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Abstract: This paper considers coherent states for the representation of Weyl commutation relations
over a field of p-adic numbers. A geometric object, a lattice in vector space over a field of p-adic
numbers, corresponds to the family of coherent states. It is proven that the bases of coherent
states corresponding to different lattices are mutually unbiased, and that the operators defining the
quantization of symplectic dynamics are Hadamard operators.
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1. Introduction: MUBs

Mutually unbiased bases (MUBs) [1] in Hilbert space CD are two orthonormal bases
{|e1〉, . . . , |eD〉} and {| f1〉, . . . , | fD〉} such that the square of the magnitude of the inner
product between any basis states |ej〉 and | fk〉 equals the inverse of the dimension D:

|〈ej| fk〉|2 =
1
D

, ∀j, k ∈ {1, . . . , D}.

Such bases have numerous applications in quantum information theory (quantum key
distribution [2–4], quantum state tomography [5], detection of quantum entanglement [6],
etcetera).

The problem is to describe the set of MUBs for an arbitrary D.
Within this general statement of the problem, there is a range of subtasks.
Denote by M(D) the maximum number of MUBs in CD.
The first problem is what M(D) is equal to. In general, finding M(D) is a very diffi-

cult task; for example, M(6) has not been found to date, despite considerable efforts [7].
The answer is known when the dimension D is the power of a prime number, namely,
M(pn) = pn + 1 [8].

It is possible to obtain the following estimation [8]:

pn1
1 + 1 ≤M(D) ≤ D + 1,

where D = pn1
1 pn2

2 · · · p
nk
k , pn1

1 < pn2
2 < · · · < pnk

k is the prime number decomposition of D.
The amazing thing is that this is almost all that is known at present.
The problem of finding M(D) is closely related to the well-known Winnie-the-Pooh

conjecture [9]. Let us consider the Lie algebra slD(C) of D× D matrices with zero trace.
The problem of decomposing this algebra into a direct sum of Cartan subalgebras that are
pairwise orthogonal with respect to the Killing form is posed.

The conjecture is as follows: slD(C) is orthogonally decomposable if and only if
D = pn for some prime p.

The corresponding conjecture for MUB looks like this: a complete collection of MUBs
exists only in the prime power dimension D [10].

Let B be an orthonormal basis in CD. Let us call a matrix A complex Hadamard if B
and A(B) are mutually unbiased bases.
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Two Hadamard matrices A and C are equivalent if there exist monomial matrices M1
and M2 such that the following condition is satisfied:

A = M1CM2.

The problem is to describe the sets of equivalence classes of Hadamard matrices.
There is a complete description only for the case D ≤ 5; for D = 2, 3, 5 the number of

Hadamard matrices is finite, and for D = 4 there exists a one-dinensional family. For the
case of D = 6, the existence of a complex four-dimensional family of Hadamard matrices is
proven [11], while for D = 7, the existence of a one-dimensioin family is proved [12].

There are difficulties with the definition of mutually unbiased bases in the case of an
infinite-dimensional Hilbert space [13]. In this paper we provide such a definition. Despite
its seeming naivety, the definition mentioned above naturally arises in the context of p-adic
quantum mechanics.

It should be noted here that the above brief overview and bibliographic references have
no claim to being complete, as many important and interesting articles are not mentioned.

2. p-Adics Numbers

A few words about p-adic numbers are required in order to introduce the necessary
notation. For more information about p-adic numbers, see for example [14].

We first fix a prime number p. Any rational number x ∈ Q is uniquely representable as

x = pk m
n

, k, m, n ∈ Z, n > 0, p - m, p - n.

Let us define the norm | · |p on Q by the formula |x|p = p−k; completion of the field of
rational numbers with this norm is the field Qp of p-adic numbers. The p-adic norm of a
rational integer n ∈ Z is always less than or equal to one, |n|p ≤ 1, and the completion of
rational integers Z with the p-adic norm is denoted by Zp. Zp = x ∈ Qp : |x|p ≤ 1, that is,
it is a disk of a unit radius.

For the p-adic norm, the strong triangle inequality holds:

|x + y|p ≤ max{|x|p, |y|p}.

The non-Archimedean norm defines the totally disconnected topology on Qp (i.e., the
disks are open and closed simultaneously).

