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Abstract: When traditional super-resolution reconstruction methods are applied to infrared thermal
images, they often ignore the problem of poor image quality caused by the imaging mechanism,
which makes it difficult to obtain high-quality reconstruction results even with the training of
simulated degraded inverse processes. To address these issues, we proposed a thermal infrared image
super-resolution reconstruction method based on multimodal sensor fusion, aiming to enhance the
resolution of thermal infrared images and rely on multimodal sensor information to reconstruct high-
frequency details in the images, thereby overcoming the limitations of imaging mechanisms. First,
we designed a novel super-resolution reconstruction network, which consisted of primary feature
encoding, super-resolution reconstruction, and high-frequency detail fusion subnetwork, to enhance
the resolution of thermal infrared images and rely on multimodal sensor information to reconstruct
high-frequency details in the images, thereby overcoming limitations of imaging mechanisms. We
designed hierarchical dilated distillation modules and a cross-attention transformation module to
extract and transmit image features, enhancing the network’s ability to express complex patterns.
Then, we proposed a hybrid loss function to guide the network in extracting salient features from
thermal infrared images and reference images while maintaining accurate thermal information.
Finally, we proposed a learning strategy to ensure the high-quality super-resolution reconstruction
performance of the network, even in the absence of reference images. Extensive experimental results
show that the proposed method exhibits superior reconstruction image quality compared to other
contrastive methods, demonstrating its effectiveness.

Keywords: thermal infrared imaging; super-resolution reconstruction; multimodal sensors;
information fusion

1. Introduction

Thermal infrared imaging is a passive imaging technology that detects the thermal
radiation passively emitted by objects to form an image [1]. It has the advantages of strong
anti-interference ability and the capability to distinguish between targets and backgrounds.
Therefore, super-resolution reconstruction (SR) has been widely applied in fields such as
remote sensing imaging [2–4], target tracking [5–7], and autonomous driving [8,9], etc.
However, compared with visible light imaging, infrared imaging equipment usually has
limited spatial resolution, resulting in lower imaging quality. Therefore, to overcome
this limitation, super-resolution reconstruction technology has become an important re-
search field. The super-resolution technology can restore high-frequency information from
low-resolution images, which can improve the resolution of infrared images and enrich
image details.
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Currently, due to the continuous improvement of computational device performance
and the increasing maturity of deep learning technology, deep learning-based SR methods
have become the mainstream solution to SR problems. Compared with interpolation-
based [10], reconstruction-based [11], and sparse representation-based methods [12], they
have significant performance advantages. The focus of the single image super-resolution
reconstruction (SISR) network is mainly on the reasonable allocation of network resources
to high- and low-frequency information reconstruction. SISR relies on the mapping rela-
tionship between high- and low-resolution information (HR&LR) images solidified in the
weight parameters through training and does not introduce effective external information.

Compared with collecting infrared images, high-quality visible light images are more
easily obtained and possess higher spatial resolution. Although they operate in differ-
ent spectral bands, a significant amount of complementary information exists, making
it feasible and effective to guide infrared image super-resolution using complementary
information from visible light images. Some research has made progress, but several key
issues remain:

(1) In the case of multimodal super-resolution, the large resolution difference between
infrared and visible images leads to a significant decrease in the accuracy of reconstructed
infrared images. High-performance super-resolution reconstruction networks, especially their
feature extraction and information transformation mechanisms, still require further research.

(2) Due to the imaging mechanism of thermal infrared sensors, the quality of infrared
images remains poor despite high pixel resolution. Existing methods that use simulated
degradation and train their inverse process are limited by the quality of the infrared
images used as labels, making it difficult to effectively enhance high-frequency details in
infrared images.

(3) The existing multimodal super-resolution reconstruction methods have not fully
considered the cases where the reference image is missing or of poor quality, which leads
to a sharp degradation in the performance of the network and poor quality of the recon-
structed images.

To address these issues, we proposed a thermal infrared image super-resolution
reconstruction method based on multimodal sensor fusion. The method consists of a
novel neural network architecture, a new hybrid loss function, and corresponding training
strategies. The input infrared image is reconstructed through the network, during which
multimodal features are continuously extracted and fused to obtain a high-quality, high-
resolution thermal infrared image. The proposed loss function is used to constrain the
network to ensure that the thermal infrared information in the image is not erroneously
altered. Moreover, the proposed training strategy ensures that the network can still correctly
reconstruct thermal infrared images even when the reference images are missing or of
poor quality.

Our main contributions are as follows:
(1) We proposed a super-resolution reconstruction network that continuously fuses in-

formation from different scales of visible light images in the iterative process to reconstruct
low-frequency and high-frequency information in infrared images, solving the problem
of accuracy decline caused by large resolution difference between infrared and visible
light images.

(2) We proposed a hierarchical dilated distillation module that can adaptively extract
features of different scales, with strong representation ability and fewer learnable parameters.

(3) We proposed an information transformation module based on attention mechanism,
which calculates pixel-level correlation between infrared and visible light features to reduce
the interference of redundant and unrelated information on reconstructed images, improve
information fusion efficiency, and suppress the blurring phenomenon in the infrared image
reconstruction process.

