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Abstract: In this paper, we study distributed inference and learning over networks which can be
modeled by a directed graph. A subset of the nodes observes different features, which are all
relevant/required for the inference task that needs to be performed at some distant end (fusion)
node. We develop a learning algorithm and an architecture that can combine the information from
the observed distributed features, using the processing units available across the networks. In
particular, we employ information-theoretic tools to analyze how inference propagates and fuses
across a network. Based on the insights gained from this analysis, we derive a loss function that
effectively balances the model’s performance with the amount of information transmitted across the
network. We study the design criterion of our proposed architecture and its bandwidth requirements.
Furthermore, we discuss implementation aspects using neural networks in typical wireless radio
access and provide experiments that illustrate benefits over state-of-the-art techniques.

Keywords: distributed learning; AI at the edge; inference over graphs

1. Introduction

The unprecedented success of modern machine learning (ML) techniques in areas
such as computer vision [1], neuroscience [2], image processing [3], robotics [4] and natural
language processing [5] has led to an increasing interest for their application to wireless
communication systems in recent years.

Early efforts along this line of work fall into what is sometimes referred to as the
“learning to communicate” paradigm, in which the goal is to automate one or more
communication modules such as the modulator-demodulator, the channel coder-decoder,
or others, by replacing them with suitable ML algorithms. Although important progress
has been made for some particular communication systems, such as the molecular one [6],
it is still not yet clear whether ML techniques can offer a reliable alternate solution to model-
based approaches, especially as typical wireless environments suffer from time-varying
noise and interference.

Wireless networks have other important intrinsic features which may pave the way
for more cross-fertilization between ML and communication, as opposed to applying ML
algorithms as black boxes in replacement of one or more communication modules. For
example, while in areas such as computer vision, neuroscience, and others, relevant data is
generally available at one point, it is typically highly distributed across several nodes in
wireless networks.

Examples include self-driving cars where multiple sensors, both external and internal to
the car can be used to help the car navigate its environment, medical applications to diagnose
a patient based on data from different medical institutions or environmental monitoring to
detect hazardous events or pollution, and others, see [7,8] for more information. We give
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more details of the usefulness of such setups in Examples 1 and 2. A prevalent approach for
the implementation of ML solutions in such cases would consist of collecting all relevant
data at one point (a cloud server) and then training a suitable ML model using all available
data and processing power. Because the volumes of data needed for training are generally
large, and with the scarcity of network resources (e.g., power and bandwidth), that approach
might not be appropriate in many cases, however. In addition, some applications might
have stringent latency requirements which are incompatible with sharing the data, such as
in automatic vehicle driving. In other cases, it might be desired not to share the raw data
for the sake of enhancing the privacy of the solution, in the sense that infringing the user’s
privacy is generally more easily accomplished from the raw data itself than from the output
of a neural network (NN) that takes the raw data as input.

The above has called for a new paradigm in which intelligence moves from the heart
of the network to its edge, which is sometimes referred to as “Edge Learning”. In this new
paradigm, communication plays a central role in the design of efficient ML algorithms
and architectures because both data and computational resources, which are the main
ingredients of an efficient ML solution, are highly distributed. A key aspect towards
building suitable ML-based solutions is whether the setting assumes only the training phase
involves distributed data, sometimes referred to as distributed learning, such as the Federated
Learning (FL) of [9] or if the inference (or test) phase also involves distributed data.

The considered problem setup is strongly related to the problems of distributed
estimation and detection (see, e.g., [10–13] and references therein). We differentiate
ourselves from these problems as we assume no prior knowledge of distribution of the data.
This is a common setup in many practical applications, such as image or speech processing,
or text analysis, where the distribution between the observed data and the target variable is
unknown or too complex to model.

In particular, of those most closely related to this paper, a growing line of works focus
on developing distributed learning algorithms and architectures. The works of [14,15]
address the problem of distributed learning using kernel methods when each node observes
independent samples drawn from the same distribution. In our specific setup, however, the
nodes observe correlated data, necessitating collaboration among all nodes during inference.
On the other hand, works such as [16,17] are focused on the narrower problem of detection
and impose certain restrictions on the scope of their investigation. However, perhaps most
popular and related to our work is the FL of [9] which, as we already mentioned, is most
suitable for scenarios in which the training phase has to be performed distributively, while
the inference phase has to be performed centrally at one node. To this end, during the
training phase, nodes (e.g., base stations) that possess data are all equipped with copies
of a single NN model which they simultaneously train on their locally available data-sets.
The learned weight parameters are then sent to a cloud or parameter server (PS) which
aggregates them, e.g., by simply computing their average. The process is repeated, every
time re-initializing using the obtained aggregated model, until convergence. The rationale
is that, this way, the model is progressively adjusted to account for all variations in the
data, not only those of the local data-set. For recent advances on FL and applications in
wireless settings, the reader may refer to [18–20] and references therein. Another relevant
work is the Split Learning (SL) of [21] in which, for a multiaccess type network topology, a
two-part NN model, split into an encoder part and a decoder part, is learned sequentially.
The decoder does not have its own data and in every round the NN encoder part is fed with
a distinct data-set and its parameters are initialized using those learned from the previous
round. The learned two-part model is then used as follows during the inference: one part
of this model is used by an encoder, and the other one by a decoder. Another variation
of SL, sometimes called “vertical SL”, was proposed recently in [22]. The approach uses
vertical partitioning of the data; in the special case of a multi-access topology, it is similar to
the in-network learning solution that we propose in this paper.

Compared to both SL and FL, which consider only the training phase to be distributed,
in this paper we focus on the problem in which the inference phase also takes place
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distributively. More specifically, in this paper, we study a network inference problem in
which some of the nodes possess each, or can acquire, part of the data that is relevant for
inference on a random variable Y. The node at which the inference needs to be performed
is connected to the nodes that possess the relevant data through a number of intermediate
other nodes. We assume that the network topology is fixed and known. This may model,
e.g., a setting in which a macro BS needs to make inference on the position of a user on the
basis of summary information obtained from correlated CSI measurements X1, . . . , XJ that
are acquired at some proximity edge BSs. Each of the edge nodes is connected with the
central node either directly, via an error free link of given finite capacity, or via intermediary
nodes. While in some cases it might be enough to process only a subset of the J nodes, we
assume that processing only a (any) strict subset of the measurements cannot yield the
desired inference accuracy and, as such, the J measurements X1, . . . , XJ need to be processed
during the inference or test phase.