Two disks either do not intersect, or one lies in the other.
Locally constant functions are continuous, for example,

hZp(x) =

{
1, x ∈ Zp,

0, x /∈ Zp,

is a continuous function.
Qp is Borel isomorphic to the real line R. The shift-invariant measure dx on Qp (the

Haar measure) is normalized in such a way that
∫
Zp

dx = 1.
For any nonzero p-adic number, the canonical representation holds:

Qp 3 x =
+∞

∑
k=−n

xk pk, n ∈ Z+, xk ∈ {0, 1, . . . , p− 1}.

Using the canonical representation, we define the integer [x]p and fractional {x}p parts of
the number x ∈ Qp:

p−nx−n + p−n+1x−n+1 + · · ·+ p−1x−1︸ ︷︷ ︸
{x}p

+ x0 + px1 + · · ·+ pkxk + · · ·︸ ︷︷ ︸
[x]p

.
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The following function, which takes values in a unit circle T in C, is the additive character
of the field of p-adic numbers:

χp(x) = exp
(
2πi{x}p

)
, χp(x + y) = χp(x)χp(y).

The p-Adic integers Zp form a group with respect to addition (a consequence of the non-
Archimedean norm), and their group is a profinite (procyclic) group. This is the inverse
limit of finite cyclic groups Z/pnZ, n ∈ N:

Z/pZ←− · · · ←− Z/pnZ←− Z/pn+1Z←− · · · .

Consider the group Ẑp of characters Zp. This group has the following form:

Ẑp = Qp/Zp = Z(p∞) = {exp(2πim/pn), m, n ∈ N}.

This is the Prüfer group. It is a direct limit of finite cyclic groups (i.e., quasicyclic) of
order pn:

Z/pZ→ Z/p2Z→ · · · → Z/pnZ→ · · · .

3. Representations of CCR: Coherent States

Let V = Q2
p be a two-dimensional vector space over Qp and let ∆ be a non-degenerate

symplectic form on this space.
Let H be a separable complex Hilbert space. A map W from V to a set of unitary

operators onH satisfying the condition

W(u)W(v) = χp(∆(u, v))W(v)W(u), u, v ∈ V

is called a representation of canonical commutation relations (CCR). Furthermore, we
require both continuity in a strong operator topology and irreducibility. When these
conditions are met, such a representation is unique up to unitary equivalence.

The p-Adic integers Zp form a ring. Let L be a two-dimensional (compact) Zp-
submodule of the space V. Such submodules will be called lattices.

On the set of lattices, we introduce the operations ∨ and ∧:

L1 ∨ L2 = L1 + L2 = {z1 + z2, z1 ∈ L1, z2 ∈ L2},

L1 ∧ L2 = L1 ∩ L2.

We additionally define the involution ∗:

L∗ = {z ∈ V : ∆(z, u) ∈ Zp∀u ∈ L}.

It is easy to see that (L1 ∧ L2)
∗ = L1 ∨ L2. The lattice L that is invariant with respect to the

involution is called self-dual, L = L∗.
We normalize the measure on V in such a way that the volume of a self-dual lattice

is equal to one. The symplectic group Sp(V) = SL2(Qp) acts transitively on the set of
self-dual lattices.

By L, we denote the set of self-dual lattices. On the set L, we define the metric d by
the formula

d(L1, L2) =
1
2

log #(L1 ∨ L2/L1 ∧ L2),

where log further denotes the logarithm to the base p and # is the number of elements of
the set.

Example 1. Let {e, f } be a symplectic basis in V, ∆(e, f ) = 1. Then, the lattices

L1 = Zpe⊕Zp f , L2 = pnZpe⊕ p−nZp f
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are self-dual. If n ≥ 0, then

L1 ∧ L2 = pnZpe⊕Zp f , L1 ∨ L2 = Zpe⊕ p−nZp f ,

d(L1, L2) =
1
2

log #(L1 ∨ L2/L1 ∧ L2) =
1
2

log p2n = n.

Note that such a basis exists for any pair of self-dual lattices.
The set of self-dual lattices can be represented as a graph. The distance d takes values

in the set of non-negative integers. The vertices of the graph are elements of the set L, and
the edges are pairs of self-dual lattices {L2, L2} : d(L1, L2) = 1.

The graph of self-dual lattices is constructed according to the following rule. Let Kp+1
denote a complete graph with p + 1 vertices. The countable family of copies of the graph
Kp+1 is glued together in such a way that each vertex of each graph in this family belongs
to exactly p + 1 graphs Kp+1.

By replacing each complete graph Kp+1 with a star graph Sp+1, we obtain a Bruhat–Tits
tree.

