
Citation: Massaro, A.; Kostadinov, D.;

Silva, A.; Obeid Guzman, A.;

Aghasaryan, A. Predicting Network

Hardware Faults through Layered

Treatment of Alarms Logs. Entropy

2023, 25, 917. https://doi.org/

10.3390/e25060917

Academic Editors: Claude Delpha

and Demba Diallo

Received: 18 April 2023

Revised: 22 May 2023

Accepted: 3 June 2023

Published: 9 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Predicting Network Hardware Faults through Layered
Treatment of Alarms Logs
Antonio Massaro *, Dimitre Kostadinov, Alonso Silva, Alexander Obeid Guzman and Armen Aghasaryan

Nokia Bell Labs, 12 Rue Jean Bart, 91300 Paris, France; dimitre.kostadinov@nokia-bell-labs.com (D.K.);
alonso.silva@nokia-bell-labs.com (A.S.); alexander.obeid_guzman@nokia.com (A.O.G.);
armen.aghasaryan@nokia-bell-labs.com (A.A.)
* Correspondence: antonio.massaro@nokia-bell-labs.com

Abstract: Maintaining and managing ever more complex telecommunication networks is an increas-
ingly difficult task, which often challenges the capabilities of human experts. There is a consensus
both in academia and in the industry on the need to enhance human capabilities with sophisticated
algorithmic tools for decision-making, with the aim of transitioning towards more autonomous,
self-optimizing networks. We aimed to contribute to this larger project. We tackled the problem of
detecting and predicting the occurrence of faults in hardware components in a radio access network,
leveraging the alarm logs produced by the network elements. We defined an end-to-end method
for data collection, preparation, labelling, and fault prediction. We proposed a layered approach to
fault prediction: we first detected the base station that is going to be faulty and at a second stage,
and using a different algorithm, we detected the component of the base station that is going to be
faulty. We designed a range of algorithmic solutions and tested them on real data collected from a
major telecommunication operator. We concluded that we are able to predict the failure of a network
component with satisfying precision and recall.

Keywords: predictive maintenance; network hardware fault prediction; machine learning;

1. Introduction and Our Contribution

The scale and complexity of modern telecommunication networks call for the intelli-
gent support of human experts in management and maintenance operations. In this work,
we put forward a method to predict hardware component failures, with the goal of autom-
atizing the troubleshooting procedures that are currently performed by human experts.
Predictive maintenance is important from both a cost reduction and a network performance
perspective. Replacing in advance fault-risky components allows for efficient management
of stock and delivery costs while preventing service degradation. The earlier the fault is
detected, the higher the benefit perceived by the operator. In general, the management
of complex systems is a challenge because of non-trivial correspondences between the
observed behaviors and the underlying states of interest. In the case of fault management,
alarms generated by the monitoring system do not always express (current or future)
occurrences of faults that require any repair action.

We consider hardware faults in a radio access network composed of around ten
thousand base stations (with a dozen of replaceable components in each). The network
generates thousands of monitoring events per hour. Each such event does not necessarily
reflect an important fault situation: alarms are present in normal operational states, too.
In practice, in such a network, only a few hundred faulty physical components are replaced
each year. The challenge is therefore to detect and predict the need for the replacement of
network components by analyzing large rates of daily alarm flows, where most of the time
the network is in a normal operational state.

If we frame our task as a classification problem, we are immediately faced with the
well-known challenge of high imbalance between classes (faulty vs normal components),

Entropy 2023, 25, 917. https://doi.org/10.3390/e25060917 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060917
https://doi.org/10.3390/e25060917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5642-373X
https://orcid.org/0009-0009-3284-1027
https://doi.org/10.3390/e25060917
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060917?type=check_update&version=4

Entropy 2023, 25, 917 2 of 32

which results in a bias toward the larger class of normal cases. To address this problem, we
propose a layered approach to fault prediction, where, as opposed to a direct per-component
classification, we first train a model to identify faulty base stations, and only after we select
the most likely faulty component on these shortlisted sites. This procedure reduces the data
imbalance by at least a factor of ten. Furthermore, it brings another important advantage.
The components located on the same site are functionally interdependent and therefore
are subject to fault propagation phenomena. A direct classification method based on
individual component alarms would miss that local context, whereas a site-level fault
identification which uses all the alarms collected on the site provides a way to remedy this
loss of information.

Each base station of a radio network can have a different configuration depending
on the coverage area, frequency band, radio technologies used, or expected traffic vol-
umes. They can contain a variable number and different types of hardware components.
To leverage the site-level data and enable the training of a generic model for the set of
different radio sites, we designed a data summarization method that makes abstraction
from each site’s specific configuration while maintaining the relevant information for fault
prediction. In its simplest variant, it extracts features in terms of alarm and resource types,
however, this summarization method is empowered to build graph summaries representing
typed time-space relationships in the original data such as correlations, and topological or
causal dependencies.

While most of the general-purpose data-driven ML approaches take for granted the
availability of good quality data and ground truth labels, in practice this is a major obstacle
to the large-scale industrial deployment of AI. In this study, we focused on the automation
of the end-to-end system including the data collection, preparation, labeling, and fault
prediction components.

Finally, to evaluate the accuracy of our failure prediction model, we used precision and
recall, which are widely used measures in classification problems. Precision refers to the
fraction of correctly predicted cases (true positives) among the predicted ones, while recall
is the fraction of correctly predicted cases among all the failure cases. As already noted,
we are dealing with imbalanced classes; the ratio between normal and faulty sites will still
be significant even after the reduction procured by the layered approach. Therefore, it is
difficult to achieve both high precision and high recall. However, for practical reasons,
achieving high precision is much more important as it will limit additional costs related
to false positives (e.g., the costs related to useless on-site human interventions), while
reasonably low recall would still allow the operator to maintain the current expert-based
operational modes for the faults which are not discovered by the algorithm while benefiting
from the prediction for those that are actually discovered. We showed that the trade-off
between precision and recall can be tuned according to the business needs.

The contributions of this study are the following:

• We designed and developed end-to-end automation of the predictive hardware main-
tenance process for large telco networks (Figure 1). Namely, we addressed the problem
of the seamless collection of raw data in high volumes and their automated consolida-
tion from multiple sources and labeling. We remark that, the best of our knowledge,
such a process is not in place in current network monitoring products, hence it is a
relevant innovation and it represents the first contribution of this work.

• We developed a layered fault prediction scheme for fault diagnosis which decomposes
the decision-making into two steps: site-level and component-level prediction. This
reduces the problem of data imbalancing and allows for the application of ML methods
to alarm logs data.

• We introduced the data summarization procedure to allow generalization across
different network contexts and site configurations and enable ML-based modeling and
prediction of faults. We developed an ad-hoc graph-matching algorithm achieving
good accuracy for component-level fault prediction on top of the site-level outcomes

Entropy 2023, 25, 917 3 of 32

Figure 1. The end-to-end data collection and processing pipeline.

This paper is organized as follows. In Section 2 we provide an analysis of the related
literature. Sections 3 and 4 formally define the problem statement and the principles of
the layered approach, respectively. Then, in Section 5 we describe the process of data
collection, consolidation, and automated labeling which are essential parts of a practical
data-driven approach. Section 6 describes different algorithmic approaches both at the
site and component levels. The numerical results of the experiments and the performance
evaluations are presented in Section 7. Finally, we conclude in Section 9.

2. State of the Art

The problem of fault detection, prediction, and root-cause analysis is a long-standing
research field. In the following, we list works that we believe have some aspects in common
with our research.

The task of predicting faulty sites can be approached in multiple directions: the first
direction is to consider it as a classification task in which we label normal and faulty sites.
Within this direction, we also consider anomaly detection methods which will be trained on
normal sites and will evaluate the deviation from normal behavior. One of our techniques
follows this approach (RNN). The second direction is to consider it as a regression task
in which we could consider only the sites which have failed or consider the last known
functioning time of all the sites (see for example [1–3] where the authors propose a model
for remaining useful life prediction). In the presence of right-censored data (where the
event of interest has only occurred for a subset of the observations), the regression task will
usually result in an underestimate (if we only consider the events) or an overestimate (if we
only consider the last known functioning times) of the time-to-event (see for example [4]).
The third direction is to consider it as a time-to-event prediction task (see for example [5–7]).
One of our techniques follows this approach (time-to-event analysis). Our technique is
different from a standard random survival forest because we take into account the evolution
of the sites with two extra parameters, the average rolling window and the risk threshold.
Estimating the time to failure is a possible way to tackle fault prediction, and it has been
explored by several authors. For example, in [8] a deep learning model for time to failure
prediction was put forward. Here, the authors tackled the problem stemming from the
fact that offline data on which the models are trained can, in practice, follow a different
distribution from on-line data, on which the models would be tested, and they proposed
a technique based on a variational autoencoder and a long-short term memory network.
In [1], the authors proposed a parallel hybrid neural network with integration of spatial
and temporal features for remaining useful life prediction where the spatial features are
extracted by a 1-dimensional convolutional neural network and the temporal features are
extracted by a bidirectional gated RNN.

In [9], the authors used a neural network to classify alarm patterns of a radio network.
The task here is to associate each alarm pattern to its root cause, encoded as a class. Each

Entropy 2023, 25, 917 4 of 32

alarm pattern is represented by a binary vector. The authors test their system in a very
simplified setting, where the network is composed of five base stations, a subset of 94 alarms
is chosen to encode the state of the network, and the root causes are restricted to single-link
failures and are known with certainty. Moreover, by its very definition, the classifier cannot
generalize to networks with a different number of base stations and a different number of
alarms. In our case, we deal with a network of over ten thousand base stations, and we
propose a method that can generalize to unseen network topologies.

In [10] the authors tackled the problem of software components’ fault prediction in
a commercial telecommunication system. The authors used a semi-Markov chain model,
trained on real data, to estimate the probability of incurring a fault within a given time
window, given an encoding of the current state of the system. This implies building an
explicit state-space representation which can become a bottleneck in terms of computational
complexity when faced with large systems. In fact, the authors tested with a period of
one-day data collected on a presumably small network by using a stress generator.