(4) We designed a hybrid loss function for multimodal super-resolution to supervise
the network to obtain more high-frequency features from visible light images and ensure
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the style of infrared images does not deviate by adversarial loss, retaining richer details
and more thermal infrared information.

(5) We proposed a modal switching training strategy to solve the problem of degraded
performance in reference-based super-resolution reconstruction of thermal infrared images
when the reference image is missing, improving the network’s robustness.

2. Related work
2.1. Image Super-Resolution Reconstruction Based on Neural Networks

As an ill-posed problem, super-resolution reconstruction is limited in its reconstruction
and generalization capabilities if relying solely on manually designed prior methods. As a
result, neural networks, which are powerful implicit function fitters, have been employed
due to their effectiveness in fitting complex mappings in image processing. Since the intro-
duction of the first convolutional neural network for image super-resolution, SRCNN [13],
the use of neural networks in this field has grown exponentially, with a primary focus on
optimizing network structures. Early research works such as VDSR [14], SRResNet [15], and
EDSR [16] have significantly improved network feature expression ability and reconstruc-
tion quality by deepening the network and incorporating the residual structure concept.
However, increasing network depth and width to a certain extent becomes inefficient,
resulting in diminishing performance gains. To further enhance reconstruction quality and
efficiency, new model structures have been designed specifically for SR tasks, optimizing
reconstruction while maintaining low complexity. These improvements include multi-scale
feature extraction [17,18], feature reuse [19–21], and attention mechanisms [22,23]. Such
modifications introduce prior knowledge into the network structure, enhancing the model’s
adaptability to SR tasks while reducing the network’s dependence on learnable parameters
and training data.

In addition to improving network structure, efforts have been made to better train
neural networks to generate realistic and detailed texture details. References [24,25] investi-
gated several commonly-used loss functions in image restoration and provided guidance
for loss function design in super-resolution reconstruction. Although these loss functions
calculate the difference between predicted and real data, they may produce significant blur
or aliasing artifacts due to the diversity of mappings. Consequently, the use of generative
adversarial learning is being explored to obtain the implicit distribution of real images
from the dataset [13,26,27], guiding the network to generate clearer reconstruction results.
However, this technique often results in apparent reconstruction errors that are difficult to
avoid. Despite the current advancements in network structure, loss functions, and training
methods for SR, there remains substantial room for further improvement.

2.2. Multimodal Reference-Based Super-Resolution Reconstruction

Compared to SISR, reference-based SR is a technique that uses additional guiding im-
ages to transfer relevant structural information to the target image in order to achieve high-
quality super-resolution reconstruction [28,29]. In early research, multimodal reference-
based super-resolution (multimodal SR) reconstruction mainly used filtering-based [30,31],
optimization-based [32], and sparse representation-based [33] methods. However, these
methods faced difficulties in reconstructing HR images, especially when there were large
differences in image structure or resolution between modalities. Currently, the main method
used is learning-based. By utilizing the powerful fitting ability of deep learning, texture
conversion and transmission between modalities can be achieved.

However, in recent research, impressive reconstruction quality has been achieved
by studying the correlation between the source image and the reference image. Despite
this progress, these methods still adhere to the traditional SR training method, which
simulates the downsampling process and then learns its inverse process, producing images
similar to the original collected data [34–36]. The method suffers from the limitations of
the low resolution and imaging mechanism of the thermal infrared sensor. Compared to
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reconstructing high-quality visible light or near-infrared images, it is difficult to reconstruct
high-quality infrared images using this method and many texture details may be lost.

In order to solve this problem, some studies have designed fusion strategies to synthe-
size visible light and infrared image information, and introduce visible light texture while
performing SR of infrared images [37]. However, although this method supplements some
details, the generated image not only produces incorrect texture but also does not conform
to the thermal information distribution in the infrared source image due to its imperfect
network structure, loss function, and supervision design. Therefore, further research and
improvement are still needed to develop effective fusion strategies that can better preserve
the thermal information distribution and generate high-quality HR images. Additionally,
the use of appropriate evaluation metrics is essential to ensure that the generated images
meet the requirements of practical applications.

3. Proposed Method

Thermal infrared radiation can be affected by various factors when reaching imaging
sensors, such as motion blur, optical blur, and electronic noise, leading to degradation
in the quality of infrared images. Super-resolution reconstruction techniques for thermal
infrared images are often considered the inverse process to address these issues. However,
the pixel size of thermal infrared sensors is larger, and diffraction and scattering effects
are more pronounced. As a result, even when the resolution is the same, thermal infrared
images appear blurrier. Traditional super-resolution reconstruction methods obtain HR and
LR infrared image pairs through simulated downsampling and training the SR mapping
in reverse is not effective in reconstructing ideal HR infrared images. We believe that
preserving the original infrared thermal information is necessary, while predicting some
high-frequency information reasonably can make the reconstructed image more visually
appealing. Therefore, our research focused not only on restoring the information in the
original infrared image but also on using visible light images to guide neural networks to
predict and reconstruct high-frequency information in thermal infrared images to improve
the overall quality of reconstructed images. To achieve our goal, we designed specific
network structures, loss functions, and training strategies.

