters in the proposed model, including the infection attenuation factor γ (which
influences the immunity level of the aware nodes), the mass media broadcast proportion η,
and the inter-layer degree correlation rs.

For the configuration of the multiplex network, we employed a scale-free network
in the epidemic spreading layer, consisting of 1000 nodes and 2500 edges. The network
exhibited a degree exponent of 2.5, and an average degree of 5. Considering that virtual
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social networks in reality are often denser than physical contact networks, we used a
scale-free network with the same nodes and degree exponent in the information diffusion
layer; however, the average degree of the information diffusion layer network was set to
10—higher than that of the disease spreading layer network.

Additionally, individuals’ behavior in the virtual network may differ from their be-
havior in real life, such as individuals who are active in the information layer network
but have minimal contact with others in reality. To simulate such complex scenarios, we
adjusted the inter-layer degree correlation rs of the dual-layer network. In our simulation
experiments, we considered three cases: rs = 1; rs = −1; and rs = 0. When rs = 1, the
inter-layer degree correlation of the dual-layer network was fully positive, meaning that
the high-degree nodes in the information diffusion layer were also high-degree nodes in
the disease spreading layer. When rs = −1, the high-degree nodes in the information
diffusion layer corresponded to low-degree nodes in the disease spreading layer. When
rs = 0, there was no correlation between the degrees of nodes in different layers of the
dual-layer network. All the simulation results in this section were obtained by performing
over 1000 independent simulations, and averaging the results. The initial proportion of
infected nodes in the spreading process was set to 0.2, and the self-aware probability κ was
set to 0 for all simulations.

Firstly, we examine the accuracy of the MMCA theory framework in predicting the
stationary fraction of infected individuals, ρI. Figure 3 compares the fraction of ρI obtained
through the MMCA theory and MC simulations under different scenarios. It can be seen
that, in the multiplex networks with various inter-layer degree correlations rs, the MMCA
theory accurately predicts the stationary fraction of infected individuals for the entire range
of the considered infection rate β. Furthermore, by comparing the results with and without
mass media propagation, the MMCA method accurately predicts the role of mass media in
suppressing disease spreading.

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

I

(a) rs = 1

0.00 0.25 0.50 0.75 1.00
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I

(c) rs = 1

MMCA = 0 MMCA = 0.5 MC = 0 MC = 0.5

Figure 3. Comparison of the stationary fraction of infected individuals ρI obtained by Monte Carlo
(dotted line) simulations to the MMCA approach (solid line); ρI versus β on multiplex networks with
(a) rs = −1, (b) rs = 0, and (c) rs = 1. The red lines and yellow lines denote, respectively, the results
when η = 0 and η = 0.5. Values for the other parameters are set as: γ = 0.4, λ = 0.15, and µ = 0.5.

Secondly, we investigate the impact of two key dynamic parameters in the proposed
model: namely, the infection attenuation factor γ and the mass media broadcast proportion
η. Here, the infection attenuation factor γ regulates the probability of infection for aware
state nodes (βA = γβU), and the mass media broadcast proportion η determines the
fraction of nodes influenced by mass media. Figure 4 illustrates the influence of the
infection attenuation factor γ on the stationary fraction of infected individuals ρI in different
scenarios. The results in Figure 5 show that when there is no mass media broadcast (η = 0),
there is no information dissemination in the network: thus, the infection attenuation
factor γ has little impact on ρI; however, when η = 0.5, a smaller value of the infection
attenuation factor γ leads to a stronger influence of information diffusion on disease
spreading, resulting in a lower ρI. Moreover, when we propagate to all nodes in the
information layer (η = 1), the disease propagation is effectively suppressed; especially
when the infection attenuation factor γ = 0 (i.e., when aware state nodes are completely
immune to the disease), the density of the stationary fraction of infected individual ρI

remains close to 0. These results indicate that in the proposed model, an increase in the
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infection attenuation factor γ significantly affects the final infection density of the disease,
and a larger mass media broadcast proportion η enhances the inhibitory effect of increasing
γ on the spread of the epidemic.
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Figure 4. The stationary fraction of infected individuals ρI versus the infection rate β for different
values of the infection attenuation factor γ under different conditions. The brown dashed lines,
orange dash–dot lines, and yellow solid lines denote the results when γ = 0, γ = 0.5, and γ = 1,
respectively.Values for the other parameters are set as λ = 0.15, δ = 0.6, and µ = 0.5.

Furthermore, we also investigate the impact of varying the mass media broadcast
proportion η on the stationary fraction of infected individuals ρI, when γ = 0. As shown in
Figure 5, in networks with different inter-layer degree correlations, increasing the value of
η can effectively reduce ρI.
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Figure 5. The stationary fraction of infected individuals ρI as a function of the infection rate β for
different mass media broadcast proportion η under different inter-layer degree correlations rs. The
lines colored from dark to light denote the results when η = 0, η = 0.25, η = 0.5, η = 0.75, and η = 1,
respectively. Values for the other parameters are set as: γ = 0, µ = 0.5, λ = 0.15, and δ = 0.6.