In [11], the authors developed a system to detect and predict failures in an IoT system.
First, from historical alarms’ data (a small 24-h period), the authors computed, for each
couple of alarms, the conditional probability of the first alarm being on given that the
second alarm is on. From this information, a so-called causal dependence graph is inferred.
Such a graph should model how faults spread from one device to the other, given the
dependence information of their alarms. Next, if a fault on some components is detected,
the causal-dependence model is used to forecast how such a fault will propagate to other
devices. In our case, simple co-occurrence of alarms could not be used to model causal
relationships, as one would easily confuse causation and correlation. Moreover, in this
paper, we did not address the problem of fault propagation to different parts of the network,
but rather we predicted fault occurrence in the first place.

In [12], the authors tackled the problem of fault detection and localization in large
enterprise networks. They modeled the set of the services on which each host depends and
the set of the network components as a graph. Here, each node maintains a probability
distribution over three possible states, namely ‘up’, ‘down’, and ‘troubled’. The authors
define an algorithm to fit such probabilities and quantify how the state of network com-
ponents propagates to the state of network services, from observed data. In the second
stage, observations from the states of the services are used to infer the most likely state
of each network component and pin down those that are in ‘down’ or ‘troubled’ states.
The construction of the graph is based on the observation of the packets that all hosts send
and receive in the network, and the performance indicator is the response time of network
services. In our case we do not have access to traffic data: we leverage only alarms’ data,
emitted from network components. While in [12], it is possible to know which network
component may cause a failure because it is known which network components each
network service uses, in our case we cannot, as we do not have data on causal relationships
between alarms, therefore this method is not directly applicable to our problem. Finally,
the proposed model performs failure detection and root-cause analysis, whereas we aim at
doing failure prediction.

In [13], the authors proposed an anomaly detection system for OpenStack. They
modeled all processes running within OpenStack as a graph, where each node represents
a process and edges represent dependencies between processes. Dependencies are con-
structed using the information of the communications between processes, each of which
is associated with a unique TCP/UDP connection to communicate with other processes,
which can be identified. Next, statistics on some KPIs of each process are gathered and used
to spot anomalous behaviors of any of the processes. Once a node reporting anomalous
behavior is detected, the system uses the dependency graph to retrieve the set of processes
affected by the anomaly. In this case, the authors constructed a graph that mimics physical
dependencies between the entities they need to monitor and can pin down with certainty
an anomaly on any of the nodes. On the other hand, we do not know which alarm or which
component is giving rise to the anomaly, but just that the system is experiencing a fault.

Entropy 2023, 25, 917 5 of 32

In [14], a system to create a network alarm correlation model was designed and used
for fault diagnosis. Here, the modeled correlations are meant not to be learned from data
but rather specified by domain experts, and it is not discussed how such a system could go
beyond fault diagnosis and tackle fault prediction and preventive maintenance.

In [15], the authors proposed a method based on the PC algorithm, to construct
causal graphs (as opposed to correlation graphs) representing causal relationships between
network events, leveraging network logs data. The computation involves the time series of
alarms. The idea of using causal graphs instead of correlation graphs could be an alternative
worth exploring as a future direction of our work, as it seems from our earlier experiments
(not presented in this paper) that simple correlation data do not improve significantly the
prediction performance at the site level.

In [16], the problem of fault localization was tackled by resorting to a Bayesian network
that models the causal dependencies between hardware faults as probabilities, and the prior
probabilities of hardware faults of network components. However, contrary to our case, it
was assumed that such causal and probabilistic structure is given, possibly constructed by
expert judgment or by machine learning.

In [17], the authors addressed the fault detection and diagnosis problem in cloud
infrastructures. The training data were generated with the help of injected, labeled faults.
The approach relies on building two graphs from the monitoring data, a substitution graph
and a detection graph. The substitution graph allows grouping together the strongly
correlated metrics and events into clusters, the members of the clusters are then considered
equivalent and can substitute one another, which allows for reducing the complexity of
the model. The detection graph comprises the sequences of events that lead to the faults.
The authors propose an approach based on Facebook’s Edge-Rank algorithm to find the
key events that contribute to each fault, and to form fault patterns that can be exploited
in an online fault detection mode. The paper focuses on fault detection and diagnosis as
opposed to prediction. Moreover, it heavily exploits real-valued KPI as opposed to alarms
in our case. More importantly, the proposed approach was built on a fine-tuned model for a
fixed system infrastructure, but it is not clear how the learned models would be transposed
to a different configuration.

In [18], the authors addressed the problem of anomaly detection in virtual network
function (VNF) chains. They tracked (Pearson) correlation pattern changes between neigh-
boring nodes as indicators of anomalies. The idea is somewhat similar to the methods we
investigate in this paper at the module layer algorithms, however, no generalization or
prediction capability is provided by the authors.

Finally, in [19,20], we have two other examples of research works that addressed
early fault detection and localization problems based on numerous real-valued KPI mea-
surements by leveraging correlations between these metrics. Although in a different
technological context and with different types of data (alarms as opposed to KPIs), we have
also considered correlation patterns as an important source of information for tracking
the changes in the systems with respect to fault occurrences in modules. In the current
study, we brought in addition the dependency graph summarization method allowing us
to cope with topology variations across sites. Furthermore, regarding all the works sites
above we also brought in the advantages of the layered approach in terms of scalability
and improved imbalance factor.

3. Problem Statement

We wanted to predict faults in network hardware components (In this paper, we use
the terms hardware components and modules interchangeably.) of a given site, given an
observation of its alarms. Since it is difficult to establish deterministic relationships between
the appearance of alarms and hardware faults, we resort to the language of probability.
Let us make these concepts precise: we denote by A the set of all alarms emitted by a
site, and by C the set of its components, and let α and γ be the generic subset of A and C,
respectively. Moreover, each network component can emit a particular set of alarms, that

Entropy 2023, 25, 917 6 of 32

may or may not have alarms in common with other components. We denote the alarms
emitted by a set of components γ as α(γ). We remark that some alarms cannot be linked
to any specific component, rather, they are linked to the entire site. Let us define, for each
subset of observed alarms α, the probability distribution of being faulty over all the subsets
of network components as P(γ|α). We remark here that P(γ|α) is the probability of all
hardware components contained in γ to be faulty, given the observed alarms α.

Now, assuming we know such probability distribution, we would like to pin down,
roughly speaking, for any observed set of alarms α, a set of components γ∗ that is most
likely to be faulty.

γ∗ ∈ arg max
γ⊂C

P(γ|α). (1)

4. Layered Approach

In the following, P(∅|α) will denote the probability of not having any fault in any
component. Moreover, we define the event ‘site C is faulty’ as the event in which site C
hosts at least one faulty hardware component. By definition the two events ∅ and site C is
faulty are complementary, hence ∅ = ‘C is not faulty’ and P(∅|α) = 1− P(C is faulty|α).

We notice that defining the most likely faulty component as in (1) can lead to paradox-
ical results. Let us make this clear: by the basic rules of probability theory, we can write

P(γ|α) = P(γ|C is faulty, α) · P(C is faulty|α) + P(γ|C not faulty, α) · P(C not faulty|α). (2)

Now, we observe that, for γ 6= ∅, by definition, P(γ|C is not faulty, α) = 0, therefore we
are left with

P(γ|α) = P(γ|C is faulty, α) · P(C is faulty|α) if γ 6= ∅

In the same way, for γ = ∅, by definition, P(∅|C is faulty, α) = 0 and P(∅|C is not faulty, α)
= 1, therefore in this case we are left with

P(∅|α) = P(C is not faulty|α).

This means that γ 6= ∅ ⇒ p(γ|α) = p(γ|C is faulty, α)P(C is faulty|α) and γ = ∅ ⇒
p(∅|α) = P(C is not faulty|α), therefore Equation (1) can be rephrased as

γ∗ = arg max
{

P(γ = ∅|α),
arg maxγ⊂C, γ 6=∅ P(γ|C is faulty, α)P(C is faulty|α)

}
. (3)

Now, from Equation (3), it is obvious to see that if P(C is not faulty|α) > P(C is faulty|α),
then γ∗ = ∅, since p(γ|C is faulty, α) ≤ 1. This means that, if the probability of not
having any fault is higher than the probability of having at least one fault, we would not
declare any component as faulty, as one would expect. However, in the opposite case,
in which P(C is faulty|α) > P(C is not faulty|α), we could still choose ∅ as γ∗. In fact,
if p(γ|C is faulty, α) is sufficiently small for each γ 6= ∅, then all the products appearing in
the inner arg max at Equation (3) would be smaller than P(C not faulty|α).

This argument shows that blindly applying (1) can lead to a paradoxical situation
where despite the probability of a site being faulty is higher than the probability of the site
not being faulty, we still do not raise any warning on any component. This is one of the
reasons why we propose a layered fault prediction mechanism as follows. At the site layer,
if P(C is not faulty|α) > P(C is faulty|α), then we declare that no component is faulty.
At the component layer, the respective algorithm is activated if P(C is not faulty|α) ≤
P(C is faulty|α), and would choose γ∗ :≈ arg maxγ⊂C P(γ|C is faulty, α). In this way, we
always output an estimate for the most likely faulty module(s), in the case in which a site is
more likely than not to contain at least a faulty module.

γ∗ :≈
{

∅, if P(C is not faulty|α) > P(C is faulty|α)
arg maxγ⊂C P(γ|C is faulty, α), otherwise (4)

Entropy 2023, 25, 917 7 of 32

We remark that, by means of this layered approach, we may label a component as
faulty even if its probability of being faulty is low, which means that it could actually be
a false positive. In other words, we may be privileging recall over precision for our fault
prediction task.

A possible way to gauge the trade-off between precision and recall could be not just
to compare P(C is not faulty|α) and P(C is faulty|α) and pick the event that carries the
highest probability, but declare site C faulty if P(C is faulty|α) > 0.5 + ω, where ω is a
positive threshold. In this case, we would declare a site faulty just if its probability of
being faulty is high “enough”. In this way, we would increase the likelihood of outputting
a module that is actually faulty. In other words, we would increase the precision of our
model, at the expenses of recall.

It is important to note that the layered approach increases the overall scalability and
decreases the data imbalance due to the fact that at the first layer, the number of items to
be considered as potentially faulty goes down to the number of active sites (as opposed to
the total number network components), while the second layer algorithm will be activated
only when triggered by the site-level fault prediction.

Finally, another advantage of this approach is the flexibility in the choice of algo-
rithms at each of the layers. Namely, some of the algorithms are well-fitted to work with
component-specific data, however, they miss the potential inter-component dependencies
among modules on the same site. Then, despite this potential loss of information, the lay-
ered approach will still predict site-level faults by using all the information available. We
will further elaborate this point in Section 6 dedicated to algorithms.