3.1. Network Architecture

The network structure is shown in Figure 1. Our proposed network consists of three parts:
the primary feature encoding subnetwork, the super-resolution reconstruction subnetwork, and
the high-frequency detail fusion subnetwork. Subsequently, we will explicate the operational
principles, design concepts, and particular implementations of each component.

3.1.1. Primary Feature Encoding Subnetwork

The Primary Feature Encoding Subnetwork is used to map the input image to a feature
space for further processing. It primarily consists of an infrared feature encoder and
multiple visible light feature encoders. The infrared feature encoder is only used before
the first stage of super-resolution reconstruction subnetwork to encode the input infrared
image ITIR

LR into primary feature f TIR
b using a straightforward convolutional layer, which

can be represented by the following equation:

f TIR
b,1 = σ(WTIR

enc ∗ ITIR
LR + Benc)

f TIR
b,n = fo,n−1(n = 2, 3 . . . N)

(1)

where WTIR
enc represents the filter for encoding thermal infrared images, Benc represents the

bias value, fo,n represents the output feature map for the n-th stage of super-resolution
reconstruction subnetwork, σ(x) = max(x, 0) represents the rectified linear unit, and ∗
represents the convolution operation. The visible light feature encoder uses multiple
convolutional layers with varying specifications, depending on the super-resolution recon-
struction multipliers, to encode visible light images IVIS at different scales. These layers
construct a feature pyramid to generate visible light image features f VIS

b,n (n = 1, 2, . . . , N)



Entropy 2023, 25, 914 5 of 20

corresponding to the various stages of the reconstruction process. Mathematically, the
process can be expressed as follows:

f VIS
b,n = σ(WVIS

n ∗ IVIS + B)(n = 1, 2 . . . N) (2)

where WVIS
n represents the encoding filter for visible light images used in the n-th stage and

N represents the total number of stages. Unlike the infrared encoding filter, the visible light
encoding filter is used in each stage, and the corresponding filter uses different convolution
kernel sizes and strides. Specifically, for the filter WVIS

b,n in the n-th stage, the stride is set to

2N−(n−1) to output the current infrared feature map size, and the convolution kernel size is
designed as 2N−(n−1) + 1 to prevent the loss of pixel information in the image. By using
this method, we can mainly introduce the low-frequency features of visible light images in
the early stage of reconstruction, and focus more on the high-frequency details of visible
light images in the later stage of reconstruction and fusion of details.

Figure 1. The target of our method.

3.1.2. Super-Resolution Reconstruction Subnetwork

As shown in Figure 2a, the Super-Resolution Reconstruction Subnetwork is the core
component of our network, which aims to restore and enhance the resolution and texture
details of thermal infrared images. Note that for different stages of super-resolution (SR),
we use the same subnetwork for super-resolution reconstruction, with shared weights
and identical structure. For this subnetwork, we designed the Feature Extraction Module
(FEM), Cross-Attention Transformation Module (CATM), and Upsampling Module (UM)
for efficient extraction of structural information from different modal images. By measuring
the degree of correlation between multimodal images, we achieved effective texture transfer
and super-resolution reconstruction.
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Figure 2. The architecture of our proposed network.

• Feature Extraction Module (FEM): We employed the same structure for the FEM used
to process both infrared images and visible light features. This approach is based on
the fact that visible light features have been previously adjusted to a feature space that
matches the infrared features during the primary feature encoding process. Batch nor-
malization layers in the network can destroy the original contrast of images in image
reconstruction tasks according to some existing research. Therefore, we specifically
removed all batch normalization layers in the network to improve reconstruction per-
formance, reduce redundancy operations, and increase training and inference speed.
Our FEM consisted of a series of improved Hierarchical Dilated Distillation Modules
(HDDM) as presented in Figure 3a. We designed a multi-scale distillation fusion
mechanism for visible or infrared input feature maps f FEM

in , which sequentially passes
through filters with different dilation rates to separate different frequency components
of different image features. This process enhances the representational capacity of
the network. After each filter output, the feature map is split into two equal parts
along the channel dimension. One part f FEM

s1 is directly passed on to the subsequent
steps for feature fusion, while the other part f FEM

s2 continues to extract features. This
operation can be represented as

f FEM
MS,1 = σ(WMS,1 ∗ f FEM

in + BMS,1)[
f FEM
s1,n−1, f FEM

s2,n−1

]
= f FEM

MS,n−1

f FEM
MS,n = σ(WMS,n ∗ f FEM

n−1 + BMS,n), n = (2, 3, 4)

(3)

where WFEM
MS,n represents the n-th filter in HDDM. Then, we concatenated all the

f FEM
s1 in HDDM into one vector for subsequent operations. This operation can be

represented as

f FEM
c = Fcat( f FEM

s1,1 , f FEM
s1,2 , . . . , f FEM

s1,M−1, f FEM
MS,M)

f FEM
a = Fca( f FEM

c )
(4)