Example 1. (Autonomous Driving) One basic requirement of the problem of autonomous driving
is the ability to cope with problematic roadway situations, such as those involving construction,
road hazards, hand signals, and reckless drivers. Current approaches mainly depend on equipping
the vehicle with more on-board sensors. Clearly, while this can only allow a better coverage of the
navigation environment, it seems unlikely to successfully cope with the problem of blind spots due,
e.g., to obstruction or hidden obstacles. In such contexts, external sensors such as other vehicles’
sensors, cameras installed on the roofs of proximity buildings or wireless towers may help perform a
more precise inference, by offering a complementary, possibly better, view of the navigation scene.
An example scenario is shown in Figure 1. The application requires real-time inference which might
be incompatible with current cellular radio standards, thus precluding the option of sharing the
sensors’ raw data and processing it locally, e.g., at some on-board server. When equipped with
suitable intelligence capabilities, each sensor can successfully identify and extract those features of its
measurement data that are not captured by other sensors’ data. Then, it only needs to communicate
those, not its entire data.

Figure 1. Fusion of inference from on-board and external sensors for automatic vehicle navigation.

Example 2. (Public Health) One of the early applications of machine learning is in the area of
medical imaging and public health. In this context, various institutions can hold different modalities
of patient data in the form of electronic health records, pathology test results, radiology, and other
sensitive imaging data such as genetic markers for disease. The correct diagnosis may be contingent
on being able to using all relevant data from all institutions. However, these institutions may not
be authorized to share their raw data. Thus, it is desired to distributively train machine learning
models without sharing the patient’s raw data in order to prevent illegal, unethical or unauthorized
usage of it [23]. Local hospitals or tele-health screening centers seldom acquire enough diagnostic
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images on their own; collaborative distributed learning in this setting would enable each individual
center to contribute data to an aggregate model without sharing any raw data.

1.1. Contributions

In this paper, we study the aforementioned network inference problem in which the
network is modeled as a weighted acyclic graph and inference about a random variable is
performed on the basis of summary information obtained from possibly correlated variables
at a subset of the nodes. Following an information-theoretic approach in which we measure
discrepancies between true values and their estimated fits using average logarithmic loss,
we first develop a bound on the best achievable accuracy given the network communication
constraints. Then, considering a supervised setting in which nodes are equipped with NNs
and their mappings need to be learned from distributively available training data-sets,
we propose a distributed learning and inference architecture and we show that it can be
optimized using a distributed version of the well-known stochastic gradient descent (SGD)
algorithm that we develop here. The resulting distributed architecture and algorithm,
which we herein name “in-network (INL) learning”, generalize those introduced in [24]
(see also [25,26]) for a specific case, multiaccess type, network topology. We investigate
in more detail what the various nodes need to exchange during both the training and
inference phases, as well as associated requirements in bandwidth. Finally, we provide a
comparative study with (an adaptation of) the FL and the SL algorithms, and experiments
that illustrate our results. Part of the results this paper have also been presented in [27,28].
However, in this paper, we go beyond those works by offering a more comprehensive and
detailed review of the state-of-the-art. Additionally, we provide proofs for the theorem
and lemmas presented in this paper, which were not included in the previous publications.
Furthermore, we introduce additional insights and conclusions that further contribute to
the overall understanding and significance of the research findings.

1.2. Outline and Notation

In Section 2 we describe the studied network inference problem formally. In Section 3
we present our in-network inference architecture, as well as a distributed algorithm for
training it distributively. Section 4 contains a comparative study with FL and SL in terms of
bandwidth requirements; as well as some experimental results. Finally, in Section 5 we
summarize the insights and results presented in this paper.

Throughout the paper, the following notation will be used. Upper case letters denote
random variables, e.g., X; lower case letters denote realizations of random variables, e.g.,
x, and calligraphic letters denote sets, e.g., X. The cardinality of a set is denoted by |X|.
For a random variable X with probability mass function PX, the shorthand p(x) = PX(x),
x ∈ X is used. Boldface letters denote matrices or vectors, e.g., X or x. For random variables
(X1, X2, . . .) and a set of integersK ⊆ N, the notation XK designates the vector of random
variables with indices in the set K , i.e., XK , {Xk : k ∈ K}. If K = ∅ then XK = ∅. In
addition, for zero-mean random vectors x and y, the quantities

∑
x,

∑
x,y and

∑
x|y denote,

respectively, the covariance matrix of the vector x, the covariance matrix of vector (x, y)
and the conditional covariance of x given y. Finally, for two probability measures PX
and QX over the same alphabet X, the relative entropy or Kullback-Leibler divergence is
denoted as DKL(PX||QX). That is, if PX is absolutely continuous with respect to QX, then
DKL(PX||QX) = EPX [log(PX(X)/QX(X))], otherwise DKL(PX||QX) = ∞.

2. Network Inference: Problem Formulation

We consider the distributed supervised learning setup, in which multiple nodes
observe different features relating to the same sample, sometimes refered to as distributed
learning with vertically partitioned dataset, see [8,29]. We additionally assume the learning
takes place over a communication constrained network. Specifically, consider an N node
distributed network. Of these N nodes, J ≥ 1 nodes possess or can acquire data that
is relevant for inference on a random variable (r.v.) of interest Y, with alphabet Y. Let
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J = {1, . . . , J} denote the set of such nodes, with node j ∈ J observing samples from
the random variable X j, with alphabet X j. The relationship between the r.v. of interest
Y and the observed ones, X1, . . . , XJ, is given by the joint probability mass function
PXJ ,Y := PX1,...,XJ ,Y(x1, . . . xJ, y), with (x1, . . . , x j) ∈ X1 × · · · × XJ and y ∈ Y. For simplicity,
we assume that random variables are discreet, however our technique can be applied
to continuous variables as well. Inference on Y needs to be performed at some node
N which is connected to the nodes that possess the relevant data through a number of
intermediate other nodes. It has to be performed without any sharing of raw data. The
network is modeled as a weighted directed acyclic graph and may represent, for example,
a wired network or a wireless mesh network operated in time or frequency division, where
the nodes may be servers, handsets, sensors, base stations or routers. We assume that
the network graph is fixed and known. The edges in the graph represent point-to-point
communication links that use channel coding to achieve close to error-free communication
at rates below their respective capacities. For a given loss function `(·, ·) that measures
discrepancies between true values of Y and their estimated fits, what is the best precision
for the estimation of Y? Clearly, discarding any of the relevant data X j can only lead to
a reduced precision. Thus, intuitively features that collectively maximize information
about Y need to be extracted distributively by the nodes from the set J , without explicit
coordination between them and they then need to propagate and combine appropriately
at the node N. How should that be performed optimally without sharing raw data? In
particular, how should each node process information from the incoming edges (if any)
and what should it transmit on every one of its outgoing edges? Furthermore, how should
the information be fused optimally at Node N?