Naturally, such probability distributions are not given: we can only sample them
from experience. Actually, we want to fit a probability distribution to the observed sample
distribution and use the fit distributions to make predictions.

Formally, we will need a model for the probability of a site being faulty, P(C is faulty|α, θsite),
where θsite are the parameters that define the probability distribution to be fit, and a model for
the probability distribution of a module to be faulty, given that the site is faulty P(γ|α, θmodule,
C is faulty). In the following sections, it will be made clear how such approximation is achieved.

5. Data

This section presents the process of building a labeled dataset for training and
evaluating the fault prediction algorithms. The data come from a large network and consists
of network-wise alarm events, daily snapshots of sites, the list of deployed components
on the site, and the list of components sent for repair. Building a labeled dataset from
such heterogeneous inputs requires a data consolidation followed by a procedure for
attribution of data samples to normal or faulty behaviors. Finally, we put in place a data
summarization method allowing us to obtain reusable alarm patterns comparable across
different components and sites. These three steps are described in the next subsections.

5.1. Data Consolidation

Alarm logs come from two data collection tools and have heterogeneous formats.
The first tool monitors the entire network and collects alarm events with start and end
timestamps. The second tool collects daily low-level snapshots of sites. A snapshot contains
information about the state of alarms on the given site, as well as the list of currently
deployed components. The alarms collected by the two tools contain some redundancies
but are complementary to a large extent with a predominance of the information coming
from the snapshots. We consolidated these data by building a common alarm model with
uniquely defined alarm identifiers and a common time dimension. First, alarm events
were translated into daily alarm states; the state of a given alarm on a given day was equal
to 1 if the alarm was active at least once during the day and was equal to 0 otherwise.

An alarm a is identified by a triplet < ResourceInstance, ResourceType, AlarmType >.
The first term, ResourceInstance, identifies the logical entity on which the alarm was
raised. Here, a logical entity refers to a physical or virtual network resource such as an

Entropy 2023, 25, 917 8 of 32

antenna, a cell, or a fan. The second term, ResourceType, identifies the type of logical
entity. For example, Cell-1 and Cell-2 are two resource instances of the same resource type
Cell. Finally, the third term, AlarmType, encodes the meaning of the alarm, e.g., high
temperature, or connection loss. It is provided using numerical codes which are composed
of 1 to 3 integers. Given the sensitive nature of the dataset, the examples in this paper will
contain only the numerical codes of alarm types.

For each alarm ai identified by the triplet < resInstancei, resTypei, alarmTypei >, we
created a binary time series representing the sequence of its daily states. Depending on
the prediction layer, the time series were grouped per site or per component. Examples of
a time series for a site and a time series for one of its components are shown in Figure 2.
The group of component time series, on the right, is a sub-set of the site-level time series
on the left.

Figure 2. Example of site-level and component-level alarm time series.

Finally, in order to obtain homogeneous data objects, the grouped time series were
split into bundles using a sliding window of N days. An example of a bundle of the
component time series of Figure 2 is shown with a red rectangle on the left side of Figure 3.

Figure 3. Example of alarm time series before and after summarization. The red boxes delimit an
8-day bundle in their original and summarized forms, respectively.

Entropy 2023, 25, 917 9 of 32

5.2. Data Labeling

In order to train the fault prediction algorithms, we needed a labeled dataset, i.e., ex-
amples of alarm bundles that precede faults and examples of bundles not followed by a
fault in the (known) future, i.e., normal behavior bundles. To obtain examples of fault cases,
we first selected the components in the repair center that had been diagnosed as featuring
a hardware fault. This eliminates all the components where no hardware-related issues
were detected despite the fact that the component was replaced and delivered to the repair
center. Such cases can correspond to configuration errors or software-related issues that do
not require intervention on the hardware. Other items could have been removed as a result
of wrong problem detection and must not be labeled as fault examples.

Then, we needed to establish the date of replacement of each faulty component.
It was obtained by comparing the lists of components in consecutive snapshots of the
site where the faulty component was originally deployed. Given the replacement date
of a faulty component, we built a 43-day-long time series composed of 28 days before
the replacement, the day of the replacement, and the following 14 days. We labeled as
a fault examples of all the bundles appearing strictly before the replacement date. We
excluded the replacement date which may contain a mixture of alarm signatures specific
to the replacement operation and the fault itself. In all cases, the bundles obtained after
the replacement were considered to be normal. We completed the set of normal behavior
bundles with samples from non-faulty sites randomly selected in the network. We took
a one-month margin period to ensure that these sites did not contain a faulty component
that had not yet been replaced.

Finally, note that, for the component-level predictions, only the bundles of the faulty
component (preceding the replacement) were taken as fault samples, whereas those asso-
ciated with the other, healthy components on the same site were considered as normal.
In contrast, for site-level model training, the bundles were not defined component-wise
and all alarms belonging to a given site were used to build the model.

5.3. Data Summarization

Each base station of a radio network can have a different configuration and can contain
a variable number and different types of components. The goal of data summarization is
to abstract from specific resource naming schemes and site configuration variations while
maintaining the relevant information for fault prediction. Indeed, alarm identifier triplets
< ResourceInstance, ResourceType, AlarmType > as defined in Section 5.1 contain unique
resource instance identifiers which make it impossible to compare alarm bundles from
different sites or to train a common model.

A simple form of data summarization consists in abstracting from these unique re-
source identifiers and merging alarm time series that collude on resource type and alarm
type but have possibly a different resource instance. If we consider alarm bundles as binary
tables with row identifiers defined by the above triplets, then this form of summarization
consists in applying a Group By operator on the < ResourceType, AlarmType > pair and
using an aggregation function such as a logical OR on the corresponding rows of daily
alarm states. The resulting summarized alarm bundle will now have a standard form
defined by the number of unique < ResourceType, AlarmType > pairs as identifiers of the
aggregated time series. For example, the time series appearing on the same component
with their respective original identifiers < a, x, b > and < a, y, b >, x 6= y, will be merged
into a single summarized time series with the identifier < a, b > and the time series values
equal to 1 whenever either of the original values equals to 1, and 0 - otherwise. Obviously,
this operation reduces the original number of time series, In our dataset, we observed a
reduction by a factor of 3 on average, see for example Figure 3 in which the left side gives
an example of instance time series on one base station and the right side represents the
subsequent summarized time series.

This summarization mechanism can be extended to build graph-based summaries
instead of aggregated data tables. This can be beneficial because the functional dependen-

Entropy 2023, 25, 917 10 of 32

cies between resource instances can result in alarm propagation phenomena, which can be
better captured by a graph structure. In fact, by analyzing the original raw data bundles
one can discover some aspects of these dependency structures.

Let us define an instance graph, as G = (N, V), where

N = {ni =< resInstancei, resTypei, alarmTypei >, i = 1, . . . , m} (5)

is the set of nodes corresponding to alarm identifier triplets, and

V = {(ni, nj, ρi,j) : ni, nj ∈ N, ρi,j > ε} (6)

is the set of edges, where ρi,j represents the strength of a dependency relationship between
the corresponding alarm time series, which needs to be above some fixed threshold ε. Here,
one can use a variety of methods to extract such dependencies from binary time series, e.g.,
Jaccard coefficient [21], cosine measure, or Granger causality [22]. In this work we consider
only undirected dependencies, G is therefore an undirected graph.

The graph summarization is applied to instance graphs and extends the simple idea
of alarm data summarization as follows. The resource instances are removed from alarm
identifiers and all nodes with the same resource type and alarm type are merged into a new
node. This implicitly merges also the edges of the graph. Note that the instance graph for a
given bundle can contain multiple connected components (sub-graphs). In this case, each
sub-graph is summarized separately to avoid introducing nonexistent alarm dependency
paths in the summarized graph.

More formally, we define an equivalence relation on the set of nodes of the instance
graph: ni ∼ nj if and only if resTypei = resTypej and alarmTypei = alarmTypej. Let us
note n̄i = {nj : nj ∼ ni}. Then, the equivalence classes defined by that relation represent
the nodes of the summarized graph.

We define Ḡ = (N̄, V̄), a summarized graph, where

N̄ = {n̄i : ni ∈ N} (7)

is the set of nodes corresponding to the type pairs < ResourceType, AlarmType >, and

V̄ = {(n̄i, n̄j, ρ̄i,j) : ρ̄i,j = max(ρh,k : nh ∈ n̄i, nk ∈ n̄j, (nh, nk, ρh,k) ∈ V)} (8)

is the set of edges defined by the maximum dependency value between all pairs of alarm
time series belonging to the first and the second equivalence classes respectively. We remark
that the choice of the maximum allows convenient propagation of the dependency strength
threshold from instance graphs to their summarized representations (e.g., compare with
the average or the minimum).

In the sequel, we will use both types of summarization depending on the algo-
rithms used.

6. Algorithms

This section presents the algorithms which we developed and/or adapted to perform
fault prediction at each level. It first describes the techniques used to identify the faulty
sites and then explains how the faulty components were identified on top of site-level pre-
dictions.

6.1. Site Level Prediction
6.1.1. RNN

Recurrent neural networks (RNNs) are commonly used to deal with sequential
data [23]. The RNN architecture is designed to extract the relationships that should hold
between the inputs, given their sequential nature. A simple use case is that of predicting
the n-th element of a sequence, given the first n− 1 elements. A concrete example of this
type of problem is the task of sentence completion, where the objective of the model is to

Entropy 2023, 25, 917 11 of 32

complete a sentence, given its initial part. In this case, the RNN will output the most likey
word, given the observed sequence of preceding words.

In the same fashion as this example, we wanted to train a model that, given a sequence
of observed alarms, will output the alarm that is most likely to follow.

The basic idea behind this approach consists in using the trained RNN as an anomaly
detector. More precisely, we train the RNN on data coming from logs in normal regime, so
that the model will pick up the normal dynamics of alarms by minimizing an error measure
between the predicted and the ground-truth alarms. Next, we use the trained model as an
anomaly detector. We define it as follows: choose a time-window t, a threshold level τ, and
an integer number n. We calculate the same error measure used to train the model between
the predicted alarms and the alarms that are actually registered. If, within a time-window
of t consecutive days we register at least n occurrences of such error being greater that the
threshold τ, we declare the site faulty. Refer to Figure 4 for an example of such method.

