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Abstract: Price, Cost and Income (PCI) are distinct economic indicators intrinsically linked to the
values they denote. These observables take center stage in the multi-criteria decision-making pro-
cess that enables economic agents to convey subjective utilities of market-exchanged commodities
objectively. The valuation of these commodities heavily relies on PCI-based empirical observables
and their supported methodologies. This valuation measure’s accuracy is critical, as it influences
subsequent decisions within the market chain. However, measurement errors often arise due to
inherent uncertainties in the value state, impacting economic agents’ wealth, particularly when
trading significant commodities such as real estate properties. This paper addresses this issue by
incorporating entropy measurements into real estate valuation. This mathematical technique ad-
justs and integrates triadic PCI estimates, improving the final stage of appraisal systems where
definitive value decisions are crucial. Employing entropy within the appraisal system can also aid
market agents in devising informed production/trading strategies for optimal returns. The results
from our practical demonstration indicate promising implications. The entropy’s integration with
PCI estimates significantly improved the value measurement’s precision and reduced economic
decision-making errors.

Keywords: value state measure; real estate appraisal; evaluation methods; information; Entropy
weighting method (EWM); multi-criteria decision making (MCDM)

1. Introduction

The heart of economics, and more specifically, appraisal practice, primarily revolves
around interpreting and quantifying the market value of real assets [1–3]. In North America,
property valuation has been well-organized and improving for more than a century, bene-
fiting from the works of classical economists [4–10] and contemporary authors proposing
the concurrent use of triadic concepts, observables and approaches [11–13]. Improve-
ments in value estimations have been achieved using statistical modeling approaches,
benefiting from non-linear, automatized, and intelligent algorithms, complex tools and rich
data [14–17]. However, these models are limited by the same conventional framework of
appraisal systems, which integrate some improvements but cannot go beyond the boundary
of existing concepts, observables and methods.

Indeed, market value estimation for a given property, herein referred to as the “sub-
ject”, can be achieved using the three fundamental methods of price, cost and income, each
involving detailed computation steps [18]. Considering the triadic responses to the market
value of the subject property simultaneously provides the most accurate approximation at
this final computational step. However, this requires a careful amalgamation of responses
and adjustments of their relevance as the estimates can fluctuate significantly, even for the
same property [19,20]. This discrepancy presents a critical gap at the decisive step of the
appraisal system, which either relies solely on one method, excluding the results of the
other two, or employs subjective weighted averages, posing the risk of bias in the measures
and intrusive blending of logical computations from preceding steps [21,22]. To tackle these
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constraints, and drawing upon the principles of informational and thermodynamic en-
tropies [23], we suggest incorporating the Entropy weighting method (EWM) into the final
step of the appraisal system, employing it as a primary value metric alongside traditional
PCI methods.

In the last step of the evaluation process, working with the results of the EWM, we
remarked that it has the potential to improve the current system of evaluation in a global
manner as well as in a case-by-case basis. In addition to this global approach that estimates
a fused value for all the responses in the whole data, we also tried the EWM in case-
by-case evaluations, adjusting each imperfect estimation of conventional approaches. In
that perspective, we improved and adjusted the EWM in several regards, for instance, by
integrating the Kullback-Leibler divergence in relative entropies of each case in the data.
This is another important contribution of our work as it not only allows a value estimate
for each of the triadic estimates in the data, but it also provides a validation basis with all
estimates showing a trend in their behavior that logically should converge to a constant
value (as the same property is evaluated each time).

In this work, we exemplify how the EWM approach effectively addresses the limita-
tions of triadic methods, merging them into dependable point estimates. This technique
streamlines and completes the computational cycle within the conventional appraisal
system, enhancing the transparency, elegance and depth of the appraisal system when
pinpointing value based on the simultaneous utilization of triadic methodologies. By
surmounting the limits inspiring this work, we can more fully appreciate the process of
pinpointing a singular value from the simultaneous use of three distinct market responses.
From a conceptual perspective, acknowledging three different market values that often
diverge significantly for the same property offers the analytical capability to compare,
justify and explain results, rather than relying on a single method. This approach poten-
tially equalizes the analytical and repetitive technical content in appraisal reports, much
of which becomes automated with advanced technology and data, leaving less room for
expert insight and knowledge. The progressive automation of appraisal steps trims costs,
streamlines report format and content, and exerts pressure on the profession to cultivate
more sophisticated and analytical content. This unique analytical opportunity, confined to
the final step of the appraisal process, can stimulate intriguing advancements.

Reliable estimates of value are essential for a wide range of agents, including property
owners, investors, cities, governments, developers, constructors, buyers, sellers and institu-
tions that lend capital. In addition to being important for experts and these agents, proper
decisions regarding real estate value are also necessary for managers at various levels and
types of properties [24,25]. In addition to case-by-case evaluations, millions of properties
are regularly evaluated in bulk and taxed worldwide, especially in North America where
value estimates are cyclically needed every three to four years on average [26–28].

2. Literature Review

Economic agents evaluate various events or objects of desire based on their degree of
expectations and information. Theories of judgment and information help to understand
their subjective behaviors in forming these evaluations [29,30]. Information theory was
introduced and used in econometrics by [31,32]. Statistical Mechanics sees a connection
between information theory and physical entropy, where prediction is an informational
matter and entropy represents the degree of uncertainty about a system’s state [33]. The
discussion on the relation between information and physical entropy originally began
with [34,35], inspiring [36,37] to define later information as the reduction of entropy. En-
tropy measures the uncertainty of a random process, providing a quantitative measure of
information asymmetry [38].

Entropy calculations can be used in engineering [39], population prediction [40],
linguistics [41], econometrics [42,43], biology [44,45], neuroscience [46], genetic expres-
sions [47] or psychological subjective decisions and sensations [48,49]. Shannon’s entropy
theory of information has inspired these researchers, notably in economical meaning and de-
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cision making under uncertainty [50,51]. As natural selection favors low entropy states [52],
human expectations compete to attain novel information related to events or objects of
interest [53]. Uncertainty in events motivates the search for information [54]. For [55], the
value state is the maximum entropy state or the best choice that provides maximum infor-
mation entropy. Empirical evidence clearly suggests the benefits of exploring information
and entropy-based theory to better understand market behavior [56]. Once the information
is disclosed, its value decreases and it becomes less scarce [57]. The entropy-based mar-
ket analysis and investment theory is applied, for instance, to investment practice, asset
and portfolio returns, financial time-series forecasting and estimation of manufacturing
yields [58–60]. Elsewhere, the investor performance is shown to depend on informational
advantages [61,62].

In economic behavior, the reduction of entropy is clearly a key concept. According
to Schrödinger [63], a Nobel Prize-winning physicist, low entropy governs economic val-
ues [64]. Applebaum [65] similarly argued that entropy is a measure of a commodity’s
scarcity and value. Georgescu-Roegen [66] was a pioneer in thoroughly exploring the
relationship between economic decisions and the natural environment. His work marked
the inception of what we now recognize as entropy economics. According to his research,
economic value embodies properties of complexity, indeterminacy and human behavior,
all derivatives of the law of entropy. He meticulously detailed the relationship between
thermodynamic entropy and economic value, particularly focusing on the value of com-
modities, which, in the context of this work, refers to real estate value. The dynamic
expressions of value through PCI observables and conventional methods were enlightened
by his profound explanations and connections to thermodynamic entropy. While our focus
here is on informational entropy as a tool to enhance property value measurement, it’s im-
portant to recognize that thermodynamic entropy is already ingrained in the conventional
PCI observables and methods that form the basis of this work.

Though the literature provides formal definitions of thermodynamic and informational
entropies (see the comprehensive work by [67]), drawing connections to real estate proves
useful. Real estate properties undergo energy and material transformations due to their
material constitution. Economic agents make decisions regarding property attributes
(influenced by thermodynamic forces) using comparable information on PCI realizations
under conditions of uncertainty (economic decisions understandable via informational
entropy). The value of a property shifts in response to the quality/quantity of location
attributes (e.g., a parcel of land in a humid/sunny region or a convenience store in a
rat-infested commercial building) and depreciation as the building ages. PCI represent
these dynamics, reflecting their economic evaluation. Economic agents not only react to
thermodynamic environmental impacts, but they also strategically plan and modify the
property and location attributes to align with the most probable value state (as assessed
by economic agents). For example, entrepreneurs build convenient and better-structured
buildings to combat thermodynamic forces, utilizing knowledge and technology to shape
and reduce cost levels. This strategy creates buildings that offer better protection against
weather conditions, relative to price, income, and most crucially, value state. Demand side
agents will set prices (and generate incomes) accordingly, considering uncertainty as they
evaluate PCI levels, and also referring to the most probable position of value state.

In the context of economic valuation, decisions regarding desired events/objects are
often made in uncertain environments. To make these decisions, information or different
types of observables such as PCI are used to feed personal or expert evaluation methods [68].
However, it is important that the methods optimally represent the real world and do not
overfit or artificially create noise in the estimates [69,70]. Not all methods perform similarly.
Data quality must be factored, and they should be compared based on cross-validation and
degree of uniformity in the distribution of prediction errors as well as favor low cost and
faster prediction [71,72]. A single method can perform well, but multiple methods should
be used to exploit further potential of the data, which is especially important in situations
of decision making [73]. In that regard, entropy is frequently used in the field of artificial
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intelligence for data fusion, attribute contributions and multimodal global predictions.
Multimodal data fusion involves transforming information from multiple single-mode
representations to a compact multimodal representation, similar to the thermodynamic
process of melting a solid substance [74]. This technique is used in various fields, such
as image fusion, which combines multiple source images of the same scene to create a
fusion image that is more suitable for human visual perception, computer processing, or
surveillance for more accurate decision making [75,76].