More formally, we model an N-node network by a directed acyclic graphG = (N ,E,C),
whereN = [1 : N] is the set of nodes,E ⊂ N ×N is the set of edges andC = {C jk : ( j, k) ∈ E}
is the set of edge weights. Each node represents a device and each edge represents a
noiseless communication link with capacity C jk. See Figure 2. The processing at the nodes
of the setJ is such that each of them assigns an index m jl ∈ [1, M jl] to each x j ∈ X j and each
received index tuple (mi j : (i, j) ∈ E), for each edge ( j, l) ∈ E. Specifically, let for j ∈ J and
l such that ( j, l) ∈ E, the setM jl = [1 : M jl]. The encoding function at node j is

ω j : X j ×
{

Πi : (i, j) ∈ EMi j
}
−→ Πl : ( j,l) ∈ EM jl, (1)

where Π designates the Cartesian product of sets. Similarly, for k ∈ [1 : N − 1]/J , node k
assigns an index mkl ∈ [1, Mkl] to each index tuple (mik : (i, k) ∈ E) for each edge (k, l) ∈ E.
That is,

ωk : Πi : (i,k) ∈ EMik −→ Πl : (k,l) ∈ EMkl. (2)

The range of the encoding functions {ωi} are restricted in size, as

log |Mi j| ≤ Ci j ∀i ∈ [1, N − 1] and ∀ j : (i, j) ∈ E. (3)

Node N needs to infer on the random variable Y ∈ Y using all incoming messages, i.e.,

ψ : Πi : (i,N) ∈ EMiN −→ Ŷ. (4)

In this paper, we choose the reconstruction set Ŷ to be the set of distributions on Y, i.e.,
Ŷ = P(Y) and we measure discrepancies between true values of Y ∈ Y and their estimated
fits in terms of average logarithmic loss, i.e., for (y, P̂) ∈ Y ×P(Y)

d(y, P̂) = log
1

P̂(y)
. (5)
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As such, the performance of a distributed inference scheme
(
(ω j) j∈J , (ωk)k∈[1,N−1]/J ,ψ

)
for

which (3) is fulfilled is given by its achievable relevance given by

∆ = H(Y) −E
[
d(Y, Ŷ)

]
, (6)

which, for a discrete setY, is directly related to the error of misclassifying the variable Y ∈ Y.
It is imporant to note that H(Y) is problem specific constant and as such the relavance given
by (6) is simply a another form of the logarithmic loss.

Figure 2. Studied network inference model.

In practice, in a supervised setting, the mappings given by (1), (2) and (4) need to be
learned from a set of training data samples {(x1,i, . . . , xJ,i, yi)}

n
i=1. The data is distributed

such that the samples x j := (x j,1, . . . , x j,n) are available at node j for j ∈ J and the desired
predictions y := (y1, . . . , yn) are available at the end decision node N. We parametrize the
possibly stochastic mappings (1), (2) and (4) using NNs. This is depicted in Figure 3. We
denote the parameters of the NNs that parameterize the encoding function at each node
i ∈ [1 : (N − 1)] with θi and the parameters of the NN that parameterizes the decoding
function at node N with φ. Let θ = [θ1, . . . ,θN−1], we aim to find the parameters θ,φ that
maximize the relevance of the network, given the network constraints of (3). Given that the
actual distribution is unknown and we only have access to a dataset, the loss function needs
to strike a balance between its performance on the dataset, given by empirical estimate of
the relevance, and the network’s ability to perform well on samples outside the dataset.

The NNs at the various nodes are arbitrary and can be chosen independently—for
instance, they need not be identical as in FL. It is only required that the following mild
condition which, as will become clearer from what follows, facilitates the back-propagation
be met. Specifically, for every j ∈ J and x j ∈ X j, under the assumtion that all elements of
X j have the same dimension, it holds that

Size of first layer of NN ( j) =

Dimension (x j) +
∑

i : (i, j) ∈ E

(Size of last layer of NN (i)). (7)

Similarly, for k ∈ [1 : N]/J we have

Size of first layer of NN (k) =∑
i : (i,k) ∈ E

(Size of last layer of NN (i)). (8)

Remark 1. Conditions (7) and (8) were imposed only for the sake of ease of implementation of
the training algorithm; the techniques present in this paper, including optimal trade-offs between
relevance and complexity for the given topology, the associated loss function, the variational lower
bound, how to parameterize it using NNs and so on, do not require (7) and (8) to hold. Alternative
aggregation techniques, such as element-wise multiplication or element-wise averaging, can be
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employed to combine the information received by each node, in replacement to concatenation. The
impact of these aggregation techniques has been analyzed in [22].

(a)

(b)
Figure 3. In-network learning and inference using neural networks. (a) Training phase. (b) Inference
phase.

3. Proposed Solution: In-Network Learning and Inference

For convenience, we first consider a specific setting of the model of network inference
problem of Figure 3 in which J = N − 1 and all the nodes that observe data are only
connected to the end decision node, but not among them.

3.1. A Specific Model: Fusing of Inference

In this case, a possible suitable loss function was shown by [25] to be:

L
NN
s (n) =

1
n

n∑
i=1

log QφJ (yi|u1,i, . . . , uJ,i)

+
s
n

n∑
i=1

J∑
j=1

log Qφ j(yi|u j,i) − log

Pθ j(u j,i|x j,i)

Qϕ j(u j,i)

, (9)

where s is a Lagrange parameter and for j ∈ J the distributions Pθ j(u j|x j), Qφ j(y|u j),
QφJ (y|uJ ) are variational ones whose parameters are determined by the chosen NNs using
the re-parametrization trick of [30] and Qϕ j(u j) are priors known to the encoders. For
example, denoting by fθ j the NN used at node j ∈ J whose (weight and bias) parameters
are given byθ j, for regression problems the conditional distribution Pθ j(u j|x j) can be chosen
to be multivariate Gaussian, i.e., Pθ j(u j|x j) = N(u j;µθj , Σθj ), where µθj , Σθj are outputs of
fθ j(x j). For discrete data, concrete variables (i.e., Gumbel-Softmax) can be used instead.

The rationale behind the choice of loss function (9) is that in the regime of large n,
if the encoders and decoder are not restricted to use NNs under some conditions. The
optimality is proved therein under the assumption that for every subset S ⊆ J , it holds
that XS −
− Y −
−XSc . The RHS of (10) is achievable for arbitrary distributions, however,
regardless of such an assumption; the optimal stochastic mappings PU j |X j , PU, PY|U j and
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PY|UJ are found by marginalizing the joint distribution that maximizes the following
Lagrange cost function [25] (Proposition 2)

L
optimal
s = −H(Y|UJ ) − s

J∑
j=1

[
H(Y|U j) + I(U j; X j)

]
. (10)

where the maximization is over all joint distributions of the form PY
∏J

j=1 PX j |Y
∏J

j=1 PU j |X j .

3.1.1. Inference Phase

During this phase node j observes a new sample x j. It uses its NN to output an encoded
value u j which it sends to the decoder. After collecting (u1, . . . , uJ) from all input NNs, node
(J + 1) uses its NN to output an estimate of Y in the form of soft output QφJ (Y|u1, . . . , uJ).
The procedure is depicted in Figure 4b.

(a)

(b)
Figure 4. In-network learning for the network model for the case without hops. (a) Training phase.
(b) Inference phase.