According to the formalism introduced in Section 3, this would be equivalent to the
following formulation. Define the model’s hyperparameters θsite = (θRNN , n, τ, t), where
θRNN are the weights of the RNN. Define countθsite(C) as the number of times the error
measure exceeds τ for n times during a time window of t consecutive days for site C.
Now, the idea is that, if countθsite(C) > 0, then it is likely that C is faulty, in other words,
that P(C is faulty|θsite) > P(C is not faulty|θsite). We use countθsite(C) > 0 as a proxy for
P(C is faulty|θsite) > 0.5 + ω.

In our dataset, we have 737 distinct summarized alarm identifiers in the form of
< ResourceType, AlarmType > pairs, therefore we encode the inputs to the RNN as 737-
dimensional binary vectors.

Such vectors represent, for a given day, the alarms that were active. As exemplified in
Figure 5, the RNN takes as input a bundle of n such vectors, registering alarm activity for n
consecutive days, and outputs a binary vector to predict the alarm activity at the (n + 1)-th
day. During training, we use binary cross-entropy between the predicted binary alarm
vectors and the true alarm vectors as an error measure to be minimized. This is the same
error measure that we used to define the outlier detector. The space of hyperparameters
(n, t, τ and the dimension of the RNN hidden state) has been explored and evaluated by
cross-validation.

Figure 4. Binary cross-entropy loss for the alarm prediction task for a normal and for a faulty site:
the loss on the faulty site is visibly higher than that on the normal site.

Entropy 2023, 25, 917 12 of 32

Figure 5. Example of RNN architecture: it processes alarms for five consecutive days and outputs
a prediction for the alarms on the sixth day. Such prediction is compared to the alarms actually
occurring at the sixth day and a prediction score is calculated leveraging the cross-entropy loss.

6.1.2. Time-to-Event Analysis

Historically, time-to-event analysis was developed and used by actuaries and medical
researchers to measure the lifetime of populations. Their objective was to measure the time
duration between birth and death [4]. The main challenge of time-to-event analysis is that,
by the end of the study, the event of interest (for example, “death of a patient” in medicine
or “failure of an equipment” in reliability engineering) has only occurred for a subset of the
observations: the observations may be right-censored. An observation is right-censored
if, by the end of the study, the event of interest has not occurred yet for that observation.
As mentioned previously, the time duration to the event may be subject to right-censoring;
therefore, we need to consider an event indicator in addition to the time duration. In the
case when the event did take place, the time duration will indicate the time to the event and
the event indicator will be “True” to indicate that the event occurred. In the case when the
event has not occurred yet, the time duration will indicate the time to the last reported time
and the event indicator will be “False” to indicate that the event has not occurred yet. Since
in our settings we have the replacement date (which is a proxy of the failure time), and we
have the alarms of all the previous times with their time stamps, the idea of using time-to-
event analysis is to make use of this information (i.e., the time duration to the replacement
date or the last reported time), something that is missing in classification methods. The
basic idea of our approach consists in using a random survival forest (RSF) [24] to predict
a risk score for a given day for a given site. As in the previous section, in our dataset we
have 737 distinct summarized alarm identifiers < ResourceType, AlarmType >; therefore,
we encoded the inputs as 737-dimensional binary vectors. The RSF takes as input the
737-dimensional binary vector for a given day for a given site which corresponds to a
bundle of size 1 and outputs a risk score. In time-to-event analysis, we used the information
on the event status and the time duration. We added this information to the data: the event
indicator and the time duration.

For the normal sites, we know that the site was normal up to the last reported
time, therefore

• the event indicator will be false for all the observations since there is no event observed
in the site;

• the time duration will be the difference between the last reported time and the obser-
vation time.

For the faulty sites, we know that the site was faulty at the replacement date, therefore:

• the event indicator will be true for all the observations previous to the replace-
ment date;

• the time duration will be the difference between the replacement date and the obser-
vation date;

• we ignore the remaining observations after the replacement date.

In order to predict whether a site is faulty, we used the RSF method with two modifica-
tions: an average rolling window and a risk threshold that will be defined in the following.

Entropy 2023, 25, 917 13 of 32

A random survival forest will predict a risk score for each site for each time-step. For each
site, we used an average rolling window (see Figure 6), where the window length w was
a hyper-parameter to smooth the risk score for a given period. If the average rolling
window went above the risk threshold (see Figure 7), where the risk threshold τ was a
hyper-parameter, then we classified the site as faulty. Otherwise, we classified it as normal.
The space of hyper-parameters (w, τ) has been explored and evaluated by cross-validation.

Figure 6. Risk scores without average rolling window vs risk scores with an average rolling window
of length 3.

Figure 7. Risk threshold.

In the formalism introduced in Section 3, this would be equivalent to the following
formulation. Define the model’s hyperparameters θsite = (θRSF, w, τ), where θRSF are the
hyperparameters of the random survival forest. Define δθsite as the 0-1 indicator when the
average rolling window of length w goes above the risk threshold τ. Now, the idea is

Entropy 2023, 25, 917 14 of 32

that, if δθsite = 1, then it is likely that C is faulty, in other words, that P(C is faulty|θsite) >
P(C is not faulty|θsite). We use δθsite as a proxy for P(C is faulty|θsite) > 0.5 + ω.

6.1.3. Classic ML

We compared the RNN and time-to-event analysis at the site level with results achieved
by more traditional machine learning (ML) methods used for classification tasks: naive
Bayes and decision trees. We used these models to classify alarm bundles as faulty or
normal and then aggregate the results of consecutive bundles to determine a prediction
for the site. The daily alarms were encoded in a 737-dimension binary vector as described
in the previous sections. Different bundle sizes d were tested (1 <= d <= 7). The input
for the models was the concatenation of the daily vectors in the bundle, which means that
the input for the models would be a binary vector of 737*d dimensions. Bundles coming
from normal sites or from faulty sites after the replacement were labeled as normal and
bundles coming from faulty sites before the replacement were labeled as faulty for the
training process.

We tested a naive Bayes and a decision tree classifier. The training process was
performed following the cross-validation described in Section 7.2. However, the metrics
that evaluated the models, in this case, precision and recall, were not computed directly
with the results of the models. The reason for this is that we are interested in the capability
of the models on classifying at a site level, not in classifying each bundle as faulty or not.
To aggregate the results for each site, the labels of consecutive bundles were analyzed and
if τ consecutive bundles had a faulty label, then the site was labeled as faulty. Precision and
recall were then computed at site-level labels for different hyper-parameter combinations.

6.2. Component Level Prediction

This section describes two approaches for identifying the most likely faulty compo-
nents within the sites declared as faulty in the first layer.

The first approach develops a graph-matching technique using per-component sum-
marized alarm dependency graphs, and the second one builds a random forest classifier
for summarized alarm bundles. According to the layered approach, once a site has been
classified as containing a fault, we need to solve the second line of Equation (4):

γ∗ := arg max
γ⊂C

P(γ|C is faulty, α(γ)). (9)

Here, we assume that, in the event of some components γ being faulty, given that the site
that hosts them is faulty is independent of the alarms that are emitted from other compo-
nents, it will be sufficient to condition on α(γ) as opposed to a more general formulation
in (4). This assumption facilitates the design and broadens the choice of component-level
prediction algorithms. Furthermore, in practice, we observed that it is extremely rare to
have multiple components failing simultaneously. In the sequel, we will assume therefore
that γ is a singleton.

6.2.1. Graph Matching Approach

The main idea behind the graph matching-based faulty component identification
is to assign a score r(γi) to each component γi ∈ C with respect to the dependencies
between alarms α(γi) associated with γi and then to select the component with the highest
score. Scores can be seen as probabilities after normalization. In the rest of the paper,
we will use these scores directly as component fault likelihoods. In order to compute
the scores for the components in a given site C, the alarms in α are split into a set of
bundles B = {α(γ1), . . . , α(γn)}, one for each component γi ∈ C. The alarm dependency
graphs are computed for each bundle using Jaccard correlation with a threshold of 0.6
and transformed into summarized dependency graphs as described in Section 5.3. Note
that, due to the thresholding on the dependency significance, each alarm bundle may be
represented by a set of connected components (summarized sub-graphs): by abuse of

Entropy 2023, 25, 917 15 of 32

notation, for a summarized graph B ∈ B we have a set of summarized sub-graphs B = {si},
where each sub-graph {si} can carry a signature of faulty or normal behavior.

The graph matching method has two phases: knowledge model building (training)
and faulty component discovery (inference). Due to the layered approach, the knowledge
model will be built using only the data from the faulty sites; in fact, it needs to represent
the knowledge necessary for distinguishing a faulty component from the others co-located
on a faulty site. During the knowledge model building phase, a contribution score g(si) is
assigned to each summarized sub-graph si to express the likelihood of a component γj
being faulty given the sub-graph si appears in the set of its summarized sub-graphs Bj:

g(si) = P(γj is faulty|si ∈ Bj) ∗ c(si), (10)

where the score g(si) is obtained by multiplying the probability g(si) = P(γj is faulty|si ∈
Bj) by a confidence coefficient c(si) ∈ [0, 1] that reflects the number of times the sub-graph
si was observed within the dataset. The higher the number of observed si, the higher the
confidence towards its contributions. Thanks to this mechanism, we avoid rare sub-graphs
having a significant (and arbitrary) impact on our fault detection decisions. In this study,
we have used the following confidence function:

c(si) =
1

1 + e−(#si−d)
, (11)

where #si is the number of occurrences of the sub-graph si in the training dataset, and d is a
sensitivity parameter such that for #si = d the conditional probability term is attenuated
(1 + e) times. After optimization of the d parameter, its value was fixed at 3 for our tests.

Note that the conditional probabilities, P(γj is faulty|si ∈ Bj), can be statistically de-
rived from the samples of faulty sites in the training dataset. The higher the frequency of a
given sub-graph in the faulty samples (and the lower in the normal ones), the higher
its contribution score will be. Then, the contribution scores computed according to
Equation (11) allow us to define the knowledge model K in terms of sub-graph and
contribution score pairs:

K = {(ki, g(ki) : g(ki) > ε}, (12)

where a small threshold ε ∈ [0, 1] allows the limiting of the size of the knowledge model by
removing the low contribution elements.