To integrate attribute contributions or estimates from multiple methods into one
indication for decision making, it is necessary to rank and weight them appropriately.
Various methods have been developed for this purpose, including the eigenvalue method,
which captures rank orders [77], conjoint analysis [78] and analytical hierarchy process
(AHP) [79]. Synthetic indicators of the residual distribution by Bayesian Information
Criterion (BIC) and the Akaike information Criterion (AIC) are widely used as model
selection criteria [80,81]. Other methods that have been developed for this purpose include
the quadratic extrapolation method [82], the Panzeri-Treves Bayesian estimation [83], the
Best Universal Bound estimation [84], the Nemenman-Shafee-Bialek method [85] and
entropy-integrating fuzzy ranking [86]. More recent methods using statistical copulas have
been developed [87]. Each of these methods has its advantages and disadvantages [88].

Entropy calculations are known to be versatile and compatible methods, particularly in
assigning priority and importance ratings of attributes/methods [89,90]. Entropy methods
are commonly used to reduce uncertainty in MCDM [91]. In MCDM, researchers utilize
Multi-objective optimization (MOO) weights of importance to be assigned to functions
for simultaneous optimization problems [92]. Researchers have proposed different ways
to solve optimization problems to support a decision maker in finding an optimal or
equilibrium state [93,94]. The MOO techniques utilize response weights in their process of
converting multiple responses into a single response. In this process, decision-makers must
understand the true meaning of weights and their computations. The involvement of the
weights of importance in MOO is crucial in the entire optimization process and ultimately
operates at the last step, where they are used to conclude results for a final decision.
Assigning weights to responses in MOO can be done in different ways, such as (a) equal
assignments [95], (b) subjective weights from judgment or personal opinion of the decision-
maker (an expert) including Ranking weighting [96], Allocation of points [97], Trade-
off [98], Pairwise comparison [99], LSQ method [100], Eigenvector method [101] or Delphi
method [102] and (c) objective weights from mathematical models or algorithms using
observables without the involvement of the decision-maker. These include the Entropy
method [103], Vertical and Horizontal method [104], TOPSIS and Principal component
analysis [105], Variant coefficient [106], MOO method [107], and so on. Any combination of
these can be used.

Several studies have explored and integrated the potential of the entropy method
in various ways and goals in real estate analyses [108]. Zhou et al. [109] extended en-
tropy principles to real estate risk assessment and weighting based on Shannon’s entropy.
Lam et al. [110] utilized the entropy method to find weights of the selected variables af-
fecting property price and compared results with multiple regression analysis (MRA) and
Artificial Neural Network models’ outcomes to notice that entropy method performs better.
Chan et al. [86] proposed the fuzzy and entropy method to obtain the final ratings of the
customer needs. Gnat [91] utilized the entropy approach to define the degree of homo-
geneity of properties in given sectors. Lam et al. [111] demonstrated that the integration of
entropy and ANN can account for variance in the housing price determinants and improve
forecasting progress. Salois and Moss [112] examined the change in information in net
value added to farmland and values over time, as well as the relationship between the two.
Results indicate that new information increases the entropy in the short term but reduces
the entropic signal in the intermediate term. This loss in short-run information may be the
result of random shocks, which do not persist or produce responses to market changes.
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Sekaran [113] suggested that different cultures reacted differently to scaling issues, and
used the five-point scale to capture the meaning of the subjective judgements.

3. Value State Balance

Value holds profound significance and application in nearly all fields, with particular
emphasis in economics [114,115]. However, the interchangeable use of the price, cost
and income (PCI) components often leads to ambiguity in its definition and a lack of a
coherent framework to extract their true meaning in relation to value [116]. The challenge
of measuring value is a fundamental concern and, unlike entropy, it involves difficulties in
its methodology, perhaps due to terminological confusion [117,118]. Various perspectives
have been proposed by different schools of thought, primarily in economics [119–121].

To elucidate the basis of value, authors traditionally differentiate between use value
and exchange value [122,123]. Classical thinking proposes that value derives from the
cost of production agents (supply), whereas the neoclassical viewpoint considers the
utility of demand-side agents. Marshall [5] merged these objective supply-cost definitions
of value with the subjective demand-price propositions to account for the quantity of
commodities. Subsequently, a debate ensued about replacing the subjective use value
with the objective exchange value [124,125]. Post the industrial revolution, mainstream
economics championed the concept of exchange value, given its practical application
and the ability to use PCI observables as sufficient substitutes for value. Researchers in
other fields typically define value in reference to this dominant view of exchange value,
perceiving value as a function of scarcity and (marginal) utility. Value is also defined as a
blend of both use and exchange values [126].

The perspective of exchange value interprets the value of commodities by their ob-
served PCI in the market [127,128]. In contrast, use value pertains to individual emotions
and subjective expectations when processing information [129]. These expectations tran-
sition into exchange values once they are expressed in the market via different forms of
PCI transactions. PCIs are continuously updated and serve as informational references
to shape new expectations. Unlike subjective personal-use values, PCI are determined
through negotiation, always referencing the most probable position of value state.

PCI involves a comparative process of negotiation and multi-criteria decision making,
taking into account property attributes in relation to their impact on the market. Supply
and demand agents negotiate and decide on selling price levels, cost of production en-
trepreneurs and income stream investors, all referring to the position of value as different
bases of information. For instance, the price is an observed (or past) expression of value
state resulting from an evaluative and comparative decision-making process by subjective
buyers and sellers. The price does not equate to a value state; it serves as its imperfect
reference (used in its approximation like in the evaluation system). The same decisional
process between two different types of economic agents, observed for different manners
and in two additional different contexts, leads to two other observables of cost (related
especially to an ongoing production process of the same commodity in the present) and in-
come (related to the same commodity in postponement/projections and strategic planning
of future streams of periodic incomes).

Consider the negotiation contexts for a residential property, as depicted in Figure 1.
PCI observables, which represent past, present and future comparison processes, enable
agents to assign a value to the same property on the market. Essentially, these PCI responses,
acting as empirical expressions and observables of the value state, facilitate the assessment
of that value state. In the early stages of negotiation, the agents don’t have an exact
PCI figure for the property; they rely on their personal judgment, observable PCI’s and
attributes of similar properties in the same market. For example, a buyer might be willing to
pay a high price while the seller might propose a significantly lower price. These proposed
prices will change throughout the negotiation process, eventually culminating in an agreed
price of $325,000, as demonstrated in the example.
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Figure 1. PCI negotiation steps between buyers and sellers.

The final negotiated price provides one dimension of the property’s value state, but
there are also the cost and income dimensions that, when taken together, give a more
comprehensive perspective on the most probable position of the market value of the
property [130]. Importantly, the price reflects the past appreciation of the property’s utility
attributes within a buying and selling context, with reference to the value state. This value
state is not isolated from the contexts of the cost of production and the income generated
from the exploitation of the property. The cost dimension takes into account the present or
ongoing charges of interest, salary and rent, which reward the production agents of capital,
labor and natural resources (such as land). Lastly, the projected future income streams of
the property are accounted for when approximating the value state. As complementary
sources of information in multi-criteria decision-making contexts, considering these factors
simultaneously helps to better pinpoint the most probable market value (represented by
the “M” point in Figure 1) of the property in question.

The process of adjusting, either upward or downward, in the appraisal system is
crucial to ensuring that the attributes and PCI estimates of comparable properties align
closely with those of the subject property. What’s important to note about this adjustment
process is that all necessary modifications have been implemented to make the property
comparable; hence, any potential variations have been accounted for. At this final stage of
the evaluation process, the expert also has to make a final decision on the most probable
market value of the same property, which serves as the best approximation of the value
state. Each valuation method carries its own advantages, disadvantages and unique
characteristics, which depend on various factors. These include the type of property
(certain methods are more suitable for specific property types), the availability of data, the
extent of required computations/adjustments and the current state of the market.

The appraisal process can use three concurrent methods, each supported by PCI ob-
servables, respectively: the Sales comparison approach (SCA), the Cost summation approach
(CSA) and the Income capitalization approach (ICA). The SCA is a more direct way of esti-
mating the market price of a property, as it relies on the observed prices of comparable
properties in the market. When the data from the market is poor regarding price and
income, the cost method remains an alternative for the market value estimation of generally
unusual properties. On the other hand, the CSA cannot estimate land value and may
be influenced by cost depreciation estimation. The ICA is preferred for properties that
generate stable income and have reliable market indicators like a stabilized cost and income,
but it relies on projected and hypothetical data that are uncertain and derived from other
estimations [131,132].

It is generally assumed that the application of the three methods simultaneously would
result in three identical or closely similar values for the same property. In the example
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we use below as a practical demonstration, the SCA, CSA and ICA provided estimates of
$362,000; $341,000 and $358,000, respectively. The expert must then decide on the final
market value of the property based on local data at a specific date. The expert may suggest
the SCA estimate of $362,000 because the data is recent and abundant on this market, in
comparison to the results of the two other methods. An average of $354,000 is another
alternative of value response of the subject, and a weighted average based on the reliability
of each method would indicate a value of $357,000, assuming weights of 0.6, 0.2 and 0.2 by
the expert’s intuition and knowledge of the market. These are the two known alternatives
to conventional PCI evaluations [8,133]. Practitioners may prefer either an inclusive simple
and weighted average or an exclusive approach depending on the reliability and type of
information available [134]. However, there are no established guidelines for selecting the
best approach in the literature and practice.

In the considered example, the variances between the estimation methods may vary
depending on the subject of inquiry. In these instances, all the potential of data, parameters,
computations and approaches have been involved in order to bring all the necessary
adjustments. The same subject is evaluated by the same method with low internal variance,
yet the values between methods often do not converge. It is challenging to logically
explain and improve prediction processes and approaches in such situations, even when
using competitive triadic approaches and following a thorough evaluation process. This
poses a major concern for experts and decision makers because the most critical step in
the evaluation process, the decision-making moment, becomes void. Consequently, PCI
expressions by economic agents and the considerations that lead to market values by
experts cannot be confidently used in MCDM. Even if estimates converge, the value state
largely retains inefficiencies using the current framework of classic evaluation.