Remark 2. One can combine our proposed technique with an appropriate transmission scheme and
channel coding. One possible suitable practical implementation in wireless settings can be obtained
using Orthogonal Frequency-Division Multiple Access (OFDMA). That is, the J input nodes are
allocated non-overlapping bandwidth segments and the output layers of the corresponding NNs are
chosen accordingly. The encoding of the activation values can be performed, e.g., using entropy type
coding [31].

3.1.2. Training Phase

During the forward pass, every node j ∈ J processes mini-batches of size, say, b j
of its training data-set x j. Node j ∈ J then sends a vector, u j, whose elements are the
activation values of the last layer of (NN j), see Figure 4a. Due to (8) the activation vectors
are concatenated vertically at the input layer of NN (J + 1). The forward pass continues on
the NN (J + 1) until the last layer of the latter. The parameters of NN (J + 1) are updated



Entropy 2023, 25, 920 9 of 23

using standard backpropagation. Specifically, let LJ+1 denote the index of the last layer of

NN (J + 1). Additionally, let w[l]
J+1, b[l]

J+1 and a[l]J+1 denote the weights, biases and activation
values at layer l ∈ [2 : LJ+1] for the NN (J + 1) and σ is the activation function, respectively.
Node (J + 1) computes the error vectors

δ
[LJ+1]

J+1 = ∇
a
[LJ+1 ]

J+1

L
NN
s (b) � σ′(w

[LJ+1]

J+1 a
[L(J+1)−1]
J+1 + b

[LJ+1]

J+1 ) (11a)

δ[l]J+1 = [(w[l+1]
J+1 )Tδ[l+1]

J+1 ] � σ′(w[l]
J+1a[l−1]

J+1 + b[l]
J+1) ∀ l ∈ [2, LJ+1 − 1], (11b)

δ[1]J+1 = [(w[2]
J+1)

Tδ[2]J+1] (11c)

and then updates its weight- and bias parameters as

w[l]
J+1 → w[l]

J+1 − ηδ
[l]
J+1(a

[l−1]
J+1 )

T, (12a)

b[l]
J+1 → b[l]

J+1 − ηδ
[l]
J+1, (12b)

where η designates the learning parameter; for simplicity, η and σ are assumed here to be
identical for all NNs.

Remark 3. It is important to note that for the computation of the RHS of (11a) node (J + 1), which
knows QφJ (yi|u1,i, . . . , uJ,i) and Qφ j(yi|u j,i) for all i ∈ [1 : n] and all j ∈ J , only the derivative of

L
NN
s (n) w.r.t. the activation vector a

LJ+1
J+1 is required. For instance, node (J + 1) does not need to

know any of the conditional variationals Pθ j(u j|x j) or the priors Qϕ j(u j).

The backward propagation of the error vector from node (J + 1) to the nodes j,
j ∈ {1, . . . , J}, is as follows. Node (J + 1) horizontally splits the error vector of its input
layer into J sub-vectors with sub-error vector j having the same size as the dimension of
the last layer of NN j [recall (8) and that the activation vectors are concatenated vertically
during the forward pass]. See Figure 4a. The backward propagation then continues on each
of the J input NNs simultaneously, each of them essentially applying operations similar
to (11) and (12).

Remark 4. Let δ[1]J+1( j) denote the sub-error vector sent back from node (J + 1) to node j ∈ J . It
is easy to see that, for every j ∈ J ,

∇
a

Lj
j

L
NN
s (b j) = δ[1]J+1( j) − s∇

a
Lj
j

 b∑
i=1

log

Pθ j(u j,i|x j,i)

Qϕ j(u j,i)


; (13)

and this explains why node j ∈ J needs only the part δ[1]J+1( j), not the entire error vector at node
(J + 1).

3.2. General Model: Fusion and Propagation of Inference

Consider now the general network inference model of Figure 2. Part of the difficulty
of this problem is in finding a suitable loss function which can be optimized distributively
via NNs that only have access to local data-sets each. The next theorem provides a bound
on the achievable relevance (under some assumptions) for an arbitrary network topology
(E,N). The result of Theorem 1 is asymptotic in the size of the training data-sets, while
the inference problem is a one-shot problem. One-shot results for this problem can be
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obtained, e.g., along the approach of [32]. For convenience, we define for S ⊆ [1, . . . , N − 1]
and non-negative (Ci j : (i, j) ∈ E) the quantity

C(S) =
∑

(i, j) : i∈S, j∈Sc

Ci j. (14)

Theorem 1. For the network inference model of Figure 2, in the regime of large data-sets the
following relevance is achievable,

∆ = max I(U1, . . . , UJ; Y) (15)

where the maximization is over joint measures of the form

PQPX1,...,XJ ,Y

J∏
j=1

PU j |X j,Q (16)

for which there exist non-negative R1, . . . , RJ that satisfy∑
j∈S

R j ≥ I(US; XS|USc , Q), for all S ⊆ J

∑
j∈S∩J

R j ≤ C(S) for all S ⊆ [1 : N − 1] with S∩J , ∅.

Proof. The proof of Theorem 1 appears in Appendix A. An outline is as follows. The result
is achieved using a separate compression-transmission-estimation scheme in which the
observations (x1, . . . , xJ) are first compressed distributively using Berger-Tung coding [33]
into representations (u1, . . . , uJ) and then the bin indices are transmitted as independent
messages over the network G using linear-network coding [34] (Section 15.5). The decision
node N first recovers the representation codewords (u1, . . . , uJ) and then produces an
estimate of the label y. The scheme is illustrated in Figure 5. �

(a)

(b)
Figure 5. Block diagram of the separate compression-transmission-estimation scheme of Theorem 1.
(a) Compression using Berger-Tung coding. (b) Transmission of the bin indices using linear coding.
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Part of the utility of the loss function of Theorem 1 is in that it accounts explicitly for the
network topology for inference fusion and propagation. In addition, although as seen from
its proof the setting of Theorem 1 assumes knowledge of the joint distribution of the tuple
(X1, . . . , XJ, Y), the result can be used to train, distributively, NNs from a set of available
date-sets. To do so, we first derive a Lagrangian function, from Theorem 1, which can be
used as an objective function to find the desired set of encoders and decoder. Afterwards,
we use a variational approximation to avoid the computation of marginal distributions,
which can be costly in practice. Finally, we parameterize the distributions suing NNs. For a
given network topology in essence, the approach generalizes that of Section 3.1 to more
general networks that involve hops. For simplicity, in what follows, this is illustrated
for the example architecture of Figure 6. While the example is simple, it showcases the
important aspect of any such topology, the fusion of the data at an intermediary nodes,
i.e., a hop. Firstly, we leverage Theorem 1 to establish a feasible trade-off between the
performance of the network illustrated in Figure 6, quantified by its relevance, and the
quantity of information that must be communicated between the nodes. Subsequently,
employing the aforementioned approach, we derive a loss function tailored for the scenarios
where the nodes are equipped with neural networks, as depicted in Figure 7.