The second phase of the graph-matching approach detects faulty components by
exploiting the knowledge model K. First, we define a graph-matching score using the
Jaccard coefficient applied to the edges of summarized graphs:

m(si, sj) = J(V̄i, V̄j) =
|V̄i ∩ V̄j|
|V̄i ∪ V̄j|

where si and sj are summarized sub-graphs with their respective sets of edges (without
loss of generality, we ignore the edge weights defined in Equation (8) assuming that a
sufficiently selective threshold has been already applied during the construction of instance
graphs, Equation (6)), V̄1 and V̄2; the matching score is defined as a ratio between the
number of common edges and the total number of distinct edges of the two sub-graphs.

Let a component γi be represented by alarm sub-graphs Bi = {s1, . . . , sn}. We would
like to determine the score r(γi|Bi,K) for the component γi being faulty given the (derived)
observations Bi and the knowledge model K . We first match the sub-graphs from Bi with
the knowledge model K and extract the list of best matching sub-graphs Ki = {k1, . . . , kn}
such that k j = argmaxq∈K{m(q, sj)} for j = 1, . . . , n. In the case of multiple best matches
for a given sub-graph sj, the one with the highest contribution score is taken. We also store
the respective matching scores mj = maxq∈K{m(q, sj)}. Now, we have a list of projected
contribution scores {g(k1) ∗m1, . . . , g(kn) ∗mn} that best characterize the expected impact
of the observed sub-graphs in Bi, and we would like to combine this knowledge to derive a

Entropy 2023, 25, 917 16 of 32

global score r(γi|Bi,K). To that end, we used the noisy-OR logic that was introduced in [25]
to represent multi-causal dependencies even when they have never been observed together.
It has been largely used in network diagnosis and fault localization problems [26–28] and it
allows for compact representation of the impact of multiple independent causes x1, . . . , xn
on the same effect y in the form of a posterior probability (all variables being binary):

P(y = 1 | x1, . . . , xn) = 1− (1− p0)
n

∏
j=1

(1− pj)
xj , (13)

where p0 represents the probability of observing the effect without any cause being active
and {pj} are the respective probabilities of each cause to cause the effect. Note that only
the terms associated with active causes remain in the product, the inactive cause terms
vanish due to taking the power of 0. In our case, we considered the prior probability
(or, equivalently, we assumed p0 = Const 6= 0 for all the components which would not
change the outcome of the max-likelihood selection. However, the exploitation of variable
prior failure probabilities for different components contains an unexploited opportunity
for further improvement) p0 = 0 and {pi} correspond to the projected contribution scores
{g(k1) ∗m1, . . . , g(kn) ∗mn} of the sub-graphs in Bi:

r(γi|Bi,K) = 1−
n

∏
j=1

(
1− g(k j) ∗mj

)
. (14)

Finally, the component γ∗ which is most likely to be faulty within a faulty site C
with respect to the knowledge model K and the observations {Bi} is the one with the
highest score:

γ∗ := arg max
γi∈C

r(γi|Bi,K). (15)

Note that we have the possibility to trade precision against recall by constraining the score
of γ∗ to be above a threshold or otherwise assigning γ := ∅. This mechanism has been
used in our experiments, reported in Section 7.3.

6.2.2. Random Forest Approach

The main idea behind this approach is to map the second-level faulty component
identification to a classic machine learning problem in order to assign a risk score r(γi) to
each component γi ∈ C. The component with the highest risk score will be predicted to
be faulty.

To perform the mapping between the second-level faulty component identification
and a classic machine learning problem:

• We consider as the input features for a random forest classifier the summarized
identifier and the alarm presence/absence of 8 consecutive days. A sliding time
window will generate different observations. We note that we consider the observation
only if the alarm is present at least one day in the considered time window;

• For the training set, we generate the target as follows: we assign a value of 1 to the
input if its summarized identifier is associated to the replaced component, otherwise
we assign a value of 0 (see Figure 8);

• In the test phase, we predict the target (probability of being associated to a faulty
component) for each input point. Then, for each component, we recover all the outputs
of points that carry the summarized identifiers associated to that component, we sum
up all such outputs, and we use this as a risk score for each component. We predict
the component with the highest risk score as the faulty component.

Entropy 2023, 25, 917 17 of 32

Figure 8. Example of site-level alarms with a left-side column marking the time series of the alarms
emitted by the faulty component.

7. Numerical Results
7.1. Data Exploration

Our dataset is composed of a total of 273 alarm logs, in the form of csv files. Such
alarm logs are the result of a first calculation where we pre-process the raw data coming
from the network logging system. Each alarm log refers to a site, and it records its alarms’
activity during a given time window. For faulty sites, such a time window is set at 43 days;
for normal sites, it ranges between 90 and 130 days but most of them are either 110 or
130 days. The time granularity at which alarms are recorded is daily. As already stated,
each alarm is identified by the triplet: alarm type, resource type, and resource instance.
For each identifier, we have a binary time series recording; for each day, whether this alarm
was on (1) or off (0). Out of 273 logs, 73 refer to faulty sites. This means that, for faulty sites,
within the 43 days of recorded alarm activity, a fault has occurred at the site.

7.1.1. Number of Alarms

In our dataset, we have a total of 15,990 different full alarm identifiers. Such identifiers
are not evenly distributed across sites, we can see in Figure 9 that the number of full alarm
identifiers that appear on each site varies from site to site. It is also clear that faulty sites
feature a higher number of active alarms each day. This is an indication of the fact that
alarms indeed carry useful information to discriminate normal sites from faulty sites.

As described above, our models work with the summarized version of the full alarm
identifiers. We have 737 unique summarized alarm identifiers. Figure 10 shows the
distribution of the number of single summarized alarms across normal and faulty sites.

Entropy 2023, 25, 917 18 of 32

Figure 9. For each site, we count the average daily number of single triplets <

ResourceInstance, ResourceType, AlarmType > appearing in its log. We can see that faulty logs
feature a higher number of triplets.

Figure 10. For each site, we count the average daily number of single summarized alarms identifiers
< ResourceType, AlarmType > appearing in its log. We can see that faulty logs feature a higher
number of summarized alarms identifiers.

7.1.2. Duration of Alarms

The histograms at Figure 11 report the distributions of alarm frequencies. By alarm
frequency, we mean the fraction of time during which an alarm is on, with respect to the
total duration of time covered by the alarm log. Here, we plot the distribution of alarm
frequencies of all logged alarms. We break down the analysis into normal and faulty sites.
We see that faulty sites show a heavier right-tailed distribution, indicating that alarms are
more active on faulty sites than on normal sites, as it is reasonable to expect.

Figure 11. Distribution of alarm frequencies, broken down into normal and faulty sites. For an alarm,
its frequency is the fraction of the total observation time during which it has been active.

Entropy 2023, 25, 917 19 of 32

7.2. Nested Cross Validation

In order to evaluate the models, we used the precision, recall, and Fβ metrics. We
remind here that precision = true positives/(true positives + false positives), recall = true
positives/(true positives + false negatives), and Fβ = (1 + β2) precision·recall

β2·precision+recall . Since we
had a limited number of samples, we resorted to cross-validation to train and test the
models. All models for faulty site detection need to be trained in two stages, in a nested
cross-validation scheme.

Let us consider the model based on the RNN. First, we needed to train the RNN
to predict the alarms occurring at the (d + 1)-th day, given the alarms occurring in the
previous d days. After having performed this on the training set, we needed a validation
set containing faulty logs, on which we will gauge the parameters n and τ to construct the
anomaly detector. Finally, we tested the trained model on a test set that is disjoint from the
two sets used during training.

For the survival probability model, we first needed to train the random survival forest
model to predict the risk scores for each site for each day. After having performed this on
a training set containing normal and faulty sites, we used a validation set to determine
the best hyper-parameters of both the random survival forest and the two added hyper-
parameters: window (of the average rolling window) and risk threshold.

We split the entire dataset into five subsets and we performed a nested cross-validation.
Let us consider the model based on the RNN: the same logic applies to the other models
for faulty site-detection. At each round, we picked a subset as a test set and we set it apart.
Next, for each possible choice, we picked one of the remaining four subsets as a validation
set for the outlier detector parameters, based on the RNN trained on the remaining three
subsets. For the outlier detector, we picked the hyper-parameters that, on average across
the four inner rounds of cross-validation, yielded the best Fβ scores. We let β vary between
0.1 and 1 with step 0.1, in order to explore the trade-off between precision and recall. Finally,
for each choice of such hyper-parameters, we retrained the RNN on all the four subsets
constituting the training set and we tested it on the test set. At the end, we averaged out
the precision and recall values of the tested models across the five choices of the test set.
Finally, for each choice of such hyper-parameters, we retrained the model on all the four
subsets constituting the training set and we tested it on the test set. In the end, we averaged
out the precision and recall values of the tested models across the five choices of test set.

With respect to the component prediction layer, the same five-fold split was maintained.
For each choice of the test set, the model was trained on the remaining four folds and it
was used on top of the site-prediction model, trained on the same four-folds.

7.3. Experiments

Here, we report the results of the nested cross-validation procedure explained in
Section 7.2.

7.3.1. Site Prediction, RNN Approach

We explored a wide range of hyper-parameter settings. We let the number of neurons
in the hidden layer of the RNN vary among the values 50, 100, 200 and 300. We let the
time-window parameter d vary between 5 and 10. For each choice, we trained the RNN
on the training set and, for each trained RNN, we calculated precision and recall on the
validation set, letting the threshold parameter τ vary between 0.01 and 0.99 with step 0.01
and letting the window t vary from 5 to 15 days and letting the parameter n vary between
1 and 5. Out of them, we picked those that maximize the Fβ score for different values of
β, and we tested their precision and recall on the test set. In the upper left-side plot of
Figure 12, we show the average precision and recall in the validation set and in the final test
set. We notice that there is a drop between the validation and the test metrics, suggesting
that the model is struggling to generalize to new cases. The exact numerical values are
reported in Table 1.

Entropy 2023, 25, 917 20 of 32

Figure 12. Precision and recall on validation and test set for different values of the β parameter of the
four algorithms for faulty site prediction.

Table 1. Comparison of prediction scores for site-level fault prediction. RNN anomaly detector and
random survival forest model.