4. Entropy Weights Method

The Entropy weights method (EWM) works well across diverse MOO problems in
MCDM [2]. Shannon and Weaver proposed EWM in 1948 [36] that have been empha-
sized by many other authors in further developments [135]. Since then, various advance-
ments have been made in the methodology of EWM in different fields, such as fuzzy
entropy method, cross-entropy method, Grey entropy technique, intuitionistic fuzzy en-
tropy weights, etc. However, research is still ongoing to expand the method. The EWM
offers several advantages, such as the ability to compute relative weights of responses in a
simple, unbiased way, successfully assess indicators, appropriately identify divergence of
responses and calculate their weights, suggest the requirement of supplementary informa-
tion, compute effectiveness and advantage/cost responses, account for the weak impact
of unusual attributes, and deliver more precise outcome with more different coefficient
values for responses. Additionally, the EWM is suitable for the entropy strategy to handle
the fundamental disagreement between the responses in decision making [136]. Despite
the various benefits, some possible downsides of the EWM can be related to appropriate
problem sizing [137], a lack of specialist verdict in computed weights and a sole focus on
entropy values. Additionally, EWM does not provide any participation in the designer’s
preferences, and its discretion in decision-making has been reported as it pays no attention
to rank discrimination [138].

To compute uncertain information (Entropy), probability theory is utilized. The EWM
works on the principle that superior weight indicator information is more constructive
than the lower indicator information [139]. This method involves deciding objectives
(decision matrix), calculating the normalized decision matrix, the probability of the at-
tribute/response to take place, the entropy value of attribute/response, degrees of diver-
gence (average information contained) by each response and then the entropy weight.

In this research, we propose that value has a basis that can be explored and approached
in the entropy framework. We present the basis of this approach in the following sections
with equations of the EWM. Numerous alternative techniques can be specified to integrate
and improve the real estate evaluation process within the general framework of the EWM.



Entropy 2023, 25, 907 8 of 20

It’s important to note that our approach picks up where traditional PCI evaluation methods
leave off, offering a singular market value. This market value is an approximation derived
from averaging three different market values, which are based on SCA, CSA and ICA.
While this averaging process provides a valuable perspective on a property’s market value,
there still exist variances between triadic approaches. To mitigate these variances, we strive
to introduce an objective weighting using the EWM. Our weighting process begins by
utilizing three PCI market values, under the assumption that all the necessary adjustments
have already been made in their detailed computations. The market value produced by
the EWM is expected to be more objective and efficient, provided its results converge to a
singular value state over a set number of trials (in our case, ten trials per three different
methods). We will delve deeper into this in the following section, but first, we will present
our approach as follows:

The decision matrix of data is detailed in Equation (1) in which every row of decision
is allotted to one experiment and all columns to one determining variable (here triadic PCI
estimation methods are considered as evaluation responses or attributes). Accordingly,
the elements e of the PCI evaluations eij; i = {1, 2, 3, . . . , n} where n is the number of
experiments and m = {1, 2, 3, . . . , m} represents the response number in the matrix.

DM =


P11 C11 I11
P21 C21 I21
P31 C31 I31
. . . . . . . . .

Pnm Cnm Inm

 (1)

The linear normalization technique is utilized to make the experimental data of DM
dimensionless due to several units of the variables. Equation (2) is used for beneficial
attributes, i.e., those having positive impacts between them and value.

NDMij =
eij

Maxeij
(2)

The above equation assumes that evaluation response variables are in positive relation
between them and value. In case a variable among them negatively affects the value state,

then the Equation (2) becomes NDMij =
Mineij

eij
.

The probability of each variable (Prij) is computed by the Equation (3), with a range
Prij ∈ [0, 1].

Prij =
NDMij

∑n
i=1 NDMij

(3)

The following Equation (4) is utilized to calculate the Entropy Hij of the X probabilities
Prij.

Hj = H(X) = −E
[
logb P

(
X = xij

)]
= ∑n

i=1 Prij logb
1

Prij
= −∑n

i=1 Prij logb
(
Prij
)

(4)

Note that logb(n) in the entropy equation above represents the Maximum of the
entropies of responses PCI estimates depending only on the uniform (equiprobable) distri-
bution of n observables.

The ratio between Hj and logb(n) in Equation (5) represents the contribution fraction
of attribute j. In effect,

Y(−∑n
i=1 Prij logb

(
Prij
)
) (5)
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In this equation, Y = 1
logb(n)

, which is a stable expression. The Equation (5) is also
used to calculate the divergence of the entropies from the maximum by the Equation (6):

abs
[
1−

[
Y(−∑n

i=1 Prij logb
(
Prij
)
)
]]

(6)

It must be remembered that the effect of the logarithm in the entropy formula is to
transform multiplication into addition and division as indicated in the Equation (7).

Pr(X, Y) = Pr(X)P(Y) → H(X, Y) = H(X) + H(Y) (7)

When non-additive entropies are involved, as we assume to be the case in this work,
there is a certain dependence between explicative/determining variables. It is imperative
to identify these non-additive mutual entropies and measure them [140]. We did this using
the Havrda-Charvat-Tsallis entropy, also known as q-entropy or Tsallis index [141,142]. A
generalization of Boltzmann entropy, it is well established for systems that are as precise
and fundamental as the foundations of Boltzmann entropy [143]. We estimate this entropy
measure by the following general Equation (8) to remove redundancies in the calculated
entropies.

Sq(A, B) = (1− q)Sq(A)Sq(B) (8)

The mutual information defined by the Equation (8) represents the degree of diver-
gence from the linearity of the entropies. This equation applies in the case of attributes
with positive impacts on value. When the impact is negative between attributes, it becomes
Sq(A, B) = (1 + q)Sq(A)Sq(B). The entropic index q in D-dimensional space is computed
using the following Equation (9):

q =
D(n− 1)− 4
D(n− 1)− 2

(9)

where D represents dimensional space (number of determining variables) and n the number
of experiments. Equation (10) is utilized to compute the degrees of divergence (Divj), and
Equation (11) obtains the entropy weight Eω of the jth response.

Divj =
∣∣1− Enj

∣∣ (10)

Eωj =
Divj

∑m
j=1 Divj

(11)

The larger the Enj is, the greater the differentiation degree of index I is, and more
information can be derived. Hence, higher weight should be given to the index.

From the divergence estimated by EWM, we can deduce the weights given to the PCI
approaches. The overall value V of a subject property in Equation (12) is estimated based
on these weights ω, multiplied by the maximum of PCI evaluations, respectively. The use
of maximums is because the entropy comparison was measured against Ln(n), which is
the maximum.

V = (ωP ×MaxP) + (ωC ×MaxC) + (ωI ×MaxI) (12)

The steps following the equations above lead to a final value by the fusion of conven-
tional triadic PCI estimates operated by the EWM. While satisfied with the specification of
equations, we would like to see the case-by-case evaluations, also using the Equation (12),
and verify if their estimates are stable.

In the method described above, we compared the global entropy of PCI estimates
with respect to the maximum ln(n). Everything in this method comes down to multiplying
the global entropy of PCI by 1/ ln(n) that [135] defined by Y. As this Y term is uniformly
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applied to all cases, we adapt it for individual cases as Yi = D
(

pi+1

∣∣∣∣I), which is the
following Kullback and Leibler [144] divergence measure (also denoted as KL divergence).

D
(
pi+1‖pi

)
= −∑n

i=1 pi ln
pi+1

pi
= −∑n

i=1 pi
[
ln
(
pi+1

)
− ln(pi)

]
= ∑n

i=1 pi ln
(
pi+1

)
−∑n

i=1 pi ln(pi) (13)

In the detailed calculation, KL divergence considers the difference between one experiment
in comparison to the subsequent one. Integrating this specification in the EWM framework
allows individual weights, adjustments, and an entropic value per triadic PCI estimate from
the conventional appraisal system. This case-by-case estimate most importantly turns out
to be a comparable basis for validation. The main condition of validation, in this context, is
the trend that the value states converge for the same property. This makes sense, as the
utility determining value state attributes are the same (after all necessary adjustments have
been satisfied).

5. An Empirical Demonstration

We conducted an empirical demonstration to show the applicability of the conceptual
foundations of the entropy method in understanding the meaning of the value state and
its connections to the EWM. To illustrate this, we considered the real estate appraisal
system and data on a single-family property taken from estimations in [13]. The property
was evaluated by Özdilek using conventional triadic SCA, CSA and ICA. This data was
originally gathered and made available online by Robert Shiller, a Nobel Prize-winning
economist, and covers a period of 129 years from 1890 to 2018, also used in his works
such as “Irrational Exuberance” [145]. As shown in Table 1, we considered the subject
property that is estimated in detail in 2018 (estimation response no. 8), as well as its 9 other
estimates (each representing almost 13 years of the market) for the same period considered
by Özdilek.

Table 1. Subject property estimates by triadic appraisal methods.