Figure 6. An example in-network learning with inference fusion and propogation.

SettingN = {1, 2, 3, 4, 5} andE = {(3, 4), (2, 4), (4, 5), (1, 5)} in Theorem 1, we obtain that

∆ = max I(U1, U2, U3; Y) (17)

where the maximization is over joint measures of the form

PQPX1,X2,X3,YPU1 |X1,QPU2 |X2,QPU3 |X3,Q (18)

for which the following holds for some R1 ≥ 0, R2 ≥ 2 and R3 ≥ 0:

C15 ≥ R1, C24 ≥ R2, C34 ≥ R3, C45 ≥ R2 + R3 (19a)

R1 ≥ I(U1; X1|U2, U3, Q), (19b)

R2 ≥ I(U2; X2|U1, U3, Q), (19c)

R3 ≥ I(U3; X3|U1, U2, Q) (19d)

R3 + R2 ≥ I(X2, X3; U2, U3|U1, Q), (19e)

R3 + R1 ≥ I(X1, X3; U1, U3|U2, Q) (19f)

R2 + R1 ≥ I(X1, X2; U1, U2|U3, Q), (19g)

R2 + R1 + R3 ≥ I(X1, X2, X3; U1, U2, U3|Q). (19h)

Let Csum = C15 +C24 +C34 +C45; consider the region of all pairs (∆, Csum) ∈ R2
+ for which

the relevance level ∆ as given by the RHS of (17) is achievable for some C15 ≥ 0, C24 ≥ 0,
C34 ≥ 0 and C45 ≥ 0 such that Csum = C15 + C24 + C34 + C45. Hereafter, we denote such
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region as RIsum. Applying Fourier-Motzkin elimination on the region defined by (17)
and (19), we obtain that the region RIsum is given by the union of pairs (∆, Csum) ∈ R2

+ for
which (the time sharing random variable is set to a constant for simplicity)

∆ ≤ I(Y; U1, U2, U3) (20a)

Csum ≥ I(X1, X2, X3; U1, U2, U3) + I(X2, X3; U2, U3|U1) (20b)

for some measure of the form

PYPX1,X2,X3 |YPU1 |X1PU2 |X2PU3 |X3 . (21)

The next proposition gives a useful parameterization of the region RIsum as described
by (20) and (21).

(a)

(b)
Figure 7. Forward and backward passes for the inference problem of Figure 6. (a) Training phase.
(b) Inference phase.

Proposition 1. For every pair (∆, Csum) that lies on the boundary of the region described by (20)
and (21) there exists s ≥ 0 such that (∆, Csum) = (∆s, Cs), with

∆s = H(Y) + max
P
Ls(P) + sCs (22a)

Cs = I(X1, X2, X3; U∗1, U∗2, U∗3) + I(X2, X3; U∗2, U∗3|U
∗

1), (22b)

and P∗ is the set of pmfs P := {PU1 |X1 , PU2 |X2 , PU3 |X3 } that maximize the cost function

Ls(P) := −H(Y|U1, U2, U3) − sI(X1, X2, X3; U1, U2, U3)
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− sI(X2, X3; U2, U3|U1). (23)

Proof. See Appendix B. �

In accordance with the studied example network inference problem shown in Figure 6,
let a random variable U4 be such that U4 −
− (U2, U3)−
− (X1, X2, X3, Y, U1). That is, the joint
distribution factorizes as

PX1,X2,X3,Y,U1,U2,U3,U4 = PX1,X2,X3,YPU1 |X1PU2 |X2PU3 |X3PU4 |U2,U3 . (24)

Let for given s ≥ 0 and conditional PU4 |U2,U3 the Lagrange term

L
low
s (P, PU4 |U2,U3) = −H(Y|U1, U4) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U2; U1) − I(U3; U1, U2)

]
. (25)

The following lemma shows that Llow
s (P, PU4 |U2,U3) lower bounds Ls(P) as given by (23).

Lemma 1. For every s ≥ 0 and joint measure that factorizes as (24), we have

Ls(P) ≥ Llow
s (P, PU4 |U2,U3), (26)

Proof. See Appendix C. �

For convenience let P+ := {PU1 |X1 , PU2 |X2 , PU3 |X3 , PU4 |U2,U3 }. The optimization of (25)
generally requires the computation of marginal distributions, which can be costly in practice.
Hereafter, we derive a variational lower bound on Llow

s with respect to some arbitrary
(variational) distributions. Specifically, let

Q := {QY|U1,U4 , QU3 , QU2 , QU1 }, (27)

where QY|U1,U4 represents variational (possibly stochastic) decoders and QU3 , QU2 and QU1

represent priors. Additionally, let

L
v-low
s (P+, Q) :=E[log QY|U1,U4(Y|U1, U4)] − sDKL(PU1 |X1‖QU1)

− 2sDKL(PU2 |X2‖QU2) − 2sDKL(PU3 |X3‖QU3). (28)

The following lemma, the proof of which is essentially similar to that of [25] (Lemma 1),
shows that for every s ≥ 0, the cost function Llow

s (P, PU4 |U2,U3) is lower-bounded by
L

v-low
s (P+, Q) as given by (28).

Lemma 2. For fixed P+, we have

L
low
s (P+) ≥ L

v-low
s (P+, Q) (29)

for all pmfs Q, with equality when:

QY|U1,U4 = PY|U1,U4 , (30)

QU3 = PU3 |U2,U1 , (31)

QU2 = PU2 |U1 , (32)

QU1 = PU1 , (33)

where PY|U1,U4 , PU3 |U2,U1 , PU2 |U1 , PU1 are calculated using (24).
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Proof. See Appendix D. �

From the above, we get that

max
P+

L
low
s (P+) = max

P+

max
Q
L

v-low
s (P+, Q). (34)

Since, as described in Section 2, the distribution of the data is not known, but only a set of
samples is available {(x1,i, . . . , xJ,i, yi)}

n
i=1, we restrict the optimization of (28) to the family

of distributions that can be parameterized by NNs. Thus, we obtain the following loss
function which can be optimized empirically, in a distributed manner, using gradient
based techniques,

L
NN
s (n) :=

1
n

n∑
i=1

 log Qφ5(yi|u1,i, u4,i) − s log
(

Pθ1(u1,i|x1,i)

Qϕ1(u1,i)

)
−

2s
n

n∑
i=1

 log
(

Pθ2(u2,i|x2,i)

Qϕ2(u2,i)

)
+ log

(
Pθ3(u3,i|x3,i)

Qϕ3(u3,i)

), (35)

with s stands for a Lagrange multiplier and the distributions Qφ5 , Pθ4 , Pθ3 , Pθ2 , Pθ1 are
variational ones whose parameters are determined by the chosen NNs using the re-
parametrization trick of [30] and {Qϕi : i ∈ {1, 2, 3}} are priors known to the encoders. The
parameterization of the distributions with NNs is performed similarly to that for the setting
of Section 3.1.