RNN Anomaly Detector Survival Model

β val prec val Recall Test prec Test Recall val prec val Recall Test prec Test Recall

0.1 1.00 0.32 0.93 0.25 1.00 0.91 1.00 0.78
0.2 1.00 0.32 0.93 0.25 1.00 0.91 1.00 0.78
0.3 0.97 0.40 0.93 0.23 1.00 0.93 0.99 0.82
0.4 0.93 0.45 0.89 0.38 1.00 0.95 0.99 0.85
0.5 0.87 0.53 0.72 0.37 1.00 0.95 0.99 0.85
0.6 0.84 0.58 0.72 0.36 1.00 0.95 0.97 0.86
0.7 0.77 0.68 0.72 0.50 1.00 0.96 0.97 0.88
0.8 0.77 0.68 0.72 0.50 1.00 0.96 0.97 0.88
0.9 0.74 0.71 0.68 0.55 1.00 0.96 0.93 0.90
1 0.70 0.78 0.58 0.61 0.99 0.97 0.91 0.92

7.3.2. Site Prediction, Survival Probability Approach

We explored the following range of hyper-parameters settings: we let the risk threshold
vary between 15 and 30 and we let the average rolling window vary between 1 and 6. For
each such choice, we trained the random survival forest on the training set and, for each
trained random survival forest, we calculated precision, recall, and Fβ on the validation set.
Out of them, we picked those that maximize the Fβ score and we tested their precision and
recall on the test set. The results are plotted at the upper right-hand side of Figure 12.

7.3.3. Site Prediction, Classic ML Approach

Similar to the previous methods, the models were tested with different combinations
of hyper-parameters and the ones that maximized the Fβ score, for different values of β
were selected to compute the precision and recall trade-off on the test set. The average

Entropy 2023, 25, 917 21 of 32

precision and recall in the validation set and in the final test set are reported in Figure 12
and the exact numerical values are reported in Table 2.

From the experiments, it is clear that the survival model based on a random sur-
vival forest is the one yielding the best results. Additionally, decision trees show a good
performance, whereas naive Bayes show pretty poor results, which may be due to the
unbalancing between the two classes in the training data. The method based on RNNs lags
behind the models based on decision trees and random survival forests.

Table 2. Comparison of prediction scores for site-level fault prediction. Naive Bayes and decision
tree models.

Naive Bayes Decision Tree

β val prec val Recall Test prec Test Recall val prec val Recall Test prec Test Recall

0.1 0.95 0.60 0.69 0.42 0.98 0.68 0.89 0.56
0.2 0.95 0.60 0.69 0.42 0.98 0.68 0.89 0.56
0.3 0.85 0.89 0.66 0.79 0.98 0.68 0.89 0.56
0.4 0.85 0.89 0.66 0.79 0.98 0.68 0.89 0.56
0.5 0.85 0.89 0.66 0.79 0.86 0.89 0.79 0.84
0.6 0.85 0.89 0.66 0.79 0.86 0.89 0.79 0.84
0.7 0.85 0.89 0.66 0.79 0.86 0.89 0.79 0.84
0.8 0.85 0.89 0.66 0.79 0.86 0.89 0.79 0.84
0.9 0.85 0.89 0.66 0.79 0.86 0.89 0.79 0.84
1 0.85 0.89 0.66 0.79 0.86 0.89 0.79 0.84

7.3.4. Component Prediction

This section presents the results for fault prediction at the component level. Following
the layered approach of Section 4, faulty component detection was performed just on
sites that have been detected as faulty by one of the site-level algorithms. However,
in order to evaluate the performance of component-level algorithms independently from
the quality of site-level algorithms, we first present the (conditional) results assuming all
faulty sites are correctly identified, i.e., we execute faulty component prediction algorithm
just on actually faulty sites, assuming we have an ideal site-level fault prediction with
recall = precision = 100%. The accuracy of faulty component identification computed on
all faulty sites of the labeled dataset is depicted in Figure 13. It shows the precision-recall
trade-off with respect to different score thresholds (in the range [0.5, 1.0]). The higher
the score threshold, the higher the precision, and the lower the recall. It also shows that
the graph-matching approach largely outperforms the random forest classifier; for this
reason, in this section, we skip the further evaluation of the latter method. The numerical
values of the precision and recall for this experiment are reported in Tables A1 and A2 in
Appendix A.

Figure 13. Component level precision-recall for the (summarized) graph matching algorithm and for
the random forest classifier, on top of all faulty sites.

Entropy 2023, 25, 917 22 of 32

The precision-recall trade-off can also be observed when applying faulty component
identification on top of the site-level predictions. Figure 14 shows the end-to-end accuracy
obtained using the graph-matching approach on top of two hyper-parameter configura-
tions of RNN and survival model-based site-level prediction algorithms. Note that the
end-to-end precision and recall are upper bounded by the site-level precision and recall.
Additionally, the faulty module identification performs better in terms of precision for the
higher precision site-level predictions. For example, when applied on top of the RNN with
site-level precision = 100% and recall = 26%; for high score thresholds at the component
level, we obtained an end-to-end precision equal to the one of the site-level, i.e., 100%,
while for the site level predictions with 92% precision, the best end-to-end precision is
getting lower-70%. This means that there are faults that are easier to predict than others at
both layers.

Our analysis shows that faults on some components are better predicted. The results
per component are sensitive and cannot be presented in detail in this paper. However, we
can mention that by selecting the top 15 out of the 18 components present in the dataset,
the precision and recall are increased by 20%. The hyperparameters of the RNN models
and the survival models used in this experiment are reported in Tables 3 and 4 in Section 7.
The respective numerical values of the precision and recall are reported in Tables 5–8 in
Section 7.

Figure 14. End-to-end precision and recall for the graph-matching module-prediction algorithm, run
on top of the RNN-based anomaly detector and the survival probability model for site prediction.
For each site-level algorithm, we chose two particular hyper-parameter settings, yielding sufficiently
high precision.

Table 3. Final RNN models hyperparameters.

RNN Hyperparameter Model 1 Model 2

Precision-recall 100 26 92 46

hidden layer dimension 50 50

prediction window 9 10

n 2 2

t 18 17

τ 0.27 0.21

Entropy 2023, 25, 917 23 of 32

Table 4. Final random survival forest models hyperparameters.

RSF Hyperparameter Model 1 Model 2

Precision-recall 100 78 91 92

estimators 100 100

min samples leaf 3 3

window length w 3 2

risk threshold τ 19 18

Table 5. Precision-recall values for module prediction on top of site prediction performed by the RNN
having precision-recall scores of 92–46. For each choice of the score value of the module detection
algorithm, the corresponding value of precision and recall is reported.

Score Precision Recall

1.0 0.6666666666666666 0.136986301369863

0.999999999972561 0.625 0.136986301369863

0.999999993250194 0.6470588235294118 0.1506849315068493

0.9999999182763856 0.6666666666666666 0.1643835616438356

0.9999996654415968 0.6842105263157895 0.1780821917808219

0.9999993238599096 0.65 0.1780821917808219

0.999998966629584 0.6666666666666666 0.1917808219178082

0.9999970459436154 0.6818181818181818 0.2054794520547945

0.9999967228669364 0.6956521739130435 0.2191780821917808

0.9999806288176908 0.6666666666666666 0.2191780821917808

0.9999497363634728 0.68 0.2328767123287671

0.9994739429566656 0.6923076923076923 0.2465753424657534

0.99872665730684 0.6666666666666666 0.2465753424657534

0.997330480776861 0.6785714285714286 0.2602739726027397

0.9940439557002604 0.6551724137931034 0.2602739726027397

0.9898441806465164 0.6333333333333333 0.2602739726027397

0.958735537828932 0.6451612903225806 0.273972602739726

0.9571723306615252 0.625 0.273972602739726

0.9311094663776294 0.6363636363636364 0.2876712328767123

0.9256615111194504 0.6176470588235294 0.2876712328767123

0.8782285857920709 0.6 0.2876712328767123

0.86200242321312 0.5833333333333334 0.2876712328767123

0.8243559718532313 0.5675675675675675 0.2876712328767123

Entropy 2023, 25, 917 24 of 32

Table 6. Precision-recall values for module prediction on top of site prediction performed by the RNN
having precision-recall scores of 100-26. For each choice of the score value of the module detection
algorithm, the corresponding value of precision and recall is reported.

Score Precision Recall

1.0 1.0 0.0958904109589041

0.999999993250194 1.0 0.1095890410958904

0.9999999182763856 1.0 0.1232876712328767

0.9999993238599096 0.9 0.1232876712328767

0.9999967228669364 0.9090909090909092 0.136986301369863

0.9999497363634728 0.9166666666666666 0.1506849315068493

0.99872665730684 0.8461538461538461 0.1506849315068493

0.997330480776861 0.8571428571428571 0.1643835616438356

0.9940439557002604 0.8 0.1643835616438356

0.9311094663776294 0.8125 0.1780821917808219

0.9256615111194504 0.7647058823529411 0.1780821917808219

0.86200242321312 0.7222222222222222 0.1780821917808219

Table 7. Precision-recall values for module prediction on top of site prediction performed by the
random survival forest having precision-recall scores of 91-92. For each choice of the score value of
the module detection algorithm, the corresponding value of precision and recall is reported.

Score Precision Recall

1.0 0.7272727272727273 0.2191780821917808

1.0 0.7391304347826086 0.2328767123287671

0.99999999999983 0.7083333333333334 0.2328767123287671

0.999999999972561 0.68 0.2328767123287671

0.999999999242 0.6923076923076923 0.2465753424657534

0.9999999991643176 0.7037037037037037 0.2602739726027397

0.999999993250194 0.7142857142857143 0.273972602739726

0.9999999926719604 0.7241379310344828 0.2876712328767123

0.9999999719885364 0.7 0.2876712328767123

0.9999999707497808 0.7096774193548387 0.3013698630136986

0.9999999182763856 0.71875 0.3150684931506849

0.9999999002252888 0.7272727272727273 0.3287671232876712

0.9999998119435328 0.7058823529411765 0.3287671232876712

0.9999996654415968 0.7142857142857143 0.3424657534246575

0.9999993238599096 0.6944444444444444 0.3424657534246575

0.999998966629584 0.7027027027027027 0.3561643835616438

0.9999970459436154 0.7105263157894737 0.3698630136986301

0.9999967228669364 0.717948717948718 0.3835616438356164

0.9999920998407088 0.725 0.3972602739726027

Entropy 2023, 25, 917 25 of 32

Table 7. Cont.