where Fca(·) represents our improved Channel Enhanced Attention Module (CEAM),
as shown in Figure 3b. Firstly, in low-level visual tasks such as super-resolution,
it is more important to focus on the image structure information. Directly using
global average pooling to extract information is not appropriate. Therefore, we first
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introduced a depthwise separable convolution at the front end of CEAM to process the
features of each channel. Then we performed the operation of global average pooling.
We also utilized a 1-D convolution to process the compressed channel information,
inspired by previous literature [38]. This approach reduces the computational and
parameter complexity. We not only avoided the dimensionality reduction operation in
channel attention, but also elevated the channel dimension to form multiple subspaces
for different aspects of information. By combining different dimension features, we
achieved more flexible information interaction between channels.
Inspired by previous research, such as EDSR, we introduced local residual learning
into the feature extraction module. This approach can effectively alleviate the potential
problem of gradient disappearance in the parameter optimization process, making it
possible to construct a deeper super-resolution reconstruction network. To perform
point-wise add operation between the output feature map and the input feature map,
we set a filter with a convolution kernel size of 1 × 1 at the end. This filter fuses the
multi-scale information previously extracted and matches the number of channels
with the input feature map. This operation can be represented as follows:

f FEM
out = σ(WFEM

out ∗ f FEM
2 + BFEM

out ) + f FEM
in (5)

• Cross-Attention Transformation Module (CATM): In order to guide the process of
infrared image SR with visible features, we constructed a Cross-Attention Transfor-
mation Module to obtain the attention map of relevant information from the input
visible light features and transfer the useful information. The structure of the CATM
are shown in Figure 4.
Given the input of infrared and visible feature maps f TIR

in and f VIS
in , which are obtained

by the feature extraction module processing the primary features of infrared and
visible light, respectively. After f TIR

in and f VIS
in were concatenated into a tensor f CATM

in ,
they were input into the attention branch. Unlike previous attention mechanisms,
we did not limit the estimation of attention maps to channel or spatial dimensions,
but constructed a pixel-level attention mechanism. Firstly, f CATM

in was filtered by a
3 × 3 convolutional kernel to extract effective features in the feature map, and the
channel number of the feature map was compressed to 1

/
β (β was the compression

ratio, set to 4 due to performance limitations of server) to improve the computational
efficiency of attention map estimation. Then, the number of channels was restored
through a 3 × 3 convolutional kernel, and the attention map was reconstructed based
on the effective features. This operation can be represented as:

f CATM
in = Fcat( f TIR

in , f VIS
in )

f CATM
PA1 = σ(WPA1 ∗ f CATM

in + BPA1)
f CATM
PA2 = δ(WPA2 ∗ f CATM

PA1 + BPA2)
(6)

where Fcat(·) represents the concatenation operation along the channel dimension.
δ(x) = (1 + e−x)−1 is the Sigmoid function, which is used to restrict the range of the
output attention map values to (0,1), ensuring that no error occured during testing
and training. Meanwhile, we apply the feature sub-module to the input tensor f CATM

in ,
and obtain the feature map f CATM

f eat that stores texture information. This operation can
be represented as:

f CATM
f eat = σ(W f eat ∗ f CATM

in + B f eat) (7)

Finally, the feature map f CATM
f eat and attention map f CATM

PA2 were multiplied point by

point, and added to the infrared feature map f TIR
in to introduce the structural features

of visible light images and obtain the updated infrared features f TIR
out . This operation

can be represented by the following formula:
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f CATM
out = f TIR

in + f CATM
PA2 · f TIR

f eat (8)

• Global Residual Connection and Hierarchical Feature Fusion: In this task, there is
a strong correlation between input features and the output image. Shallow features
typically retain a significant amount of low-frequency information. Additionally, as
the network goes deeper, an optimization challenge called gradient vanishing occurs.
Global residual connection serves as a simple yet effective solution for addressing
these issues. It enables the network to concentrate on reconstructing the image’s
high-frequency information, reduces resource waste, and simultaneously resolves the
gradient vanishing problem. However, relying solely on global residual connections
during the network inference process cannot fully utilize the abundant image features
generated, resulting in information redundancy. As the network depth increases, the
spatial representation capacity gradually decreases, while the semantic representation
capacity increases. Therefore, fully exploiting these features can enhance the quality
of the reconstructed image. To address this issue, we adopted a hierarchical feature
fusion mechanism that sent the output of each CATM to the endpoint before up-
sampling for processing. Considering the significant amount of redundancy in these
features, we added a feature fusion layer, which acts as a bottleneck layer to selectively
extract relevant information from the hierarchical features. This layer is crucial for
improving network efficiency and performance. The operation can be represented by
the following formula:

fc = f TIR
b,n + [Wc ∗ Fcat( f CATM,1

out , f CATM,2
out , . . . , f CATM,M

out ) + Bc] (9)

where f CATM,m
out (m = 1, 2, . . . , M) represents the output of the m-th CATM in the

reconstructed network, M represents the total number of CATMs. f TIR
b,n represents

the input infrared feature map of the super-resolution reconstruction network for the
n-th stage.

• Upsamle Module (UM): Upsampling methods have been extensively studied in super-
resolution networks. Some studies process feature maps at low resolutions, and then
directly upsample and reconstruct the features to the target scale, which can reduce
some computational cost. However, these methods are not conducive to achieving
high magnification ratios and convenient interaction of multimodal information. Our
proposed network gradually performs feature extraction and information fusion while
the feature map is being constantly upsampled by a factor of 2 in each stage, in order
to introduce rich texture details of visible light images at different scales. The feature
fc was input into UM and upsampled by 2× through bilinear interpolation. Then, the
updated features were filtered using a 3 × 3 convolution kernel to reduce the block
effect in the feature maps. This process can be formalized as follows:

fo = Wu ∗ Fup↑( fc) + Bu (10)

where Fup↑ represents the operation of bilinear interpolation.