3.2.1. Inference Phase

During this phase, nodes 1, 2 and 3 each observe (or measure) a new sample. Let x1
be the sample observed by node 1 and x2 and x3 those observed by node 2 and node 3,
respectively. Node 1 processes x1 using its NN and sends an encoded value u1 to node 5 and
so do nodes 2 and 3 towards node 4. Upon receiving u2 and u3 from nodes 2 and 3, node 4
concatenates them vertically and processes the obtained vector using its NN. The output u4
is then sent to node 5. The latter performs similar operations on the activation values u1
and u4 and outputs an estimate of the label y in the form of a soft output Qφ5(y|u1, u4).

3.2.2. Training Phase

During the forward pass, every node j ∈ {1, 2, 3} processes mini-batches of size, b j of
its training data set x j. Nodes 2 and 3 send their vector formed of the activation values of
the last layer of their NNs to node 4. Because the sizes of the last layers of the NNs of nodes
2 and 3 are chosen according to (8) the sent activation vectors are concatenated vertically at
the input layer of NN 4. The forward pass continues on the NN at node 4 until its last layer.
Next, nodes 1 and 4 send the activation values of their last layers to node 5. Again, as the
sizes of the last layers of the NNs of nodes 1 and 4 satisfy (8) the sent activation vectors are
concatenated vertically at the input layer of NN 5 and the forward pass continues until the
last layer of NN 5.

During the backward pass, each of the NNs updates its parameters according to (11)
and (12). Node 5 is the first to apply the back propagation procedure in order update the
parameters of its NN. It applies (11) and (12) sequentially, starting from its last layer.

Remark 5. It is important to note that, similar to the setting of Section III-A, for the computation
of the RHS of (11a) for node 5, only the derivative of LNN

s (n) w.r.t. the activation vector aL5
5 is

required, which depends only on Qφ5(yi|u1,i, u4,i). The distributions are known to node 5 given only
u1,i and u4,i.
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The error propagates back until it reaches the first layer of the NN of node 5. Node
5 then splits horizontally the error vector of its input layer into 2 sub-vectors with the
top sub-error vector having as size that of the last layer of the NN of node 1 and the
bottom sub-error vector having as size that of the last layer of the NN of node 4—see
Figure 7a. Similarly, the two nodes 1 and 4 continue the backward propagation at their
turns simultaneously. Node 4 then splits horizontally the error vector of its input layer into
2 sub-vectors with the top sub-error vector having as size that of the last layer of the NN of
node 2 and the bottom sub-error vector having as size that of the last layer of the NN of
node 3. Finally, the backward propagation continues on the NNs of nodes 2 and 3. The
entire process continues until convergence.

Remark 6. Let δ[1]J ( j) denote the sub-error vector sent back from node J to node j. It is easy to see
that, for every j ∈ J ,

∇
a[L]4
L

NN
s (b) = δ[1]5 (4),

∇
a[L]3
L

NN
s (b) = δ[1]4 (3) − 2s∇

a[L]3

1
b

b∑
i=1

[
log

(
Pθ3(u3,i|x3,i)

Qϕ3(u3,i)

)],
∇

a[L]2
L

NN
s (b) = δ[1]4 (2) − 2s∇

a[L]2

1
b

b∑
i=1

[
log

(
Pθ2(u2,i|x2,i)

Qϕ2(u2,i)

)],
∇

a[L]1
L

NN
s (b) = δ[1]5 (1) − s∇

a[L]1

1
b

b∑
i=1

[
log

(
Pθ1(u1,i|x1,i)

Qϕ1(u1,i)

)].
and this explains why, for back propagation, nodes 1, 2, 3, 4 need only part of the error vector at the
node they are connected to.

3.3. Bandwidth Requirements

In this section, we study the bandwidth requirements of our in-network learning. Let q
denote the size of the entire data set (each input node has a local dataset of size q

J ), p = LJ+1

the size of the input layer of NN (J + 1) and s the size in bits of a parameter. Since as per (8),
the output of the last layers of the input NNs are concatenated at the input of NN (J + 1)
whose size is p, and each activation value is s bits, one then needs 2sp

J bits for each data
point—the factor 2 accounts for both the forward and backward passes and so, for an epoch,
our in-network learning requires 2pqs

J bits.
Note that the bandwidth requirement of in-network learning does not depend on the

sizes of the NNs used at the various nodes, but does depend on the size of the dataset. For
comparison, notice that with FL one would require 2NJs, where N designates the number
of (weight- and bias) parameters of a NN at one node. For the SL of [21], assuming for
simplicity that the NNs j = 1, . . . , J all have the same size ηN, where η ∈ [0, 1], SL requires
(2pq + ηNJ)s bits for an entire epoch.

The bandwidth requirements of the three schemes are summarized and compared
in Table 1 for two popular NNs architectures, VGG16 (N = 138,344,128 parameters) and
ResNet50 (N = 25,636,712 parameters) and two example datsets, q = 50, 000 data points and
q = 500,000 data points. The numerical values are set as J = 500, p = 25,088 and η = 0.88 for
ResNet50 and 0.11 for VGG16.

Compared to FL and SL, INL has an advantage in that all nodes work jointly also
during inference to make a prediction,not just during the training phase. As a consequence
nodes only need to exchange latent representations, not model parameters, during training.
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Table 1. Comparison of bandwidth requirements.

Federated Learning Split Learning In-Network Learning

Bandwidth requirement 2NJs (2pq + ηNJ)s 2pqs
J

VGG 16
50,000 data points

4427 Gbits 324 Gbits 0.16 Gbits

ResNet 50
50,000 data points

820 Gbits 441 Gbits 0.16 Gbits

VGG 16
500,000 data points

4427 Gbits 1046 Gbits 1.6 Gbits

ResNet 50
500,000 data points

820 Gbits 1164 Gbits 1.6 Gbits

4. Experimental Results

We perform two series of experiments for which we compare the performance of our
INL with those of FL and SL. The dataset used is the CIFAR-10 and there are five client
nodes. In the first experiment, the three techniques are implemented in such a way such
that during the inference phase the same NN is used to make the predictions. In the second
experiment, the aim is to implement each of the techniques such that the data is spread in
the same manner across the five client nodes for each of the techniques.

4.1. Experiment 1

In this setup, we create five sets of noisy versions of the images of CIFAR-10. To this
end, the CIFAR images are first normalized, and then corrupted by additive Gaussian noise
with standard deviation set respectively to 0.4, 1, 2, 3, 4. For our INL each of the five input
NNs is trained on a different noisy version of the same image. Each NN uses a variation
of the VGG network of [35], with the categorical cross-entropy as the loss function, L2
regularization, and Dropout and BatchNormalization layers. Node (J + 1) uses two dense
layers. The architecture is shown in Figure 8. In the experiments, all five (noisy) versions of
every CIFAR-10 image are processed simultaneously, each by a different NN at a distinct
node, through a series of convolutional layers. The outputs are then concatenated and then
passed through a series of dense layers at node (J + 1).