Score Precision Recall

0.9999847820736496 0.7073170731707317 0.3972602739726027

0.9999806288176908 0.6904761904761905 0.3972602739726027

0.9999497363634728 0.6976744186046512 0.410958904109589

0.9998125284868672 0.6818181818181818 0.410958904109589

0.9994739429566656 0.6888888888888889 0.4246575342465753

0.9987974751686488 0.6956521739130435 0.4383561643835616

0.99872665730684 0.6808510638297872 0.4383561643835616

0.998562067735804 0.6875 0.4520547945205479

0.9984251938400078 0.673469387755102 0.4520547945205479

0.997330480776861 0.68 0.4657534246575342

0.9964933468118472 0.6862745098039216 0.4794520547945205

0.9940439557002604 0.6730769230769231 0.4794520547945205

0.9911852339664904 0.6792452830188679 0.4931506849315068

0.9898441806465164 0.6666666666666666 0.4931506849315068

0.9728137337618586 0.6727272727272727 0.5068493150684932

0.9691143250982484 0.6607142857142857 0.5068493150684932

0.958735537828932 0.6666666666666666 0.5205479452054794

0.9521379388148312 0.6551724137931034 0.5205479452054794

0.9311094663776294 0.6610169491525424 0.5342465753424658

0.9252920337415372 0.65 0.5342465753424658

0.9218471182472376 0.639344262295082 0.5342465753424658

0.9184575912756672 0.6290322580645161 0.5342465753424658

0.8818724023123204 0.6190476190476191 0.5342465753424658

0.8782285857920709 0.609375 0.5342465753424658

0.86200242321312 0.6 0.5342465753424658

0.8607086329782676 0.6060606060606061 0.547945205479452

0.8487040037363971 0.5970149253731343 0.547945205479452

0.8243559718532313 0.5882352941176471 0.547945205479452

0.7461538461414445 0.5797101449275363 0.547945205479452

0.6842219570583745 0.5714285714285714 0.547945205479452

0.6325107485204375 0.5774647887323944 0.5616438356164384

Table 8. Precision-recall values for module prediction on top of site prediction performed by the
random survival forest having precision-recall scores of 100-78. For each choice of the score value of
the module detection algorithm, the corresponding value of precision and recall is reported.

Score Precision Recall

1.0 1.0 0.2054794520547945

1.0 1.0 0.2191780821917808

0.99999999999983 0.9411764705882352 0.2191780821917808

0.999999999972561 0.8888888888888888 0.2191780821917808

Entropy 2023, 25, 917 26 of 32

Table 8. Cont.

Score Precision Recall

0.9999999991643176 0.8947368421052632 0.2328767123287671

0.999999993250194 0.9 0.2465753424657534

0.9999999926719604 0.9047619047619048 0.2602739726027397

0.9999999719885364 0.8636363636363636 0.2602739726027397

0.9999999707497808 0.8695652173913043 0.273972602739726

0.9999999182763856 0.875 0.2876712328767123

0.9999998119435328 0.84 0.2876712328767123

0.9999996654415968 0.8461538461538461 0.3013698630136986

0.999998966629584 0.8518518518518519 0.3150684931506849

0.9999970459436154 0.8571428571428571 0.3287671232876712

0.9999967228669364 0.8620689655172413 0.3424657534246575

0.9999920998407088 0.8666666666666667 0.3561643835616438

0.9999847820736496 0.8387096774193549 0.3561643835616438

0.9999806288176908 0.8125 0.3561643835616438

0.9999497363634728 0.8181818181818182 0.3698630136986301

0.9998125284868672 0.7941176470588235 0.3698630136986301

0.9987974751686488 0.8 0.3835616438356164

0.99872665730684 0.7777777777777778 0.3835616438356164

0.998562067735804 0.7837837837837838 0.3972602739726027

0.9984251938400078 0.7631578947368421 0.3972602739726027

0.9964933468118472 0.7692307692307693 0.410958904109589

0.9940439557002604 0.75 0.410958904109589

0.9911852339664904 0.7560975609756098 0.4246575342465753

0.9898441806465164 0.7380952380952381 0.4246575342465753

0.9728137337618586 0.7441860465116279 0.4383561643835616

0.9691143250982484 0.7272727272727273 0.4383561643835616

0.958735537828932 0.7333333333333333 0.4520547945205479

0.9521379388148312 0.717391304347826 0.4520547945205479

0.9311094663776294 0.723404255319149 0.4657534246575342

0.9218471182472376 0.7083333333333334 0.4657534246575342

0.9184575912756672 0.6938775510204082 0.4657534246575342

0.8818724023123204 0.68 0.4657534246575342

0.8782285857920709 0.6666666666666666 0.4657534246575342

0.86200242321312 0.6538461538461539 0.4657534246575342

0.8607086329782676 0.660377358490566 0.4794520547945205

0.8487040037363971 0.6481481481481481 0.4794520547945205

0.7461538461414445 0.6363636363636364 0.4794520547945205

0.6325107485204375 0.6428571428571429 0.4931506849315068

Entropy 2023, 25, 917 27 of 32

8. Discussion

We remark that processing raw alarm logs, transforming them into a format compatible
with a classification algorithm and defining a reliable procedure to label them was by no
means a trivial exercise. The main difficulty resided in integrating different data sources
automatically to identify the failed and normal components (labels) and the failure dates.
We used the component replacement date as a proxy for the failure date. This inevitably
introduced some errors: a faulty hardware piece may require a variable time to reach the
repair center; hardware pieces that are not under warranty may not even pass through
the repair center. Given the available information, there is little space for improvement
in data labeling. A possibility is to exploit data sources that have not been used yet, such
as ticket creation dates and work orders that could help us to better identify the failure
occurrence date. Another more ambitious and long-term solution would be to radically
change the process of hardware repair and substitution, in order to better keep track of all
the information that can be useful to automatize the process. For instance, the incorporation
of expert feedback, if carried out in a systematic way, can allow us to enrich the labels.

We observed that faulty module prediction relies on the assumption that the failure of
a module can be predicted just by looking at its own alarms. This assumption is reflected in
conditioning just on α(γ) at Equation (9). One could argue that the failure of a component
could be a consequence of some anomaly of another component, hence this independence
assumption may not be verified in practice. Taking into account possible inter-dependencies
between modules would naturally lead to modeling the object of interest as a graph, where
each node would represent a module. By construction, each base station would be modeled
by a different graph. Making predictions on graphs of variable structure poses obvious
challenges to most machine learning models. Graph neural networks [29] can be the right
tool: this will be a subject of our future research.

9. Conclusions

We presented the problem of predicting the failure of wireless network hardware
components, leveraging alarm logs produced by the network. In order to overcome the
challenges posed by the scarcity of examples of hardware faults, we resorted to a layered
approach to fault prediction, where, at the first stage, we pin down the base stations that
are most likely to be faulty, and then we applied a second algorithm to detect the faulty
modules, restricting ourselves to the components contained in such base-stations.

We explored different algorithms for both tasks. For the first layer, we experimented
with approaches based on survival models, RNNs, decision trees, and naive Bayes. On top
of these, we experimented with two algorithms for module prediction, namely a graph-
matching algorithm and the random forest classifier. We evaluated the performance of
algorithms in practical settings on a data set coming from a real radio network deployed by
a major telecommunication operator, consisting of more than ten thousand base stations.
The alarm logs cover a period of time of roughly one year. From our experiments, the com-
bination of the survival probability model for site prediction and the graph matching
algorithm for module prediction yielded the best results.

Author Contributions: Conceptualization, all authors; methodology, all authors; software, A.M.,
D.K., A.S. and A.O.G.; validation, all authors; formal analysis, all authors; investigation, all authors;
resources, all authors; data curation, D.K. and A.O.G.; writing—original draft preparation, all authors;
writing—review and editing, A.M.; visualization, A.M., D.K., A.S. and A.O.G.; supervision, A.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data cannot be publicly shared, since it is proprietary.

Entropy 2023, 25, 917 28 of 32

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Precision-recall values for module prediction performed by a random forest classifier on
top of a perfect site predictor.

Precision Recall

0.941176 0.219178

0.944444 0.232877

0.894737 0.232877

0.900000 0.246575

0.904762 0.260274

0.863636 0.260274

0.869565 0.273973

0.875000 0.287671

0.840000 0.287671

0.846154 0.301370

0.814815 0.301370

0.821429 0.315068

0.793103 0.315068

0.766667 0.315068

0.774194 0.328767

0.781250 0.342466

0.787879 0.356164

0.794118 0.369863

0.771429 0.369863

0.777778 0.383562

0.783784 0.397260

0.789474 0.410959

0.769231 0.410959

0.775000 0.424658

0.756098 0.424658

0.761905 0.438356

0.767442 0.452055

0.750000 0.452055

0.733333 0.452055

0.717391 0.452055

0.702128 0.452055

0.687500 0.452055

0.693878 0.465753

0.700000 0.479452

Entropy 2023, 25, 917 29 of 32

Table A1. Cont.

Precision Recall

0.686275 0.479452
0.692308 0.493151

0.698113 0.506849

0.703704 0.520548

0.709091 0.534247

0.696429 0.534247

0.701754 0.547945

0.689655 0.547945

0.694915 0.561644

0.683333 0.561644

0.672131 0.561644

0.677419 0.575342

0.682540 0.589041

0.687500 0.602740

0.692308 0.616438

0.696970 0.630137

0.701493 0.643836

0.691176 0.643836

0.681159 0.643836

0.685714 0.657534

0.676056 0.657534

0.666667 0.657534

0.671233 0.671233

Table A2. Precision-recall values for module prediction performed by summarized graph matching
on top of a perfect site prediction classifier. For each choice of the score value of the module detection
algorithm, the corresponding value of precision and recall is reported.

Precision Recall Score Value

1.0 0.9473684210526316 0.2465753424657534

1.0 0.95 0.2602739726027397

0.99999999999983 0.9047619047619048 0.2602739726027397

0.999999999972561 0.8636363636363636 0.2602739726027397

0.9999999999622486 0.8260869565217391 0.2602739726027397

0.999999999242 0.8333333333333334 0.273972602739726

0.9999999991643176 0.84 0.2876712328767123

0.999999993250194 0.8461538461538461 0.3013698630136986

0.9999999926719604 0.8518518518518519 0.3150684931506849

0.9999999719885364 0.8214285714285714 0.3150684931506849

0.9999999707497808 0.8275862068965517 0.3287671232876712

Entropy 2023, 25, 917 30 of 32

Table A2. Cont.