Response Method A
SCA

Method B
CSA

Method C
ICA

1 285,425 204,963 243,519
2 298,389 170,446 236,968
3 223,802 154,940 225,295
4 240,973 191,293 348,844
5 335,451 244,491 314,565
6 329,842 332,542 158,925
7 349,707 336,634 95,488
8 361,660 341,000 358,000
9 335,700 310,398 198,564
10 373,234 344,628 410,248

Average 313,418 263,133 259,042
Maximum 373,234 344,628 410,248
Minimum 223,802 154,940 95,488

We used a decision matrix consisting of these ten experiments by three types of PCI
responses to evaluate the value state of the subject property. The final step of this evaluation
process was to arrive at a decision about the market value of the property to enable more
decisions from multiple economic agents. As shown in Table 1 and Figure 2, we encountered
significant divergence in the results for the same property, despite making all the necessary
adjustments within the traditional PCI methods. Ideally, this table should contain thirty
identical or very close market value estimates across three different approaches. However,
the market value varies significantly between $95,488 and $410,248. If it is the same
property, and all the required adjustments have been made, what could be causing these
discrepancies? According to these results, we would tend to propose a response where PCI
evaluations converge to a similar value as is the case with the 8th, 10th or even 1st response
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evaluations. It should be noted that there are still divergences between these cases. Despite
considering all possible attributes of the property, market conditions and PCI evolutions
over time, there were still significant variations among the conventional methods, requiring
further clarification on the source of variance.
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We propose that these variations arise from the differing degrees of reliability em-
bedded within traditional PCI methods, necessitating a final, objective adjustment in the
last evaluation step, which we accomplish through the EWM. We also consider that these
variations are influenced by the fact that economic agents negotiate and make decisions
based on PCI observables, influenced by their personal knowledge, needs, goals, and
various other factors (beyond property attributes) that emerge in different PCI transaction
contexts. Additionally, the competition between PCI, during which the referential position
of value state of the subject is considered by economic agents, might also contribute to the
observed variations.

In practice, only one of these responses is estimated, and even so, the estimation is
mostly limited to two of the triadic conventional approaches (within the same response).
This difficulty results from the quality of input data, not the evaluation methods used. For
instance, for the 8th response, the expert can approximately assume a value of $362,000 by
the SCA for the property by primarily considering price estimates, and while excluding
estimates using CSA and ICA. The expert can also factor in the estimation of the cost
method, but this involves the difficulty of weighing two estimations. In this case, the
common estimation (response) would be either a simple average with equal weights for
both methods ($351,000) or different weights—for instance, 60% for the SCA and 40% for
the CSA (in which case, the final value estimate would be $353,000). As long as different
weights of importance can be attributed to the three methods, then the expert can suggest,
for instance, 60% for the SCA, 20% for the CSA and another 20% for the ICA (leading to a
final market value estimation of $357,000). The problem here is the subjective weights of
importance, which are attributed in this final step of evaluation and ensue value estimates,
involving measurement bias and error. The real issue at this final step is thus finding the
appropriate weights of these responses in triadic methods.

As part of the intermediary steps of the EWM, we operated a linear normalization
technique to make the experimental data of Table 1 dimensionless. Equation (2) is used for
a beneficial response, i.e., for positive impact on value state of the responses, whereas if
these factors act negatively on value, non-beneficial responses can be used. Accordingly,
SCA and CSA are normalized based on Equation (2) of positive impacts; the ICA is rather
based on its non-beneficial version as ICA is negatively correlated with the two other ones
as reported in Table 2. This table contains another normalization process presented in
Equation (3) to generate probability of the responses, necessary for the computation of the
entropies contained in the last three columns of Table 2, based on Equation (3).
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Table 2. Normalized probability decision matrix and entropies.

Exp.
No.

SCA
Normalized

CSA
Normalized

ICA
Normalized

SCA Norm.
Probability

CSA Norm.
Probability

ICA Norm.
Probability

SCA
Entropy

CSA
Entropy

ICA
Entropy

1 0.765 0.595 0.392 0.091 0.078 0.090 −0.218 −0.199 −0.216
2 0.799 0.495 0.403 0.095 0.065 0.092 −0.224 −0.177 −0.220
3 0.600 0.450 0.424 0.071 0.059 0.097 −0.188 −0.167 −0.226
4 0.646 0.555 0.274 0.077 0.073 0.063 −0.197 −0.191 −0.173
5 0.899 0.709 0.304 0.107 0.093 0.069 −0.239 −0.221 −0.185
6 0.884 0.965 0.601 0.105 0.126 0.137 −0.237 −0.261 −0.273
7 0.937 0.977 1.000 0.112 0.128 0.228 −0.245 −0.263 −0.337
8 0.969 0.989 0.267 0.115 0.130 0.061 −0.249 −0.265 −0.170
9 0.899 0.901 0.481 0.107 0.118 0.110 −0.239 −0.252 −0.243

10 1.000 1.000 0.233 0.119 0.131 0.053 −0.253 −0.266 −0.156

SUM 8.397 7.635 4.377 1.000 1.000 1.000 −2.290 −2.262 −2.199

Table 3 summarizes the entropies obtained for PCI approaches. Using the 10 responses
per method in our data, the Y term results in a value of 0.4343. Multiplying this term by the
sum of the entropies of each approach yields the results of Equation (5), with maximum
values approaching 1 when the entropies converge per approach. This indicates that the
previous steps of attribute and price adjustments in the conventional evaluation system
have efficiently led to the same market value. However, as shown in Table 2 (three last
columns), variations in entropy measures can detect inefficiencies or uncertainties, allowing
for a final entropic adjustment. We also need to include the interaction term from the mutual
entropy.

Table 3. Calculations and value estimation.

Fomulas and Calculations Sum

Hj = ∑n
i=1 Prij loge(Prij) −2.2905 −2.2619 −2.1992

Y = 1
loge(n)

0.4343 0.4343 0.4343

Contribution in fraction = −Y ∑n
i=1 Prij loge(Prij) 0.9947 0.9823 0.9551

Sq(A, B) = (1− q)Sq(A)Sq(B) 0.1662 0.1648 −0.1614
Divj = abs

[
1−

[
Y
(
−∑n

i=1 Prij loge(Prij
))]]

0.8285 0.8176 1.1165 2.763
Weight (w) 0.2999 0.2959 0.4041 1.000

Weight (w) in % 30.0 29.6 40.4
Maximum of PCI 373,234 344,628 410,248

Contributions 111,937 101,990 165,800 379,727

The most important step in this study is the computation of divergence, which has
two critical applications. Firstly, it determines the reliability of each method; secondly, it
allows us to estimate the adjustment amount needed to reach a final value for the subject.
The less an approach requires adjustment at this final stage, the higher its priority in the
final value estimation. Following the steps of equations specified in Table 3, the ICA
requires the highest degree of adjustment, which is $165,800. Adding these adjustments
yields a final market value of $380,000 (rounded) in the last step of computation.

The estimation of a stable and final value state from the fusion of the triadic conven-
tional methods based on their respective weights derived using the entropies in Table 2 is
already satisfactory. This is consistent with what we have already observed in two stable
(constant) points of value states at the initial point estimates for cases no. 8 and 10 in
Table 1. The logic behind the confidence in these values is that if the same or similar
properties are evaluated, we should expect that different methods result in converging
values, i.e., towards the region of a pointwise reference, which is near the value state. EWM
efficiently and quickly allows us to globally find that value state in this work.

We could be tempted to add each of the adjustments to the diverging estimates at the
last step of the conventional estimates in Table 1, yet it is unnecessary since the entropy
evaluation has already provided a global constant value of $380,000 for all the potential
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responses. For the sake of completeness and validation (a single estimate of market value
based on the EWM does not guarantee that value state is effectively pinpointed), individual
estimations of value state can still be provided instead of a global fusion between all the
estimate responses as an extension and improvement of the EWM. For instance, adding
$111,937 of the entropic adjustment to the first four cases of the SCA will bring them closer
to other estimates, meaning that they all converge on the same market value estimation
since the subject is identical. The same can be done for the two other methods, which
will bring entropic weight measures to the same level (three last columns of Table 2), with
cascading effects on the following results in Table 3 where we observe that we drive entropy
results to identity.

Starting from the same entropy estimates of Table 2 (three last columns), the following
Table 4 shows new estimates of entropy weights for each approach on a case-by-case basis,
which we distinguish in a second EWM 2 (for individual estimates, denoted by each row).
Accordingly, the weights in the three last columns are not only different for each approach,
but also per response. Their sum allows the estimation of the value of the subject in Table 5.

Table 4. Case-by-case entropy measures.

Exp. No. Entropy
SCA

Entropy
CSA

Entropy
ICA Pi Ln(pi + 1)

− Ln(pi)
Yi = Pi*ˆ(Ln(pi
+ 1) − Ln(pi)) 1/Yi

1 −0.218 −0.199 −0.216 0.000 0.710 0.500 2.000
2 −0.224 −0.177 −0.220 0.693 0.693 0.480 2.081
3 −0.188 −0.167 −0.226 1.099 0.405 0.445 2.245
4 −0.197 −0.191 −0.173 1.386 0.288 0.399 2.507
5 −0.239 −0.221 −0.185 1.609 0.223 0.359 2.784
6 −0.237 −0.261 −0.273 1.792 0.182 0.327 3.061
7 −0.245 −0.263 −0.337 1.946 0.154 0.300 3.334
8 −0.249 −0.265 −0.170 2.079 0.134 0.278 3.601
9 −0.239 −0.252 −0.243 2.197 0.118 0.259 3.864

10 −0.253 −0.266 −0.156 2.303 0.105 0.243 4.122

Enj=−Y ∑n
i=1Prij loge(Prij) Divj=

∣∣1−Enj
∣∣+Sq

SUM of
entropies

EW for
SCA

EW for
CSA

EW for
ICA

−0.436 −0.398 −0.432 0.603 0.562 0.271 1.436 0.420 0.392 0.189
−0.466 −0.369 −0.457 0.632 0.534 0.296 1.462 0.433 0.365 0.202
−0.423 −0.374 −0.508 0.589 0.539 0.346 1.475 0.400 0.366 0.235
−0.495 −0.478 −0.435 0.661 0.643 0.273 1.577 0.419 0.408 0.173
−0.666 −0.615 −0.515 0.832 0.779 0.354 1.966 0.423 0.397 0.180
−0.725 −0.800 −0.834 0.892 0.965 0.673 2.530 0.352 0.381 0.266
−0.816 −0.877 −1.124 0.982 1.042 0.963 2.987 0.329 0.349 0.322
−0.897 −0.954 −0.614 1.064 1.118 0.453 2.635 0.404 0.424 0.172
−0.925 −0.974 −0.938 1.091 1.139 0.776 3.006 0.363 0.379 0.258
−1.045 −1.097 −0.643 1.211 1.262 0.482 2.955 0.410 0.427 0.163

The enhancement of EWM 1 by introducing a novel approach in EWM 2 enables us
to produce case-by-case estimates while maintaining a comparable basis of results. This
was achieved by incorporating the number of experiences in the entropy approach in a
unique way. Rather than using a fixed number of experiences, we varied them from 1 to 10,
for each case assuming that the information gain is highest with the first experience and
subsequently decreases when new experiences are added, reducing the level of accessible
information. The KL divergence has proven to be effective in meeting this requirement, as
evidenced by the fact that the results for the 10 experiences are becoming closer to each
other on a case-by-case basis and between the fused 10 final estimates.
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Table 5. Results of comparative methods.