Figure 8. Network architecture. Conv stands for a convolutional layer, Fc stand for a fully con-
nected layer.

For FL, each of the five client nodes is equipped with the entire network of Figure 8.
The dataset is split into five sets of equal sizes and the split is now performed such that all
five noisy versions of a same CIFAR-10 image are presented to the same client NN (distinct
clients observe different images, however). For SL of [21], each input node is equipped with
an NN formed by all fives branches with convolutional networks (i.e., all the network of
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Figure 8, except the part at Node (J + 1)) and node (J + 1) is equipped with fully connected
layers at Node (J + 1) in Figure 8. Here, the processing during training is such that each
input NN concatenates vertically the outputs of all convolutional layers and then passes
that to node (J + 1), which then propagates back the error vector. After one epoch at one
NN, the learned weights are passed to the next client, which performs the same operations
on its part of the dataset.

The model depicted in Figure 8, which utilizes convolutional layers with a filter size of
3 × 3, comprises of approximately seventy-four million parameters, with 99.5% of these
parameters constituting the encoding parts of the neural network. Table 2 presents the
bandwidth requirements per epoch for the three techniques, considering the variation of the
CIFAR-10 dataset used in the experiment, as well as the scenario where a dataset with ten
times the amount of data is employed. It is observed that increasing the data size results in
higher bandwidth requirements for both SL and INL, whereas the bandwidth requirements
for FL remain unaffected.

Table 2. Experiment 1 bandwidth requirements of INL, FL and SL.

Federated Learning Split Learning In-Network Learning

Bandwidth requirement 2NJs (2pq + ηNJ)s
2pqs

J
250,000 data points 2.96 GB 2.5 GB 0.2 GB

2,500,000 data points 2.96 GB 11.71 GB 2.05 GB

Figure 9a depicts the evolution of the classification accuracy on CIFAR-10 as a function
of the number of training epochs, for the three schemes. As visible from the figure, the
convergence of FL is relatively slower comparatively. The final result is also less accurate.
Figure 9b shows the amount of data needed to be exchanged among the nodes (i.e.,
bandwidth resources) in order to get a prescribed value of classification accuracy. Observe
that both our INL and SL require significantly less data exchange than FL and our INL
is better than SL especially for small values of bandwidth. This experiment showcases
that the INL framework can save bandwidth, compared to SL and FL, when training large
models by exchanging latent representations as opposed to model parameters. This is
particularly relevant as some works argue to overparametrizing models can result in better
model performance [36].

(a)
Figure 9. Cont.
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(b)
Figure 9. Comparison of INL, FL and SL—Experiment 1. (a) Accuracy vs. # of epochs. (b) Accuracy
vs. bandwidth cost.

4.2. Experiment 2

In Experiment 1, the entire training dataset was partitioned differently for INL, FL
and SL (in order to account for the particularities of the three). In this second experiment,
they are all trained on the same data. Specifically, each client NN sees all CIFAR-10 images
during training and its local dataset differs from those seen by other NNs only by the
amount of added Gaussian noise (standard deviation chosen as 0.4, 1, 2, 3, 4, respectively).
Additionally, for the sake of a fair comparison between INL, FL and SL the nodes are set to
utilize fairly the same NNs for the three of them (see, Figure 10).

Figure 10. Used NN architecture for FL in Experiment 2.

The model shown in Figure 10, for convolutional layers with filter of size 3 × 3,
has approximately fifteen million parameters, with 97.6% of the parameters forming the
decoding part of the network. Table 3 shows the bandwidth requierments for the three
techniques per epoch for the variation of the CIFAR-10 dataset used in the experiment as
well as for the case in which another dataset would be used that had ten times the amount of
data. It is observed that increasing the data size results in higher bandwidth requirements
for both SL and INL, whereas the bandwidth requirements for FL remain unaffected.

Table 3. Experiment 2 bandwidth requirements of INL, FL and SL.

Federated Learning Split Learning In-Network Learning

Bandwidth requirement 2NJs (2pq + ηNJ)s
2pqs

J
250,000 data points 0.6 GB 1.32 GB 0.2 GB

2,500,000 data points 0.6 GB 10.53 GB 2.05 GB

Figure 11b shows the performance of the three schemes during the inference phase
in this case (for FL the inference is performed on an image which has average quality of
the five noisy input images for INL and SL). Again, observe the benefits of INL over FL
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and SL in terms of both achieved accuracy and bandwidth requirements. This experiment
showacases INL’s ability to make use of the correlations between the data observed by the
different nodes, thus resulting in better network performance.

(a)

(b)
Figure 11. Comparison of INL, FL and SL—Experiment 2. (a) Accuracy vs. # of epochs. (b) Accuracy
vs. bandwidth cost.

5. Conclusions

In this paper, our focus is on addressing the problem of distributed training and
inference. We introduce INL, a novel framework which enables multiple nodes to collab-
oratively train a model that can be utilized in a distributed manner during the inference
phase. Unlike existing works on distributed estimation and detection, our framework does
not require prior knowledge of the data distribution; instead, it only necessitates access
to a set of training samples. Furthermore, while other approaches to distributed training,
such as FL and SL, assume local decision-making during the inference phase, we consider
a scenario where the nodes observe data associated with the same event, thus enabling
a joint decision that can lead to improved accuracy. The proposed INL algorithm offers
a loss function derived through theoretical analysis, aiming to achieve the best trade-off
between prediction accuracy, measured by logarithmic loss, and the amount of information
exchanged among the nodes in the communication network.
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 is based on a scheme in which the observations {x j} j∈J
are compressed distributively using Berger-Tung coding [33], then, the compression bin
indices are transmitted as independent messages over the network G using linear-network
coding [34] (Section 15.4). The decision node N first decompresses the compression
codewords and then uses them to produce an estimate Ŷ of Y. In what follows, for
simplicity we set the time-sharing random variable to be a constant, i.e., Q = ∅. Let
0 < ε

′′

< ε
′

< ε.

Appendix A.1. Codebook Generation

Fix a joint distribution PX1,...,XJ ,Y,U1,...,UJ that factorizes as given by (16). Addition-
ally, let D = H(Y|U1, . . . , UJ), for (u1, . . . , uJ) ∈ U1 × . . .×UJ, the reconstruction function

ŷ(·|u1, . . . , uJ) ∈ P(Y) such that E
[
d(Y, Ŷ)

]
≤

D
1 + ε

, where d : Y ×P(Y) −→ R+ is the

distortion measure given by (5). For every j ∈ J , let R̃ j ≥ R j. In addition, randomly and inde-

pendently generate 2nR̃ j sequences un
j (l j), l j ∈ [1 : 2nR̃ j ], each according to

∏n
i=1 pU j(u ji). Par-

tition the set of indices l j ∈ 2nR̃ j into equal size bins B j(m j) =
[
(m j − 1)2nR̃ j−R j : m j2

nR̃ j−R j
]
,

m j ∈ [1 : 2nR j ]. The codebook is revealed to all source nodes j ∈ J as well as to the decision
node N, but not to the intermediary nodes.