Precision Recall Score Value

0.9999999182763856 0.8333333333333334 0.3424657534246575

0.9999999002252888 0.8387096774193549 0.3561643835616438

0.9999998119435328 0.8125 0.3561643835616438

0.9999996654415968 0.8181818181818182 0.3698630136986301

0.9999993238599096 0.7941176470588235 0.3698630136986301

0.999998966629584 0.8 0.3835616438356164

0.9999970459436154 0.8055555555555556 0.3972602739726027

0.9999967228669364 0.8108108108108109 0.410958904109589

0.9999920998407088 0.8157894736842105 0.4246575342465753

0.9999847820736496 0.7948717948717948 0.4246575342465753

0.9999806288176908 0.775 0.4246575342465753

0.9999497363634728 0.7804878048780488 0.4383561643835616

0.9998125284868672 0.7619047619047619 0.4383561643835616

0.9994739429566656 0.7674418604651163 0.4520547945205479

0.9987974751686488 0.7727272727272727 0.4657534246575342

0.99872665730684 0.7555555555555555 0.4657534246575342

0.998562067735804 0.7608695652173914 0.4794520547945205

0.9984251938400078 0.7446808510638298 0.4794520547945205

0.997330480776861 0.75 0.4931506849315068

0.9964933468118472 0.7551020408163265 0.5068493150684932

0.9940439557002604 0.74 0.5068493150684932

0.9911852339664904 0.7450980392156863 0.5205479452054794

0.9898441806465164 0.7307692307692307 0.5205479452054794

0.9728137337618586 0.7358490566037735 0.5342465753424658

0.9691143250982484 0.7222222222222222 0.5342465753424658

0.958735537828932 0.7272727272727273 0.547945205479452

0.9571723306615252 0.7142857142857143 0.547945205479452

0.9521379388148312 0.7017543859649122 0.547945205479452

0.93333333333333 0.7068965517241379 0.5616438356164384

0.9311094663776294 0.711864406779661 0.5753424657534246

0.9256615111194504 0.7 0.5753424657534246

0.9252920337415372 0.6885245901639344 0.5753424657534246

0.9218471182472376 0.6774193548387096 0.5753424657534246

0.9184575912756672 0.6666666666666666 0.5753424657534246

0.8818724023123204 0.65625 0.5753424657534246

0.8782285857920709 0.6461538461538462 0.5753424657534246

0.86200242321312 0.6363636363636364 0.5753424657534246

0.8607086329782676 0.6417910447761194 0.589041095890411

0.8487040037363971 0.6323529411764706 0.589041095890411

0.8243559718532313 0.6231884057971014 0.589041095890411

Entropy 2023, 25, 917 31 of 32

Table A2. Cont.

Precision Recall Score Value

0.7461538461414445 0.6142857142857143 0.589041095890411

0.6842219570583745 0.6056338028169014 0.589041095890411

0.6325107485204375 0.6111111111111112 0.6027397260273972

References
1. Zhang, J.; Tian, J.; Li, M.; Leon, J.I.; Franquelo, L.G.; Luo, H.; Yin, S. A Parallel Hybrid Neural Network with Integration of Spatial

and Temporal Features for Remaining Useful Life Prediction in Prognostics. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [CrossRef]
2. Zhang, J.; Li, X.; Tian, J.; Luo, H.; Yin, S. An integrated multi-head dual sparse self-attention network for remaining useful life

prediction. Reliab. Eng. Syst. Saf. 2023, 233, 109096. [CrossRef]
3. Ma, Q.; Zheng, Y.; Yang, W.; Zhang, Y.; Zhang, H. Remaining useful life prediction of lithium battery based on capacity

regeneration point detection. Energy 2021, 234, 121233. [CrossRef]
4. Cox, D.; Oakes, D. Analysis of Survival Data; Chapman and Hall/CRC: Boca Raton, FL, USA, 1984. [CrossRef]
5. Chen, G.H. Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates. In

Proceedings of the PMLR 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019;
Volume 97, pp. 1001–1010.

6. Wang, Z.; Sun, J. SurvTRACE: Transformers for survival analysis with competing events. In Proceedings of the BCB ’22: 13th
ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Northbrook, IL, USA, 7–10
August 2022; pp. 49:1–49:9. [CrossRef]

7. Lee, C.; Zame, W.R.; Yoon, J.; van der Schaar, M. DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, LA, USA, 2–7 February 2018; McIlraith, S.A., Weinberger, K.Q., Eds.; AAAI Press: Washington, DC, USA, 2018;
pp. 2314–2321.

8. Zhang, J.; Li, X.; Tian, J.; Jiang, Y.; Luo, H.; Yin, S. A variational local weighted deep sub-domain adaptation network for remaining
useful life prediction facing cross-domain condition. Reliab. Eng. Syst. Saf. 2023, 231, 108986. [CrossRef]

9. Wietgrefe, H.; Tuchs, K.D.; Jobmann, K.; Carls, G.; Fröhlich, P.; Nejdl, W.; Steinfeld, S. Using neural networks for alarm correlation
in cellular phone networks. In International Workshop on Applications of Neural Networks to Telecommunications (IWANNT); Citeseer:
Stockholm, Sweeden, 1997; pp. 248–255.

10. Salfner, F.; Schieschke, M.; Malek, M. Predicting failures of computer systems: A case study for a telecommunication system. In
Proceedings of the Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, Rhodes, Greece, 25–29
April 2006; p. 8978466

11. Wang, C.; Vo, H.T.; Ni, P. An IoT application for fault diagnosis and prediction. In Proceedings of the 2015 IEEE International
Conference on Data Science and Data Intensive Systems, Sydney, NSW, Australia, 11–13 December 2015; pp. 726–731.

12. Bahl, P.; Chandra, R.; Greenberg, A.; Kandula, S.; Maltz, D.A.; Zhang, M. Towards Highly Reliable Enterprise Network Services
via Inference of Multi-Level Dependencies. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 13–24. [CrossRef]

13. Niwa, T.; Kasuya, Y.; Kitahara, T. Anomaly detection for openstack services with process-related topological analysis. In
Proceedings of the 2017 13th International Conference on Network and Service Management (CNSM), Tokyo, Japan, 26–30
November 2017; pp. 1–5. [CrossRef]

14. Jakobson, G.; Weissman, M. Alarm correlation. IEEE Netw. 1993, 7, 52–59. [CrossRef]
15. Kobayashi, S.; Fukuda, K.; Esaki, H. Mining causes of network events in log data with causal inference. In Proceedings of the

2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 45–53.
[CrossRef]

16. Liang, R.; Liu, F.; Liu, J. A Belief Network Reasoning Framework for Fault Localization in Communication Networks. Sensors
2020, 20, 6950 . [CrossRef] [PubMed]

17. Zhu, Q.; Tung, T.; Xie, Q. Automatic Fault Diagnosis in Cloud Infrastructure. In Proceedings of the 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, Bristol, UK, 2–5 December 2013; Volume 1, pp. 467–474. [CrossRef]

18. Cotroneo, D.; Natella, R.; Rosiello, S. A Fault Correlation Approach to Detect Performance Anomalies in Virtual Network
Function Chains. In Proceedings of the 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE),
Toulouse, France, 23–26 October 2017; pp. 90–100. [CrossRef]

19. Sharma, B.; Jayachandran, P.; Verma, A.; Das, C.R. CloudPD: Problem determination and diagnosis in shared dynamic clouds.
In Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Budapest, Hungary, 24–27 June 2013; pp. 1–12. [CrossRef]

20. Elmajed, A.; Aghasaryan, A.; Fabre, E. Machine Learning Approaches to Early Fault Detection and Identification in NFV
Architectures. In Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 29 June–3
July 2020; pp. 200–208. [CrossRef]

http://doi.org/10.1109/TIM.2022.3227956
http://dx.doi.org/10.1016/j.ress.2023.109096
http://dx.doi.org/10.1016/j.energy.2021.121233
http://dx.doi.org/10.1201/9781315137438
http://dx.doi.org/10.1145/3535508.3545521
http://dx.doi.org/10.1016/j.ress.2022.108986
http://dx.doi.org/10.1145/1282427.1282383
http://dx.doi.org/10.23919/CNSM.2017.8255977
http://dx.doi.org/10.1109/65.244794
http://dx.doi.org/10.23919/INM.2017.7987263
http://dx.doi.org/10.3390/s20236950
http://www.ncbi.nlm.nih.gov/pubmed/33291361
http://dx.doi.org/10.1109/CloudCom.2013.68
http://dx.doi.org/10.1109/ISSRE.2017.12
http://dx.doi.org/10.1109/DSN.2013.6575298
http://dx.doi.org/10.1109/NetSoft48620.2020.9165361

Entropy 2023, 25, 917 32 of 32

21. Murphy, A.H. The Finley Affair: A Signal Event in the History of Forecast Verification. Weather Forecast. 1996, 11, 3–20. [CrossRef]
22. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438.

[CrossRef]
23. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
24. Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [CrossRef]
25. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann Publishers Inc.: Burlington,

MA, USA, 1988.
26. Zhou, K.; Martin, A.; Pan, Q. The Belief Noisy-OR Model Applied to Network Reliability Analysis. arXiv 2016, arXiv:1606.01116.
27. Fenton, N.E.; Noguchi, T.; Neil, M. ‘An Extension to the Noisy-OR Function to Resolve the “Explaining Away” Deficiency for

Practical Bayesian Network Problems’, IEEE Trans. Knowl. Data Eng. 2019, 31, 2441–2445. [CrossRef]
28. Jakovljevic, L.; Kostadinov, D.; Aghasaryan, A.; Palpanas, T. Towards Building a Digital Twin of Complex System Using Causal

Modelling. In Complex Networks & Their Applications X; Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo,
M., Eds.; Springer International Publishing: Cham, Switerland, 2022; pp. 475–486.

29. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.
2008, 20, 61–80. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1214/08-AOAS169
http://dx.doi.org/10.1109/TKDE.2019.2891680
http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426

	Introduction and Our Contribution
	State of the Art
	Problem Statement
	Layered Approach
	Data
	Data Consolidation
	Data Labeling
	Data Summarization

	Algorithms
	Site Level Prediction
	RNN
	Time-to-Event Analysis
	Classic ML

	Component Level Prediction
	Graph Matching Approach
	Random Forest Approach

	Numerical Results
	Data Exploration
	Number of Alarms
	Duration of Alarms

	Nested Cross Validation
	Experiments
	Site Prediction, RNN Approach
	Site Prediction, Survival Probability Approach
	Site Prediction, Classic ML Approach
	Component Prediction

	Discussion
	Conclusions
	Appendix A
	References