3.1.3. High-Frequency Detail Fusion Subnetwork

In order to maximize the utilization of visible light image information, we specially
set up a high-frequency detail fusion network to further refine the infrared reconstruction
images at the target scale. As it is difficult to control the computational complexity and
spatial complexity of the network when operating on HR images, which is not conducive
to training and inference, we designed a simple network structure consisting of three pairs
of convolutional layers, three CATMs, and one reconstruction layer. The specific structure
is shown in Figure 2b.
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Figure 3. The basic unit of Feature Extraction Module.

Figure 4. Cross-Attention Transformation Module.

3.2. Loss Function

To train the network proposed in this study, it was necessary to measure the similarity
between the network output and Ground Truth(GT) of the infrared image, and restore the
thermal information as much as possible. At the start of the third section, we emphasized
the need to recover not only the known details in the infrared image, but also texture
features that had been lost due to the imaging mechanism with the assistance of visible
light images. Therefore, we designed a hybrid loss function, including intensity loss,
structure loss, adversarial loss, and perceptual loss, to ensure the real thermal information
while retaining valuable multimodal feature. The training process of neural network is
shown in Figure 5.

The intensity loss is designed to retain low-frequency information of infrared images,
and the main schemes include L1 and L2 loss functions. Many studies have shown that
the L1 loss function is superior to the L2 loss function in terms of optimizability and
reconstruction quality [24,39], so we adopted the L1 loss as the intensity loss. For the given
input training samples {x, y, z}, in which x, y, and z are, respectively, the LR versions of
infrared images, visible light images (Ref) as the reference image, and the HR version of
infrared images. The intensity loss can be represented by the following formula:
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Li(θ) =
1
N

N

∑
n=1
|G(x, y|θ)− z| (11)

where G(·, ·) represents the proposed network model in this article, and θ represents the
weight parameters of the network model.

Figure 5. Training Process of the Neural Network. The architecture of the generator is shown in
Figure 2. In order to achieve better supervision, we adopted a Markovian discriminator (Patch-
GAN) [40] as the discriminator to preserve high-resolution details.

The role of the structural loss is to guide the network in obtaining sufficient com-
plementary features from visible light images, which will result in the preservation of
high-frequency details of both infrared and visible light images in the reconstructed image.
We proposed a gradient-based structural loss to train the network to acquire this ability,
employing salient features present in the infrared and reference images as a training target.
The following equation represents the loss:

Ls(θ) =
1
N

N

∑
n=1
||∇G(x, y|θ)| −max(|∇y|, |∇z|)| (12)

where ∇ represents the gradient operator; we used the Laplace operator. Although the
utilization of structural loss has the benefit of preserving rich high-frequency details,
the ablation study conducted in Section 4.3 indicated that its implementation may lead
to serious image distortion. This ultimately results in inaccurate thermal information,
especially at the edges and texture details of the image. To address this issue, we added both
adversarial loss and perceptual loss into the hybrid loss. These constraints facilitated the
generation process of the network and ensured that thermal information in the image was
preserved. Furthermore, these additions improved the overall quality of the reconstructed
image. Specifically, adversarial and perceptual losses can be represented as follows:
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Ladv(θ) =
1
N

N
∑

i=1
‖1− D(G(xi, yi|θ))‖2

Lp(θ) =
1
N

N
∑

i=1
∑

j∈Ω

∥∥ϕj(G(xi, yi|θ))− ϕj(zi)
∥∥2

(13)

where D(·) represents the discriminator network and ϕj(·) represents the feature map of
j-th layer in the VGG19 network. The hybrid loss we proposed can be represented by the
following equation:

Ltotal(θ) = Li(θ) + Ls(θ) + λLadv(θ) + Lp(θ) (14)

where λ is the weight factor of the adversarial loss, which is used to balance the magnitude
of other loss function values and adversarial loss. It was set to 0.1 based on experimental
settings. Our ultimate goal was to minimize the value of the hybrid loss and obtain the
corresponding network parameter weights, as shown in the following equation:

θ̂ = arg min
θ

Ltotal(θ) (15)

3.3. Training Strategies

Although introducing the information of visible light images in reconstruction image
can greatly enrich the texture details in the reconstructed image, high-quality visible light
images cannot always be obtained under all conditions, often being affected by conditions
such as lighting and smoke. In practical application scenarios, infrared images have the
characteristics of all-weather and strong anti-interference abilities; the imaging quality is
also more stable. Therefore, we hoped that low-resolution infrared images could be used as
the main information source in the reconstruction process, with visible light information as
supplementary information. To improve the robustness of the proposed method, based on
the network structure and loss function we designed, a modal switching training strategy
was proposed.