Real Estate Appraisal EWM WEM 2 Adjustments

Average Weighted
Average WEM 1 WEM 2 Adjust.

for SCA
Adjust.

for CSA
Adjust.
for ICA

244,636 252,905 379,727 369,012 156,649 134,976 77,387
235,268 247,722 379,727 370,275 161,446 125,845 82,985
201,346 203,442 379,727 371,464 149,166 126,000 96,298
260,370 247,643 379,727 367,991 156,428 140,458 71,104
298,169 303,986 379,727 368,555 158,021 136,666 73,867
273,770 296,469 379,727 372,170 131,550 131,466 109,153
260,609 294,941 379,727 375,192 122,711 120,200 132,281
353,553 354,730 379,727 367,450 150,677 146,294 70,478
281,554 300,682 379,727 371,952 135,439 130,585 105,928
376,037 372,055 379,727 371,952 152,944 147,217 66,888

278,531 287,458 379,727 370,601 147,503 133,971 88,637

The Figure 3 on the right side shows the results of the WEM 2, which are highly
promising, particularly considering that they are close to the global estimate from the WEM
1 of $380,000. Furthermore, the values from WEM 2 outperform the average values of the
conventional approaches even if some expert weights are incorporated, which are slightly
better than simple averages. The results of WEM 1 and WEM 2 demonstrate the potential
of entropy to explain and predict value states. The results of the WEM 2 further establish
entropy as a highly compatible tool that can be seamlessly integrated into the appraisal
system, significantly enhancing its methods, particularly at the evaluation’s conclusion. By
integrating the EWM, we can propose a more reliable and objective market value estimate
using PCI methods, providing the most credible methodology to date. This confidence
stems from the fact that we offer multiple proofs of evaluations, which show a clear trend
and validation that aligns with a linear projection in Figure 3. This projection is significant
evidence given that the subject under evaluation remains consistent, and thus, constant
values are expected. Entropy promises to propel the real estate appraisal system’s power
and quality to new heights.
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6. Conclusions

Value-state information disclosure acts on the expectations and decisions of economic
supply and demand side agents. Because of its probabilistic and dynamic nature, value
state complicates the process of personal and expert evaluation. Existing PCI concepts,
observables, and methods within the framework of the worldwide appraisal practice go
through many technically detailed steps of computations and adjustments within each PCI
approach. Though this appraisal system can produce valuable triadic estimates (competing
opinions) on the value state of a specific property (the “subject”), the practice predominantly
depends on a single approach. Usually, two out of the three PCI are considered, but it’s
uncommon for all three to be utilized. Unfortunately, this introduces variance in value
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state estimations. PCI concepts, observables and approaches considered simultaneously
provide a better estimation of the value state. This is the most crucial step of the appraisal
system where the analytic and scientific acts of measuring value state begin, assuming that
the technical processes in the previous steps of evaluation within each approach have been
considered closely.

In our current evaluation system, we can opt for either an exclusive or inclusive
practice in providing a final point value state estimate for a subject property. In the
exclusive practice, the prevalent argument is that one of the PCI approaches more accurately
represents the value state due to richer active information. Alternatively, the inclusive
practice could involve two or three approaches simultaneously, either assuming equal or
variable weights in approximating the value state. In both cases, it’s essential for experts to
provide objective, justifiable computations and explanations for the simultaneous weighting
and adjustments of PCI approaches. Our work initiates from this final step of the evaluation
system, where measuring the value state is the most challenging aspect. To overcome these
limitations, we introduce and utilize the Entropy weighting method (EWM) in the final
step of the evaluation system as a primary value measure in conjunction with conventional
PCI methods.

The use of the EWM offers an important advantage over traditional methods, such as
average or weighted average provided by subjective experiences. The EWM objectively
assesses the weight of each method and simultaneously fuses the market value estimates
of conventional approaches for a reliable pointwise approximation of the value state. To
systematize its integration, we empowered EWM capacity by considering the treatment of
mutual entropy and operationalizing the process of adjustments of conventional estimates
in the ultimate step of evaluation. The results we generated in this work with the help
of entropy measure are satisfactory and demonstrate its accurate application in property
estimation. Based on the entropy principles and connections to value state, EWM calcula-
tions finally provide a simple, versatile and integrative framework that clearly improves
traditional methods, in accurately providing pointwise predictions as demonstrated in this
paper. This innovative alternative will benefit numerous stakeholders, such as property
owners, private investors, institutions and governments by reducing bias and errors in
value state estimation. Enhancing the core of the evaluation practice by introducing an
additional step boosts the robustness of the evaluation system for experts and increases
public confidence in the system.

Working with the results of the EWM, we remarked that it has the potential to further
improve the current system of evaluation. In addition to this global approach that estimates
a fused value for all the responses in the whole data, we also tried the EWM in case-by-case
evaluations, adjusting each imperfect estimation of conventional approaches. For that,
we needed to adjust the EWM and integrate the Kullback-Leibler divergence in relative
entropies of each case in the data. This is an important technical contribution of our work
as it not only allows a value estimate for each of the triadic estimates in the data, but it
also provides a validation basis with all estimates showing a trend in their behavior that
logically should converge to a constant value (as the same property is evaluated each time).
This enhancement enables experts and cities, especially during mass evaluations, to justify
the objectivity and reliability of the results.

Real estate market prices are often established through negotiations between parties
and possible intermediaries. Integrating EWM into conventional PCI methods to derive
a point estimate might limit the flexibility of real estate markets, potentially reducing
transaction volumes and long-term value states. Assuming the improved reliability of
estimates by the PCI/EWM combination leaves less room for “entropic behaviors” from
supply and demand side agents, creating higher risks but also opportunities. PCIs are
compared and observed in the market, and future negotiations will likely become more
adept over time, converging towards more stable market values. This hypothesis that
emerges from the results of this work certainly deserves to be explored in future research.
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These global and case-by-case estimation results show that, unlike conventional meth-
ods, entropy can objectively detect and measure value state beyond what PCI attribute
adjustments can do in the conventional process of estimations. In that respect, entropy
more accurately considers the interplay between expectation and information in value
states that are out of the reach of conventional methods. We have observed that there are
certain subjective and unexplained aspects that exist beyond the variability of attributes
that are not entirely captured by the variability of PCIs. Entropy accounts for PCI variance
implicit in expert estimation, providing a wider and more appropriately approximating
market value. From this perspective, this work illustrates the shared properties between
entropy state and value state, which are vital considerations in Multi-criteria decision mak-
ing (MCDM). We believe that illuminating these connections encourages the development
of valuable research in this field.

There is something more than what is explorable through these attribute adjustments
and PCI information such as the explanation captured by mutual entropy on the dynam-
ics of competing PCI formation, which are alien to conventional processes of individual
attribute and PCI method adjustments. In fact, PCI conventional methods can consider
all types of internal adjustments, quite well exhausting the potential information in each
PCI estimate. Starting from these adjusted final estimates (in which there were signifi-
cant differences in several cases despite the consideration of the same property), entropy
measures of value state show that there is significant incentive for more adjustments with
EWM integrating mutual information correction and KL relative divergences. This mutual
information contains the effects of interplays between competing PCI sales, cost production,
and income exploitation agents under the governance of value state. What that means
is that the value state should converge to a stable value state for every estimation of all
potential methods for the same property (everything becomes the same or similar, con-
sidering decisions of economic agents are sufficiently rational and properly adjusted). If
that theoretically assumed convergence varies significantly, as was the case in our data
of conventional estimates, it is because of their neglect of PCIs attempting to mutually
reconcile their reward freed from the value state to which they all refer.

Decision theory considers information as decreasing uncertainty, and entropy can
be used to reduce uncertainty in the evaluation process in economics, especially within
the field of real estate appraisal. Entropy naturally reflects the thoughts of economic
agents who not only see the observable physical and economic indicators, but also the
information they deduce as perceived value. It’s notable that entropy is closely related to the
probabilistic state of value, with its mechanisms of expectations and information. It attracts
the undisclosed (uncertain) portion of information in the object or event of desire, and these
desires are human and non-algorithmic in nature. The desire to disclose this value is the
source of motivation. As added information is revealed, the attraction to value diminishes
until it disappears entirely. Expectation and information follow opposite patterns, with
expectation decreasing as information is revealed, while information increases up to a
maximum level where it equals the constant value for a given type of event or object.
This interaction mirrors the properties of entropy, which also combines expectations and
information. Information and entropy transform raw data, like PCI, into the essence of
value, potentially addressing the limitations of statistical methods.