Finally, we discuss the impact of inter-layer degree correlation on the dynamics of
the proposed model. Figure 6 illustrates the variation of the stationary fraction of infected
individuals ρI with the mass media broadcast proportion η in the multiplex networks with
different inter-layer degree correlations rs. Without loss of generality, we set the infection
attenuation factor γ to 0. The results show that when the mass media broadcast proportion
η is the same, in the case of rs = −1 (rs = 1), the disease has the smallest (largest) ρI: this
is because, when γ = 0, once a node receives information from mass media, it cannot
be infected anymore, which is equivalent to cutting the node off from other nodes in
the disease spreading layer. In view of this, we supplemented a simulation experiment,
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by removing all connected edges of nodes with degree ranking within η in the disease
spreading layer, and then observing the fragmentation of the network.
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Figure 6. The stationary fraction of infected individuals ρI as a function of the infection rate β for
different inter-layer degree correlations rs under different mass media broadcast proportion η. The
results are denoted by the brown solid lines, orange dash-dot lines, and yellow dashed lines when
rs = −1, rs = 0, and rs = 1, respectively. Other model parameters are set to be γ = 0, µ = 0.5,
λ = 0.15, and δ = 0.6.

As shown in Figure 7, as η increases, the number of connected components Nc in the
multiplex network with negative inter-layer degree correlation increases faster, leading to
a higher likelihood of being fragmented into multiple “islands”, and limiting the spread
of the disease in the network. The situation is reversed for networks with positive inter-
layer degree correlation. These phenomena also explain the impact of inter-layer degree
correlations on the disease spreading threshold.

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

N
c

rs = 1
rs = 0
rs = 1

Figure 7. The number of connected components Nc after removing all connected edges of nodes with
degree ranking within mass media broadcast proportion η in the disease spreading layer. The pink
solid line, purple dash-dot line, and purple dashed line denote the results when rs = 1, rs = 0, and
rs = −1, respectively.

As shown in Figure 8, when rs = −1, as the proportion of mass media broadcast
proportion η increases, the epidemic threshold βc rises rapidly, while for rs = 1, it takes a
larger value of η for βc to show a significant increase.
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Figure 8. The epidemic threshold βc as a function of the mass media broadcast proportion η in
multiplex network with different inter-layer degree correlations rs. The brown dashed line, orange
dash–dot line, and yellow solid line denote the results when rs = −1, rs = 0, and rs = 1, respectively.
Other model parameters are set as: γ = 0, µ = 0.5, λ = 0.15, and δ = 0.6.

5. Conclusions

During an epidemic, the diffusion of disease-related information can enhance individ-
ual awareness, and effectively curb the spread of the epidemic. Leveraging mass media
to broadcast disease-related information is an effective approach to enhancing individual
protection awareness. Considering the practical constraints of comprehensive promotion,
which requires significant social resources, this study proposes a coupled information–
epidemic spreading model with selective mass media. In this model, mass media can
selectively target a certain proportion of high-degree nodes for information dissemination.
We developed a Markov chain method for theoretical analysis of the proposed model, and
examined the impact of three key model parameters—namely, the infection attenuation
factor γ, the mass media broadcast proportion η, and the inter-layer degree correlation rs
on the coupled dynamics.

Extensive simulations and detailed theoretical analyses consistently demonstrated
that targeted promotion by mass media, to a certain proportion of high-degree nodes in the
network, significantly reduces the infection density of the epidemic, and raises the epidemic
threshold. Moreover, a higher promotion proportion leads to a stronger suppression effect
on the epidemic. In addition, increasing the infection attenuation factor γ significantly
affects the stationary fraction of infected individuals ρI, and a larger value of γ, combined
with a higher proportion of mass media broadcast η, exhibits a more pronounced inhibitory
effect on the epidemic spread. Finally, we analyzed the influence of the inter-layer degree
correlation rs on the spreading dynamics. We found that, for a given proportion of mass
media broadcast η, the inter-layer degree correlation rs = −1 (rs = 1) results in the smallest
(largest) outbreak size of the disease. Additionally, in the case of rs = −1, the epidemic
threshold βc increases rapidly with the increase of η, while for rs = 1, a visible increase in
βc requires a larger value of η. These findings indicate that in a multiplex network with
negative inter-layer degree correlation, the inhibitory effect of mass media promotion on
epidemic spread is superior to cases with positive or no inter-layer degree correlation.

In summary, this study systematically investigated the coupled information–epidemic
spreading model with selective mass media. The results provide a comprehensive under-
standing of the impact of selective broadcast mechanisms in coupled information–disease
dynamics, and offer an important theoretical reference for epidemic prevention and control
on the basis of disease-related information dissemination in reality. For future research,
it would be worthwhile to extend our model to temporal multiplex networks, as both
virtual-contact and physical-contact networks can change over time. Other, more realistic,



Entropy 2023, 25, 927 12 of 14

network structures (for instance, hyper networks) and dynamic mechanisms (for example,
social reinforcement effects) are also worth exploring, based on our model.
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