During each single training epoch, we initially input multimodal data of infrared
and visible light images to train all weight parameters in the network, which enabled
the network to learn the ability to obtain information from input infrared images and
visible light images as reference, and reconstruct high-quality images. Subsequently, to
prevent significant performance deterioration of the network when no reference images are
present, we input infrared images and a black image (filled with zeros) to remove the input
visible light images used as references. In this process, only those structure of the network
associated with infrared images were updated during training and inference, which enabled
the network to attain capabilities similar to single image super-resolution. Therefore, while
the reference input was being removeded, we temporarily froze all CATM that were
involved in fusion parts of high frequency details and super-resolution reconstruction, as
well as the encoder used to process visible light features. During this process, we set their
convolutional kernels and biases to zero for a temporary period, so that no updates would
be made to these parameters and thereby not impact the infrared branch’s training. Finally,
The loss function could be trained as normal, without modification in this stage, as the
structural loss adropts the maximum value strategy to introduce visible light information.

By using this method, we trained the network proposed by them to reconstruct high-
resolution infrared images while reducing reliance on reference images in subsequent trials.
During a single round of training, the discriminator was updated only once to prevent
mode collapse.

4. Experiment
4.1. Experimental Environment and Dataset Settings

Our proposed network was trained and on a hardware environment with an Intel
(R) Core (TM) i9-13900KF CPU, 64.0 GB of RAM and a NVIDIA GeForce RTX 4090 GPU.
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We used the PyCharm 2021.3.2 software platform on the Windows 11 operating system,
alongside the PyTorch 1.10.1 deep learning framework. The training process took 44.3 h
overall, while for each image, the testing speed was 0.62 s.

Deep learning, as a data-driven technology, necessitates a significant amount of well-
registered thermal infrared-visible light images for training data. To achieve this objective,
we combined three popular multimodal datasets: M3FD [41], FLIR ADAS, and TISR [42].
Sample images from the dataset are exemplified in Figure 6. We partitioned the dataset into
three sets, namely, training set, testing set and validation set with the ratio of 8:1:1. This
step was conducted to evaluate the generalization capability of our proposed algorithm.
Additionally, we trained and tested all other comparative methods using the same dataset.

Figure 6. Visualization of samples from the trainging dataset.

The dataset consisted of a total of 1394 infrared and visible light images of complex
scenes, including urban, road, and forest environments, with all images completed at
the pixel-level alignment. To achieve data augmentation, all images in the training set
were flipped and rotated, and then cropped into image blocks with a size of 256 × 256.
Furthermore, we simulated degradation by downsampling the infrared images via bicubic
interpolation to obtain the corresponding LR input images.

We trained our model using the ADAM optimizer and set β1 = 0.9, β2 = 0.999, and
ε = 10−8. We set the minibatch size to 16, initial learning rate to 5 × 10−4, and trained
the model for a total of 200 epochs. We reduced the learning rate to 0.1 at the 100-th and
150-th epochs.

4.2. Comparative Experiments

In order to demonstrate the effectiveness and superiority of our proposed method,
we conducted comparative experiments on multiple classical or state-of-the-art (SOTA)
methods in the same test environment. Firstly, we removed the visible light images and
information conversion mechanism in the network to test the ability of our proposed
method to perform single image super-resolution (SISR) without reference image guidance.
In this experiment, we compared RCAN [22], EDSR [16], s-LWSR64 [19], Zou et al. [43] and
Wang et al. [37]’s methods. The qualitative analysis, as shown in Figure 7, demonstrates
the infrared super-resolution reconstruction results (4×) of three scenarios. Meanwhile, we
present the quantitative analysis results of each method on the 8× and 4× test datasets in
Table 1, mainly using the peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) as the metrics.

In the SISR at the 4× scale, our proposed method performs comparably to EDSR
in terms of performance and outperforms all other comparison methods, with slightly
lower PSNR but better SSIM. It is worth noting that EDSR, as a rather large model, has
about 43M parameters, while our network has only around 700 K trainable parameters
(excluding frozen weight parameters), with significant advantages in both computational
efficiency and memory usage. At 8× super-resolution reconstruction, our proposed method
outperforms other methods, and is more suitable for high-resolution reconstruction than
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other methods. In terms of visual imaging performance, our proposed method effectively
restores the original low-frequency information in infrared images, and is more prominent
in reconstructing texture details. Wang et al.’s method, compared to the method proposed
in this paper, shows a serious degradation of image quality both in objective metrics and
visual perception after masking the reference image, and this is because their training
strategy and information transmission mechanism cannot adapt to this situation, while our
method effectively avoids this problem.

Table 1. Benchmark test results for SISR.

Methods Prameters
4× 8×

PNSR SSIM PNSR SSIM

RCAN 16 M 31.66 0.8724 28.20 0.7107
s-LWSR64 2.27 M 31.67 0.8894 28.18 0.7098
Zou et al. 3.73 M 31.84 0.8863 28.40 0.7121

EDSR 43.09 M 32.21 0.8913 28.38 0.7166
Wang et al. 573.6 K 21.33 0.6042 - -

Ours 698.2 K 32.15 0.8921 28.41 0.7283

Overall, in the task of SISR, without introducing external information, the restoration
performance of using only single image super-resolution methods to restore high-frequency
information was limited, which may be affected by the amount of data and the difficulty of
the task. From another perspective, the experiment also verifies that in the super-resolution
reconstruction of multimodal information fusion, it is feasible to achieve high-quality single
image super-resolution without reference images by using a modal switching strategy
for training.