In conclusion, this article wrestles with the question: Is the value of real estate an ob-
jective or subjective concept? Arguments for both perspectives are presented. On one side,
there are compelling arguments suggesting objectivity in the value concept, determined
by wider market agreement converging on a narrow range of values. However, from
another viewpoint, information entropy indicates value as a subjective notion, one that
cannot be completely defined. Analogously, our approach resonates with the method of
value determination utilized in quantum economics [146]. An appropriate comparison can
be drawn to Heisenberg’s uncertainty principle. The principle implies that it is impossi-
ble to precisely pinpoint a value state; instead, identifying a narrower region where an
economic value state lies would be adequate considering the precision of the quantum
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measurement. The value is indeterminate at the onset; hence the price of the property
cannot be predetermined. The value and PCI can only be measured accurately through a
transaction instead of being determined beforehand in a more objective manner. Given that
transactions involve the exchange of money, money must serve as the measurement tool in
the markets. Therefore, we can say that the precise value of real estate transitions through
subjective singular independent valuations, and transition to objective universally agreed
upon valuations via transactions.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beum, A.; Mackmin, D. The Income Approach to Property Valuation; Routledge: London, UK, 1989.
2. Bilga, P.S.; Singh, S.; Kumar, R. Optimization of energy consumption response parameters for turning operation using Taguchi

method. J. Clean. Prod. 2016, 137, 1406–1417. [CrossRef]
3. Wiltshaw, D.G. Econometric, linear programming and valuation. J. Prop. Res. 1991, 8, 123–132. [CrossRef]
4. Richard, M.B.; Silas, J.E. Basic Real Estate Appraisal, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998.
5. Marshall, A. Principles of Economics, 8th ed.; MacMillan Company Ltd.: London, UK, 1890.
6. Hurd, R.M. Principles of City Land Values; The Record and Guide: New York, NY, USA, 1903.
7. Babcock, F.M. The Appraisal of Real Estate; The Macmillan Company: New York, NY, USA, 1924.
8. Bonbright, J.C. The Valuation of Property: A Treatise on the Appraisal of Property for Different Legal Purposes; McGraw-Hill: New York,

NY, USA, 1937.
9. Ratcliff, R.U. Modern Real Estate Valuation, Theory and Application; Democrat Press: Wisconsin, WI, USA, 1965.
10. Wendt, P.F. Real Estate Appraisal: A Critical Analysis of Theory and Practice; Holt: New York, NY, USA, 1956.
11. Burton, J.H. Evolution of the Income Approach; American Institute of Real Estate Appraisers: Chicago, IL, USA, 1982.
12. Cannon, M.Y. The role of the real estate appraiser and assessor in valuing real property for ad valorem assessment purposes.

Apprais. J. 2002, 70, 214–219.
13. Özdilek, Ü. Scientific basis of value and valuation. J. Revenue Pricing Manag. 2019, 18, 266–277. [CrossRef]
14. McGreal, S.; Adair, A.; McBurney, D.; Patterson, D. Neural networks: The prediction of residential values. J. Prop. Valuat. Invest.

1998, 16, 57–70. [CrossRef]
15. McCluskey, W. Predictive accuracy of machine learning models for the mass appraisal of residential property. N. Z. Val. J. 1996,

16, 41–47.
16. Wilson, I.D.; Paris, S.D.; Ware, J.A.; Jenkins, D.H. Residential property price time series estimation with neural networks.

Knowl.-Based Syst. 2002, 15, 335–341. [CrossRef]
17. Sayer, J.; Moohan, J. An analysis and evaluation of hedonic price valuations in local leasehold office markets. In Proceedings of

the 13th Pacific-Rim Real Estate Society Conference, Fremantle, Australia, 21–24 January 2007.
18. Appraisal Institute. The Appraisal of Real Estate, 13th ed.; Appraisal Institute: Chicago, IL, USA, 2008.
19. Pagourtzi, E.; Assimakopoulos, V.; Hatzichristos, T.; French, N. Real estate appraisal: A review of valuation methods. J. Prop.

Invest. Financ. 2003, 21, 383–401. [CrossRef]
20. Copiello, S.; Bonifaci, P. Depreciated Replacement Cost: Improving the Method Through a Variant Based on Three Cornerstones.

Real Estate Manag. Valuat. 2018, 26, 33–47. [CrossRef]
21. Mundy, B.M. The Scientific Method and the Appraisal Process. Apprais. J. 1992, 60, 493–499.
22. Pomykacz, M. Relationships between the Overall Property and Its Parts, and the Three Approaches to Value. Apprais. J. 2009, 77,

66–76.
23. Weilenmann, M.; Kraemer, L.; Faist, P.; Renner, R. Axiomatic Relation between Thermodynamic and Information-Theoretic

Entropies. Phys. Rev. Lett. 2016, 117, 260601. [CrossRef] [PubMed]
24. Clapp, J.M.; Giaccotto, C. Evaluating house price forecasts. J. Real Estate Res. 2002, 24, 1–25. [CrossRef]
25. Joslin, A. An investigation into the expression of uncertainty in property valuation. J. Prop. Invest. Financ. 2005, 23, 269–285.

[CrossRef]
26. Pace, R.K.; Barry, R.; Gilley, O.; Sirmans, C.F. A method for spatial-temporal forecasting with an application to real estate prices.

Int. J. Forecast. 2000, 16, 229–246. [CrossRef]
27. Sirmans, S.G.; Macpherson, D.A.; Zietz, E.N. The Composition of Hedonic Pricing Models. J. Real Estate Lit. 2005, 13, 3–43.

[CrossRef]
28. Pryce, G. Housing submarkets and the lattice of substitution. Urban Stud. 2013, 50, 2682–2699. [CrossRef]

https://doi.org/10.1016/j.jclepro.2016.07.220
https://doi.org/10.1080/09599919108724028
https://doi.org/10.1057/s41272-018-00169-z
https://doi.org/10.1108/14635789810205128
https://doi.org/10.1016/S0950-7051(01)00169-1
https://doi.org/10.1108/14635780310483656
https://doi.org/10.2478/remav-2018-0014
https://doi.org/10.1103/PhysRevLett.117.260601
https://www.ncbi.nlm.nih.gov/pubmed/28059535
https://doi.org/10.1080/10835547.2002.12091087
https://doi.org/10.1108/14635780510599476
https://doi.org/10.1016/S0169-2070(99)00047-3
https://doi.org/10.1080/10835547.2005.12090154
https://doi.org/10.1177/0042098013482502


Entropy 2023, 25, 907 18 of 20

29. Kelly, J.L. A New Interpretation of Information Rate. Bell Syst. Tech. J. 1956, 35, 917–926. [CrossRef]
30. Martin, W. Theories of Judgment: Psychology, Logic, Phenomenology; Cambridge University Press: Cambridge, UK, 2008.
31. Davis, H.T. The Theory of Econometrics; The Principia Press: Bloomington, IA, USA, 1941.
32. Theil, H. Economics and Information Theory; North Holland: Amsterdam, The Netherlands, 1967.
33. Jaynes, E.T. Information Theory and Statistical Mechanics. Phy. Rev. Ser. II 1957, 106, 620–630. [CrossRef]
34. Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873; Volume I.
35. Boltzmann, L. Verhältniss zur Fernwirkungstheorie, Specielle Fälle der Elektrostatik, Stationären Strömung und Induction; Johann

Ambrosius Barth: Leipzig, Germany, 1893; Volume 2. (In German)
36. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
37. Wiener, N. Cybernetics; MIT Press: Cambridge, MA, USA, 1948.
38. Akerlof, G. The Market for ‘Lemons’: Quality Uncertainty and the Market Mechanism. Q. J. Econ. 1970, 84, 488–500. [CrossRef]
39. He, D.; Wang, X.; Li, S.; Lin, J.; Zhao, M. Identification of multiple faults in rotating machinery based on minimum entropy

deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 2016, 81, 235–249. [CrossRef]
40. Wang, C.-Y.; Lee, S.-J. Regional Population Forecast and Analysis Based on Machine Learning Strategy. Entropy 2021, 23, 656.

[CrossRef] [PubMed]
41. Campbell, J. Grammatical Man: Information, Entropy, Language, and Life; Simon and Schuster: New York, NY, USA, 1982.
42. Golan, A. Information and entropy econometrics: A review and synthesis. Found. Trends Econ. 2006, 2, 1–145. [CrossRef]
43. Bretó, C.; Espinosa, P.; Hernández, P.; Pavía, J.M. An Entropy-Based Machine Learning Algorithm for Combining Macroeconomic

Forecasts. Entropy 2009, 21, 1015. [CrossRef]
44. Donaldson-Matasci, M.C.; Bergstrom, C.T.; Lachmann, M. The fitness value of information. Oikos 2010, 119, 219–230. [CrossRef]
45. Demirel, Y.; Gerbaud, V. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems;

Elsevier: Amsterdam, The Netherlands, 2019.
46. Piasini, E.; Panzeri, S. Information Theory in Neuroscience. Entropy 2019, 21, 62. [CrossRef] [PubMed]
47. Sanford, J.C. Genetic Entropy; Feed My Sheep Foundation: Marietta, GA, USA, 2014.
48. Friston, K. Free Energy Principle for Biological Systems. Entropy 2012, 14, 2100–2121. [CrossRef]
49. Seiler, J.P.; Dan, O.; Tüscher, O.; Loewenstein, Y.; Rumpel, S. Experienced entropy drives choice behavior in a boring decision-

making task. Sci. Rep. 2022, 12, 3162. [CrossRef]
50. Dyer, J.A.; Sarin, R.K. Measurable multi-attribute value functions. Oper. Res. 1979, 27, 810–822. [CrossRef]
51. Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison of select methods.