Appendix A.2. Compression of the Observations

Node j ∈ J observes xn
j and finds an index l j ∈ [1 : 2nR̃ j ] such that (xn

j , un
j (l j)) ∈ T

(n)
ε′′

.
If there is more than one index the node selects one at random. If there is no such index,
it selects one at random from [1 : 2nR̃ j ]. Let m j be the index of the bin that contains the
selected l j, i.e., l j ∈ B j(m j).

Appendix A.3. Transmission of the Compression Indices over the Graph Network

In order to transmit the bins indices (M1, . . . , MJ) ∈ [1 : 2nR1 ] × . . . × [1 : 2nRJ ] to the
decision node N over the graph network G = (E,N ,C), they are encoded as if they were
independent-messages using the linear network coding scheme of [34] (Theorem 15.5) and
then transmitted over the network. The transmission of the multimessage (M1, . . . , MJ) ∈ [1 :
2nR1 ]× . . .× [1 : 2nRJ ] to the decision node N is without error as long as for all S ⊆ [1 : N − 1]
we have ∑

j∈S∩J

R j ≤ C(S) (A1)

where C(S) is defined by (14).

Appendix A.4. Decompression and Estimation

The decision node N first looks for the unique tuple (l̂1, . . . , l̂J) ∈ B1(m1)× . . .×BJ(mJ)

such that (un
1(l̂1), . . . , un

J (l̂J)) ∈ T
(n)
ε . With high probability, Node N finds such a unique

tuple as long as n is large and for all S ⊆ J it holds that [33] (see also [34] (Theorem 12.1))∑
j∈S

R j ≥ I(US; XS|USc). (A2)
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The decision node N then produces an estimate ŷn of yn as ŷ(un
1(l̂1), . . . , un

J (l̂J)). It can be
shown easily that the per-sample relevance level achieved using the described scheme is
∆ = I(U1, . . . , UJ; Y) and this completes the proof of Theorem 1.

Appendix B. Proof of Proposition 1

For Csum ≥ 0 fix s ≥ 0 such that Cs = Csum and let P∗ = {PU∗1 |X1 , PU∗2 |X2 , PU∗3 |X3 } be the
solution to (23) for the given s. By making the substitution in (22):

∆s =I(Y; U∗1, U∗2, U∗3) (A3)

≤∆ (A4)

where (A4) holds since ∆ is the maximum I(Y; U1, U2, U3) over all distribution for
which (20b) holds, which includes P∗.

Conversely, let P∗ be such that (∆, Csum) is on the bound of the RIsum then:

∆ =H(Y) −H(Y|U∗1, U∗2, U∗3)

≤H(Y) −H(Y|U∗1, U∗2, U∗3) + sCsum

− s
[
I(X2, X3; U∗2, U∗3|U

∗

1) + I(X1, X2, X3; U∗1, U∗2, U∗3)
]

(A5)

≤H(Y) + max
P
Ls(P) + sCsum (A6)

=∆s − sCs + sCsum

=∆s + s(Csum −Cs). (A7)

where (A5) follows from (20b). Inequality (A6) holds due to the fact that maxPL(P) takes
place over all P, including P∗. Since (A7) is true for any s ≥ 0 we take s such that Csum = Cs,
which implies ∆ ≤ ∆s. Together with (A4) this completes the proof.

Appendix C. Proof of Lemma 1

We have

Ls(P) = −H(Y|U1, U2, U3) − sI(X1, X2, X3; U1, U2, U3)

− sI(X2, X3; U2, U3|U1) (A8)

= −H(Y|U1, U2, U3)

− s

I(X1; U1) + 2I(X2, X3; U2, U3|U1)

 (A9)

= −H(Y|U1, U2, U3) − sI(X1; U1) − 2sI(X2; U2)

− 2s
[
I(X3; U3) − I(U3; U1, U2) − I(U2; U1)

]
(A10)

= −H(Y|U1, U2, U3) − sI(X1; U1) − 2sI(X2; U2)

+ 2s
[
I(U2; U1) + I(U3; U1, U2) − I(X3; U3)

]
(A11)

≥−H(Y|U1, U4) − sI(X1; U1) − 2s
[
I(X2; U2) + I(X3; U3)

]
+ 2s

[
I(U2; U1) + I(U3; U1, U2)

]
(A12)

where (A9) holds since U1 −
−X1 −
− (X2, X3, U2, U3) and (U2, U3) −
− (X2, X3) −
− (U1, X1)
(A10) holds since U2 −
− X2 −
− (U1, X3) and U3 −
− X3 −
− (U1, U2, X2); (A12) hold since
U4 −
− (U2, U3) −
− (Y, U1).
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Appendix D. Proof of Lemma 2

From [25] (eq. (55)) it can be shown that for any pmf QY|Z(y|z), y ∈ Y and z ∈ Z the
conditional entropy H(Y|Z) is:

H(Y|Z) = E[− log QY|Z(Y|Z)] −DKL(PY|Z||QY|Z). (A13)

From [25] (eq. (81)):

I(X; Z) = H(Z) −H(Z|X)

= DKL(PZ|X‖QZ) −DKL(PZ‖QZ). (A14)

Now substituting Equations (A13) and (A14) in (28) the following result is obtained:

L
low
s (P+) = −H(Y|U1, U4) − sI(X1; U1) − 2sI(X2; U2)

− 2sI(X3; U3) + 2s
[
I(U2; U1) + I(U3; U1, U2)

]
=E[log QY|U1,U4 ] + DKL(PY|U1,U4 ||QY|U1,U4)

− sDKL(PU1 |X1‖QU1) + sDKL(PU1‖QU1)

− 2sDKL(PU2 |X2‖QU2) + 2sDKL(PU2‖QU2)

− 2sDKL(PU3 |X3‖QU3) + 2sDKL(PU3‖QU3)

+ 2sDKL(PU2 |U1‖QU2) − 2sDKL(PU2‖QU2)

+ 2sDKL(PU3 |U1,U2‖QU3) − 2sDKL(PU3‖QU3)

=Lv-low
s + sDKL(PU1‖QU1) + 2sDKL(PU2 |U1‖QU2)

+ 2sDKL(PU3 |U1,U2‖QU3) + DKL(PY|U1,U4 ||QY|U1,U4)

≥L
v-low
s (A15)

The last inequality (A15) holds due to the fact that KL divergence is always positive and
s ≥ 0, thus proving the lemma.
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