After verifying the infrared super-resolution reconstruction ability of the network, we
studied the effect of image super-resolution through multimodal fusion with a reference
image. As discussed in Section 3, unlike SISR tasks, we no longer considered the original
high-resolution infrared image as the Ground Truth, but rather aimed to restore ideal
and high-quality infrared images using multimodal sensor fusion. We selected Real-
ESRGAN [27], CMSR [44], and Wang et al. [37] as comparative methods to consider the
network’s ability to enhance the details of infrared super-resolution reconstructed images
with a reference input. The qualitative analysis is shown in Figure 8. From a visual
perspective, our method not only obtained clear, high-contrast, and detail-rich infrared
images but also avoided generating false textures. There were no visible artifacts or blurs
compared to other contrast methods, which benefited from the neural network’s feature
extraction and information transmission capabilities. To further verify, we used a reference
index to analyze the correlation between the reconstructed image and thermal information
(i.e., the intensity of the infrared image), including Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM), Learning-based Image Perceptual Similarity (LPIPS) [45], and
Mutual Information (MI). To compare the image quality generated by different methods,
we also added non-reference evaluation metrics to evaluate the enhanced-detail infrared
images, including Entropy (EN), Average Gradient (AG), Edge Intensity (EI), and Spatial
Frequency (SF). The quantitative comparison results are shown in Table 2, where the best
and second-best values for each indicator are marked in red and blue, respectively.

In general, our proposed method outperformed other reference-based comparison
methods, which indicates that our images have richer details, better contrast, and preserve
more infrared thermal information. Although Real-ESRGAN is superior to our algorithm in
reference-based metrics, this is due to the fact that our algorithm introduces more additional
information to reasonably predict some high-frequency details that are not present in the
original infrared image, which would result in a certain degree of decline in reference-
based metrics. However, the actual image quality can be significantly improved. The
result is consistent with the qualitative analysis results of generated image quality, fully
demonstrating the effectiveness of our proposed method.
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Figure 7. Comparison of SISR results of thermal infrared images under multimodal fusion using
different methods. Zoom in for best view.
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Figure 8. Comparison of multimodal SR results of thermal infrared images under multimodal fusion
using different methods. Zoom in for best view.
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Table 2. Benchmark test results for multimodal SR.

Methods Ref. PSNR SSIM LPIPS MI EN AG EI SF

Origin TIR - - - - - 7.1152 2.3342 30.6074 14.1549
Real-ESRGAN × 30.23 0.7130 0.1728 3.0812 7.1295 1.6568 20.8512 6.3397

CMSR X 29.52 0.6623 0.2213 1.7308 6.8232 3.4218 32.1385 12.2585
Wang et al. X 29.38 0.6570 0.2513 1.7603 6.9754 3.0916 37.8797 13.0632

Ours X 30.04 0.7041 0.1869 2.8672 7.6473 4.2393 49.9074 18.9905

4.3. Ablation Study

Our approach has been proven superior through the comparative experiments we
conducted. Subsequently, to determine the effectiveness of our proposed improvements,
we conducted a series of ablation studies.

4.3.1. Ablation Studies of Network Structure

Firstly, we investigated the impact of three mechanisms, Multi-Scale (MS), Information
Distillation (ID), and CEAM, in the primary unit HDDM of the FEM on the network
reconstruction performance. We observed their performance changes in the SISR task to
test their ability to extract features and reconstruct images from infrared images. Table 3
shows the quantitative results. It can be seen that the main improvements, including
multi-scale branch, feature distillation, and channel attention, significantly improved the
network performance, with all metrics showing improvement. We display the feature maps
of different scales in our multi-scale module in Figure 9. It can be seen that this structure
can adaptively divide the features into different-frequency components and extract them.
Our structure has achieved a good balance between performance and efficiency and can
efficiently and effectively extract information from input images.

Figure 9. Visualization of feature maps at different scales in the HDDM.

Table 3. Results of ablation study on the composition of HDDM structure.

MS ID CEAM Param PSNR SSIM

X × × 14.5 K 31.84 0.6997
X X × 14.5 K 32.02 0.7002
X X X 15.4 K 32.15 0.7041

We replaced the self-attention module with three different modes: point-wise addi-
tion, channel attention, and spatial attention. We conducted experiments to evaluate their
impact on performance. This primarily evaluated the performance of visible light image
information when generating images using different information fusion mechanisms. The
quantitative results are presented in Table 4. The attention mechanism outperforms the
point-wise addition calculation mode, as evidenced by the results, which proves the impor-
tance of the learnability of information transmission. Compared to the other two attention
mechanisms, our proposed CATM generated images with finer details, and had an overall
better quality, which was supported by several performance metrics. This validates the
effectiveness and rationale of the proposed CATM, which has the ability to extract more
relevant information from the reference image.
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Table 4. Results of ablation experiments on information transformation methods.