Eur. J. Oper. Res. 1998, 107, 507–529. [CrossRef]
52. Kaila, V.R.I.; Annila, A. Natural selection for least action. Proc. R. Soc. A 2008, 464, 3055–3070. [CrossRef]
53. Miller, E.K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 2000, 1, 59–65. [CrossRef] [PubMed]
54. Arrow, K.J. Uncertainty and the Welfare Economics of Medical Care. Am. Econ. Rev. 1963, 53, 941–973.
55. Jaynes, E.T. Information Theory and Statistical Mechanics II. Phy. Rev. Ser. II 1957, 108, 171–190. [CrossRef]
56. Grossman, S.; Stiglitz, J. On the impossibility of informationally efficient markets. Am. Econ. Rev. 1980, 70, 393–408.
57. Özdilek, Ü. Value order in disorder. Int. J. Dyn. Control 2022, 10, 1395–1414. [CrossRef]
58. Molgedey, L.; Ebeling, W. Local order, entropy and predictability of financial time series. Eur. Phys. J. B 2000, 107, 733–737.

[CrossRef]
59. Bentes, S.; Menezes, R.; Mendes, D.A. Long memory and volatility clustering: Is the empirical evidence consistent across stock

markets? Phys. A 2008, 387, 3826–3830. [CrossRef]
60. Zhou, R.; Cai, R.; Tong, G. Applications of Entropy in Finance: A Review. Entropy 2013, 15, 4909–4931. [CrossRef]
61. Fama, E.F. The Behavior of Stock-Market Prices. J. Bus. 1965, 38, 34–105. [CrossRef]
62. Ivkovic, Z.; Weisbenner, S. Local does as local is: Information content of the geography of individual investors’ common stock

investments. J. Financ. 2005, 60, 267–306. [CrossRef]
63. Schrödinger, E. What Is life? And Mind and Matter; Cambridge University Press: Cambridge, UK, 1967.
64. Jeffery, K.; Pollack, R.; Rovelli, C. On the Statistical Mechanics of Life: Schrödinger Revisited. Entropy 2019, 21, 1211. [CrossRef]
65. Applebaum, D. Probability and Information, an Integrated Approach; Cambridge University Press: Cambridge, UK, 1996.
66. Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971.
67. Natal, J.; Ávila, I.; Tsukahara, V.B.; Pinheiro, M.; Maciel, C.D. Entropy: From Thermodynamics to Information Processing. Entropy

2021, 23, 1340. [CrossRef] [PubMed]
68. Page, S.E. The Model Thinker; Basic Books: New York, NY, USA, 2018.
69. Bailly, F.; Longo, G. Mathematics and the Natural Sciences; Imperial College Press: London, UK, 2011.
70. D’Espargnat, B. On Physics and Philosophy; Princeton University Press: Oxford, UK, 2002.
71. Westphal, M.; Brannath, W. Evaluation of multiple prediction models: A novel view on model selection and performance

assessment. Stat. Methods Med. Res. 2020, 29, 1728–1745. [CrossRef] [PubMed]
72. Rothe, S.; Kudszus, B.; Söffker, D. Does Classifier Fusion Improve the Overall Performance? Numerical Analysis of Data and

Fusion Method Characteristics Influencing Classifier Fusion Performance. Entropy 2019, 21, 866. [CrossRef]
73. Yin, R.K. Case Study Research: Design and Methods, 4th ed.; Sage Publications: California, UK, 2009.
74. Ott, J.B.; Boerio-Goates, J. Chemical Thermodynamics: Advanced Applications; Academic Press: Amsterdam, The Netherlands, 2000.

https://doi.org/10.1002/j.1538-7305.1956.tb03809.x
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.2307/1879431
https://doi.org/10.1016/j.ymssp.2016.03.016
https://doi.org/10.3390/e23060656
https://www.ncbi.nlm.nih.gov/pubmed/34073825
https://doi.org/10.1561/0800000004
https://doi.org/10.3390/e21101015
https://doi.org/10.1111/j.1600-0706.2009.17781.x
https://doi.org/10.3390/e21010062
https://www.ncbi.nlm.nih.gov/pubmed/33266778
https://doi.org/10.3390/e14112100
https://doi.org/10.1038/s41598-022-06861-w
https://doi.org/10.1287/opre.27.4.810
https://doi.org/10.1016/S0377-2217(97)00147-1
https://doi.org/10.1098/rspa.2008.0178
https://doi.org/10.1038/35036228
https://www.ncbi.nlm.nih.gov/pubmed/11252769
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1007/s40435-021-00903-3
https://doi.org/10.1007/s100510051178
https://doi.org/10.1016/j.physa.2008.01.046
https://doi.org/10.3390/e15114909
https://doi.org/10.1086/294743
https://doi.org/10.1111/j.1540-6261.2005.00730.x
https://doi.org/10.3390/e21121211
https://doi.org/10.3390/e23101340
https://www.ncbi.nlm.nih.gov/pubmed/34682064
https://doi.org/10.1177/0962280219854487
https://www.ncbi.nlm.nih.gov/pubmed/31510862
https://doi.org/10.3390/e21090866


Entropy 2023, 25, 907 19 of 20

75. Goshtasby, A.A.; Nikolov, S. Image fusion: Advances in the state of the art. Inf. Fusion 2007, 8, 114–118. [CrossRef]
76. Ma, J.; Yong, M.; Chang, L. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019, 45, 153–178.

[CrossRef]
77. Saaty, T.L.; Vargas, L.G. Inconsistency and rank preservation. J. Math. Psychol. 1984, 28, 205–214. [CrossRef]
78. Green, P.E.; Srinivasna, V. Conjoint analysis in consumer research: Issues and outlook. J. Consum. Res. 1978, 5, 103–123. [CrossRef]
79. Dyer, R.F.; Forman, E.H. Group decision support with the Analytic Hierarchy Process. Decis. Support Sys. 1992, 8, 99–124.

[CrossRef]
80. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
81. Schwarz, G.E. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
82. Juusola, M.; de Polavieja, G.G. The rate of information transfer of naturalistic stimulation by graded potentials. J. Gen. Physiol.

2003, 122, 191–206. [CrossRef]
83. Panzeri, S.; Treves, A. Analytical estimates of limited sampling biases in different information measures. Netw. Bristol Engl. 1996,

7, 87–107. [CrossRef]
84. Paninski, L. Estimation of Entropy and Mutual Information. Neural Comput. 2003, 15, 1191–1253. [CrossRef]
85. Nemenman, I.; Bialek, W.; de Ruyter van Steveninck, R. Entropy and information in neural spike trains: Progress on the sampling

problem. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2004, 69, 056111. [CrossRef]
86. Chan, L.K.; Kao, H.P.; Ng, A.; Wu, M.L. Rating the importance of customer needs in quality function deployment by fuzzy and

entropy methods. Int. J. Product. Res. 1999, 37, 2499–2518. [CrossRef]
87. Safaai, H.; Onken, A.; Harvey, C.D.; Panzeri, S. Information estimation using nonparametric copulas. Phys. Rev. E 2018, 98, 053302.

[CrossRef]
88. Panzeri, S.; Senatore, R.; Montemurro, M.A.; Petersen, R.S. Correcting for the sampling bias problem in spike train information

measures. J. Neurophysiol. 2007, 98, 1064–1072. [CrossRef]
89. Cover, T.; Thomas, J. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006.
90. Xin, J.G.; Du, Y. Main variables influencing residential property values. In Proceedings of the 5th International Structural

Engineering and Construction Conference, Shunan, Japan, 26–28 September 2007.
91. Gnat, S. Measurement of entropy in the assessment of homogeneity of areas valued with the Szczecin Algorithm of Real Estate

Mass Appraisal. J. Econ. Manag. 2019, 38, 89–106. [CrossRef]
92. Hwang, C.L.; Masud, A.S.M. Multiple Objective Decision Making Methods and Applications; Springer: Amsterdam, The Nether-

lands, 1979.
93. Boris, S.M.; Treiman, J.S.; Quiji, Z. An Extended Extremal Principle with Applications to Multiobjective Optimization. SIAM J.

Optim. 2003, 14, 359–379. [CrossRef]
94. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer: Boston, MA, USA, 1999.
95. Kumar, R.; Bilga, P.S.; Singh, S. Multi objective optimization using different methods of assigning weights to energy consumption

responses, surface roughness and material removal rate during rough turning operation. J. Clean. Prod. 2017, 164, 45–57.
[CrossRef]

96. Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1999.
97. Deng, H.; Yeh, C.H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res.

2000, 27, 963–973. [CrossRef]
98. Dai, F.G.; Xiao, G.F.; Huan, J.C. Evaluation Model Using the AHP of Ecological Environmental Quality of Jiuyuangou Watershed

in the Loess Plateau. Adv. Mater. Res. 2011, 356–360, 2571–2574. [CrossRef]
99. Choo, E.U.; Bertram, S.; Wedley, W.C. Interpretation of criteria weights in multicriteria decision making. Comput. Ind. Eng. 1999,

37, 527–541. [CrossRef]
100. Ghosh, R.; Verma, B. A hierarchical method for finding optimal architecture and weights using evolutionary least square based

learning. Int. J. Neural Syst. 2003, 13, 13–24. [CrossRef]
101. Takeda, E.; Cogger, K.; Yu, P. Estimating criterion weights using eigenvectors: A comparative study. Eur. J. Oper. Res. 1987, 29,

360–369. [CrossRef]
102. Gordon, T.J. The delphi method in futures research methodology. AC/UNC Millenum Proj. 1994, 2, 1–30.
103. Rao, R.V. Decision Making in the Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making

Methods; Springer Science & Business Media: Amsterdam, The Netherlands, 2007.
104. Andersen, T.; Pedersen, B.H.; Dissing, I.; Astrup, A.; Henriksen, J.H. A randomized comparison of horizontal and vertical banded

gastroplasty: What determines weight loss? Scand. J. Gastroenterol. 1989, 24, 186–192. [CrossRef]
105. Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer:

Amsterdam, The Netherlands, 1981; pp. 58–191.
106. Likun, W.; Baohui, M. Application of TOPSIS method based on variation coefficient weight on water resource classification.