Transformation Type PSNR SSIM EN AG EI SF

point-wise add 23.2113 0.6377 4.6732 2.9369 21.1218 9.5865
Channel Attention 25.8466 0.6902 6.6181 3.6187 31.7487 12.3742
Spatial Attention 28.7214 0.6911 7.2657 4.1258 42.0281 15.8656

Ours 30.0418 0.7041 7.6473 4.2393 49.9074 18.9905

4.3.2. Ablation Study of Loss Function

We conducted ablation experiments to analyze the composition of the loss function and
to evaluate the effect of different combinations of loss functions on the quality of reconstructed
images. The focus of our research was on gradient loss and adversarial loss as they are the
primary approaches for achieving image reconstruction and detail enhancement. We compared
the reconstruction effects of the network under three conditions, including only pixel loss,
with gradient loss, and complete hyibrid loss. Figure 10 and Table 5 display the specific
subjective effects and indicators discerned. After adding the loss functions, the image quality
was significantly improved subjectively, with improved details and enhanced contrast and
sharpness. The reference metrics showed a significant decrease with the addition of gradient
and adversarial loss while the non-reference metrics displayed a significant improvement.

Figure 10. Comparison of reconstruction results using different loss functions. Zoom in for best view.

Table 5. Benchmark test results for multimodal SR of thermal infrared images.

Li(θ) Ls(θ) Ladv(θ) + Lp(θ) PSNR SSIM EN AG EI SF

X × × 33.6149 0.9012 7.0281 2.2627 30.6074 14.1833
X X × 28.8282 0.6702 7.6657 4.4251 52.0372 16.7221
X X X 30.0418 0.7041 7.2657 4.1258 42.0281 15.8656

The purpose of using reference metrics is to measure the difference between the gener-
ated images and the GT. However, the thermal images as GT are limited by the imaging
mechanism and affected by various factors, resulting in changes to the original signal,
such as blurring or noise interference. Therefore, it is necessary to comprehensively judge
the reconstruction ability of the network through non-reference metrics and qualitative
analysis results. Obviously, the network trained with perfect hybrid loss has the best image
reconstruction quality. In contrast, although the non-reference metrics have improved
without introducing adversarial loss, a lot of infrared thermal information has been lost.
The addition of adversarial loss can effectively solve this problem because the discriminator
can prompt the generator to learn the implicit infrared image features. The lack of gradient
loss makes it difficult to obtain enough texture details from the reference image, resulting
in blurred reconstructed images. Therefore, our proposed hybrid loss can effectively re-
store the infrared thermal information in the image and obtain enough features from the
reference image to enhance the texture details in the SR image.

4.3.3. Ablation Study of Training Strategy

Finally, we examined the effectiveness and necessity of the proposed training strategy
through experiments. Figure 11 and Table 6, respectively, show the qualitative and quanti-
tative analysis results of using and not using this training strategy in image reconstruction.
Under SISR, if this learning strategy is not used, the quality of the reconstructed infrared
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images is poor, after masking the reference image and the corresponding network structure.
This is mainly because the reconstruction process overly relies on the image information in
visible light images. Although some of this information exists in infrared images, ineffective
constraints during the training process still lead to serious network performance degrada-
tion, as demonstrated by the performance of Wang et al.’s method in the SISR comparative
experiment. The network trained using this training strategy performs well in the SISR
task and can reconstruct high-quality images without relying on visible light images. In the
reference super-resolution task, both methods show quite similar reconstruction quality
and achieve good performance, indicating that parallel training or inference of SISR and
reference super-resolution tasks is feasible.

Figure 11. Comparison of reconstruction results of w/ and w/o training strategy.

Table 6. Results of ablation study on the training strategy.

Training Strategy
SISR Multimodal SR

PSNR SSIM EN AG EI SF

× 25.64 0.6130 7.1545 4.2258 40.8564 14.9313
X 32.15 0.7041 7.2657 4.1258 42.0281 15.8656

This experiment proves that the training strategy proposed in this paper can effectively
optimize the network, enabling it to maximize the use of effective information in the input
infrared image. It is possible to rely solely on the infrared image for reconstruction in situa-
tions where visible light reference images are missing or of poor quality, which improves
the robustness of our method and provides more options for practical applications.

5. Conclusions

In this paper, we proposed a thermal infrared image super-resolution reconstruction
method based on multimodal sensor fusion, which included a multimodal super-resolution
reconstruction network, a novel hybrid loss function, and a corresponding training strat-
egy. Our multimodal super-resolution reconstruction network adopted an iterative super-
resolution approach to gradually incorporate visible light features of different scales, which
could better adapt to large-scale thermal infrared image super-resolution. We designed a
hierarchical expansion distillation module to extract features from thermal infrared and
visible light images, which was lightweight and high-performance, contributing to gener-
ating better reconstruction results. Additionally, we proposed a cross-modal information
transformation module with pixel-level attention to achieve more efficient and accurate
information fusion between the two modalities. To reasonably supplement lost texture
details, a hybrid loss function is proposed, which could fuse and enhance salient details in
different modalities while maintaining correct thermal information, improving the imaging
quality of generated images. Moreover, we proposed a training strategy for multimodal
sensor fusion super-resolution to reduce the network performance degradation caused by
missing or low-quality reference images, improve the network’s robustness and expand
the scope of application in practical scenarios. Through extensive experimentation and
comparison with various state-of-the-art methods, our method has demonstrated good per-
formance in both visual quality and quantitative metrics, and improved the reconstruction
quality of the images to some extent, validating the potential of our method.
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