South-to-North Water Trans. Water Sci. Tech. 2007, 5, 24–27.
107. Wang, J.-J.; Jing, Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making.

Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [CrossRef]
108. Peng, B.; Shaorong, S.; Ruo, H.U. The Evaluation Model of Extended Value Engineering Based on the Method of Entropy and

Double Base Points. Value Eng. 2004, 2, 54–57.

https://doi.org/10.1016/j.inffus.2006.04.001
https://doi.org/10.1016/j.inffus.2018.02.004
https://doi.org/10.1016/0022-2496(84)90027-0
https://doi.org/10.1086/208721
https://doi.org/10.1016/0167-9236(92)90003-8
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1085/jgp.200308824
https://doi.org/10.1080/0954898X.1996.11978656
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1103/PhysRevE.69.056111
https://doi.org/10.1080/002075499190635
https://doi.org/10.1103/PhysRevE.98.053302
https://doi.org/10.1152/jn.00559.2007
https://doi.org/10.22367/jem.2019.38.05
https://doi.org/10.1137/S1052623402414701
https://doi.org/10.1016/j.jclepro.2017.06.077
https://doi.org/10.1016/S0305-0548(99)00069-6
https://doi.org/10.4028/www.scientific.net/AMR.356-360.2571
https://doi.org/10.1016/S0360-8352(00)00019-X
https://doi.org/10.1142/S0129065703001364
https://doi.org/10.1016/0377-2217(87)90249-9
https://doi.org/10.3109/00365528909093035
https://doi.org/10.1016/j.rser.2009.06.021


Entropy 2023, 25, 907 20 of 20

109. Zhou, S.; Wang, F.; Zhang, Z. Evaluation of Real Estate Venture Capital Based on Entropy Double Base Points Method. In
Proceedings of the 2009 International Conference on Electronic Commerce and Business Intelligence, Beijing, China, 6–7 June 2009.
[CrossRef]

110. Lam, K.C.; Yu, C.Y.; Lam, C.K. Support vector machine and entropy-based decision support system for property valuation. J. Prop.
Res. 2009, 26, 213–233. [CrossRef]

111. Lam, K.C.; Yu, C.Y.; Lam, K.Y. An Artificial Neural Network and Entropy Model for Residential Property Price Forecasting in
Hong. J. Prop. Res. 2008, 25, 321–342. [CrossRef]

112. Salois, M.J.; Moss, C.B. An Information Approach to the Dynamics in Farm Income: Implications for Farmland Markets. Entropy
2011, 13, 38–52. [CrossRef]

113. Sekaran, S. Measurement: Scaling, reliability, validity. In Research Methods for Business: A Skill Building Approach; Wiley: Hoboken,
NJ, USA, 2003.

114. Turner, C.K. A principle of intentionality. Front. Psychol. 2017, 8, 137. [CrossRef]
115. Özdilek, Ü. On Price, Cost, and Value. Apprais. J. 2010, 78, 70–80.
116. Hutcheon, P.D. Value Theory: Toward Conceptual Clarification. Br. J. Soc. 1972, 23, 172–187. [CrossRef]
117. Lizieri, C. Towers of Capital: Office Markets and International Financial Services; Blackwell-Wiley: Oxford, UK, 2009.
118. Vlaev, I.; Chater, N.; Stewart, N.; Brown, G.D. Does the brain calculate value? Trends Cogn. Sci. 2011, 15, 546–554. [CrossRef]
119. Söllner, F. A reexamination of the role of thermodynamics for environmental economics. Ecol. Econ. 1997, 22, 175–201. [CrossRef]
120. Landreth, H.; Colander, D.C. History of Economic Thought, 4th ed.; Houghton Mifflin Company: Boston, MA, USA, 2002.
121. Hayn-Leichsenring, G.U. The Ambiguity of Artworks—A Guideline for Empirical Aesthetics Research with Artworks as Stimuli.

Front. Psychol. 2017, 8, 1857. [CrossRef] [PubMed]
122. Jia, T.; Macare, C.; Gonzalez, D.A.; Tao, C.; Ji, X.; Ruggeri, B.; Nees, F.; Banaschewski, T.; Barker, G.J.; Bokde, A.L.W.; et al. Neural

basis of reward anticipation and its genetic determinants. Proc. Nat. Acad. Sci. USA 2016, 113, 3879–3884. [CrossRef] [PubMed]
123. Özdilek, Ü. Value Expectation, Expression and Estimation. J. Creat. Value 2016, 2, 245–256. [CrossRef]
124. Screpanti, E.; Zamagi, S. An Outline of the History of Economic Thought, 2nd ed.; Oxford University Press: Oxford, UK, 2005.
125. Pirgmaier, E. The Value of Value Theory for Ecological Economics. Ecol. Econ. 2021, 179, 106790. [CrossRef]
126. Özdilek, U. Value Is a (Quantum) State. J. Creat. Value 2020, 6, 34–46. [CrossRef]
127. Baumol, W.J. Unnatural Value: Or Art Investment as Floating Crap Game. Am. Econ. Rev. 1986, 76, 10–14. [CrossRef]
128. Goetzmann, W.N. Accounting for taste: Art and the financial markets over three centuries. Am. Econ. Rev. 1993, 83, 1370–1376.
129. Berlyne, D.E. Novelty, Complexity, and Hedonic Value. Percept. Psychophys. 1971, 8, 279–286. [CrossRef]
130. Özdilek, Ü. Land Value: Seven Major Questions in the Analysis of Urban Land Values. Am. J. Econ. Soc. 2011, 70, 30–49. [CrossRef]
131. Rice, H. The Value of Developed Land Considered Vacant and Unimproved. Real Estate Rev. 1982, 37, 45–50.
132. Özdilek, Ü. An overview of the enquiries on the issue of apportionment of value between land and improvements. J. Prop. Res.

2011, 29, 69–84. [CrossRef]
133. Ratcliff, R.U. A Neoteric View of the Appraisal Function. Apprais. J. 1965, 35, 167–175.
134. Hodges, M.B. Three Approaches? Apprais. J. 1993, 61, 553–564.
135. Kumar, R.; Singh, S.; Bilga, P.S.; Singh, J.; Singh, S.; Scutaru, M.-L.; Pruncu, C.I. Revealing the benefits of entropy weights method

for multi-objective optimization in machining operations: A critical review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [CrossRef]
136. Singh, V.P. The Entropy Theory as a Tool for Modeling and Decision-Making in Environmental and Water Resources; Texas A&M

University Libraries: Station, TX, USA, 2000.
137. Srdjevic, B.; Medeiros, Y.; Faria, A. An objective multi-criteria evaluation of water management scenarios. Water Resour. Manag.

2004, 18, 35–54. [CrossRef]
138. Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 3564835.

[CrossRef]
139. Rao, R.; Yadava, V.J.O. Multi-objective optimization of Nd: YAG laser cutting of thin superalloy sheet using grey relational

analysis with entropy measurement. Opt. Laser Technol. 2009, 41, 922–930. [CrossRef]
140. Furuichi, S. Information Theoretical Properties of Tsallis Entropies. J. Math. Phys. 2006, 47, 023302. [CrossRef]
141. Havrda, J.; Charvát, F. Quantifcation method of classifcation processes. Concept of structural a-entropy. Kybernetika 1967, 3, 30–35.
142. Tsallis, C. Possible Generalization of Boltzmann & Gibbs Statistics. J. Stat. Phys. 1998, 52, 479. [CrossRef]
143. Shim, J.W. Entropy formula of N-body system. Sci. Rep. 2020, 10, 14029. [CrossRef] [PubMed]
144. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
145. Shiller, R.J. Irrational Exuberance, 3rd ed.; Princeton University Press: Princeton, NJ, USA, 2015.
146. Orrell, D. Quantum Economics: The New Science of Money; Icon Books: Duxford, UK, 2019; ISBN 9781785785085.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ECBI.2009.16
https://doi.org/10.1080/09599911003669674
https://doi.org/10.1080/09599910902837051
https://doi.org/10.3390/e13010038
https://doi.org/10.3389/fpsyg.2017.00137
https://doi.org/10.2307/589108
https://doi.org/10.1016/j.tics.2011.09.008
https://doi.org/10.1016/S0921-8009(97)00078-5
https://doi.org/10.3389/fpsyg.2017.01857
https://www.ncbi.nlm.nih.gov/pubmed/29123494
https://doi.org/10.1073/pnas.1503252113
https://www.ncbi.nlm.nih.gov/pubmed/27001827
https://doi.org/10.1177/2394964316674755
https://doi.org/10.1016/j.ecolecon.2020.106790
https://doi.org/10.1177/2394964320913758
https://doi.org/10.1080/07335113.1985.9942162
https://doi.org/10.3758/BF03212593
https://doi.org/10.1111/j.1536-7150.2010.00762.x
https://doi.org/10.1080/09599916.2011.583670
https://doi.org/10.1016/j.jmrt.2020.12.114
https://doi.org/10.1023/B:WARM.0000015348.88832.52
https://doi.org/10.1155/2020/3564835
https://doi.org/10.1016/j.optlastec.2009.03.008
https://doi.org/10.1063/1.2165744
https://doi.org/10.1007/BF01016429
https://doi.org/10.1038/s41598-020-71103-w
https://www.ncbi.nlm.nih.gov/pubmed/32820215
https://doi.org/10.1214/aoms/1177729694

	Introduction 
	Literature Review 
	Value State Balance 
	Entropy Weights Method 
	An Empirical Demonstration 
	Conclusions 
	References