We now proceed with the construction of the vacuum vector. Let us choose a self-dual
lattice L ∈ L and consider the operator

PL =
∫

L
dzW(z).

Lemma 1. The PL operator is a one-dimensional projection.

Indeed, we have

P2
L =

∫
L

dzW(z)
∫

L
dz′W(z′) =

∫
l
dz
∫

L
dz′W(z + z′) =

∫
L

dzW(z) = PL.

The one-dimensionality of the projection PL directly follows from the irreducibility of the
representation W.

Our desired vacuum state will be this projection. We fix the notation PL = |0L〉〈0L|.

Definition 1. The family of states {|zL〉 = W(z)|0L〉, z ∈ V} in H is said to be the system of
(L-)coherent states.

We denote by hL the indicator function of the lattice L,

hL(z) =

{
1, z ∈ L,

0, z /∈ L.

Theorem 1. Coherent states satisfy the following relation:

|〈zL|z′L〉| = hL(z− z′).

In other words, the coherent states |zL〉〈zL| and |z′L〉〈z′L| coincide if z− z′ ∈ L and are orthogonal
otherwise.

Let u = z− z′; then,

|〈zL|z′L〉| = |χp(1/2∆(z, u))〈0L|W(u)0L〉| = |〈0L|W(u)0L〉|.

If u ∈ L, then the statement in the theorem follows from the definition of a vacuum vector.
If u /∈ L, then by virtue of the self-duality of the lattice L, there exists v ∈ L such that
χp(∆(u, v)) 6= 1. We then have

〈0L|W(u)0L〉 = 〈0L|W(−v)W(u)W(v)0L〉 = χp(∆(u, v))〈0L|W(u)0L〉,
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which is true only if 〈0L|W(u)0L〉 = 0.
Therefore, non-matching (and pairwise orthogonal) coherent states are parametrized

by elements of the set V/L =
(
Qp/Zp

)2 ∼= Z(p∞) × Z(p∞). This makes the following
modification of Definition 1 natural.

Definition 2. The set {|αL〉 = W(α)|0L〉, α ∈ V/L} is said to be the basis of p-adic (L-)coherent
states.

Remark 1. The CCR representations are closely related to the representations of the Heisenberg
group. In the language of representation theory, p-adic coherent states are nothing other than
coherent states for the p-adic Heisenberg group.

4. Main Result

Let L1 and L2 be a pair of self-dual lattices d(L1, L2) ≥ 1.
It turns out that the corresponding bases of L1-coherent and L2-coherent states are

mutually unbiased on finite-dimensional subspaces of dimension pd(L1,L2).

Theorem 2. For bases of L1-coherent and L2-coherent states {|αL1〉, α ∈ V/L1} and {|βL2〉,
β ∈ V/L2}, the following formula is valid:

|〈αL1 |βL2〉|
2 = p−d(L1,L2)hL1∨L2(α− β).

The above theorem means the following. Our Hilbert space for representation of CCR
H decomposes into an orthogonal direct sum of finite-dimensional subspaces of the same
dimension pd(L1,L2):

H =
⊕

a∈V/(L1∨L2)

Ha, dimHa = pd(L1,L2).

In each of these subspaces, the sub-bases of L1-coherent and L2-coherent states are mutually
unbiased.

Let us now prove Theorem 2.
The following formula is valid:

|〈0L1 |W(β)0L2〉| =
{
|〈0L1 |0L2〉|, β ∈ L1 ∨ L2,

0, β /∈ L1 ∨ L2.
(1)

Let β ∈ L1 ∨ L2; then, β = β1 + β2, β1 ∈ L1, β2 ∈ L2 and

|〈0L1 |W(β)0L2〉| = |〈W(−β1)0L1 |W(β2)0L2〉| = |〈0L1 |0L2〉|.

If β /∈ L1 ∨ L2, then there exists γ ∈ L1 ∧ L2 = (L1 ∨ L2)
∗ such that χp(∆(γ, β) 6= 1 and

〈0L1 |W(β)0L2〉 = 〈W(γ)0L1 |W(β)W(γ)0L2〉 = χp(∆(γ, β)〈0L1 |W(β)0L2〉.

From the latter equality, it obviously follows that 〈0L1 |W(β)0L2〉 = 0, β /∈ L1 ∨ L2.
Now let us use formula (1) and the Parseval–Steklov identity:

1 = ∑
β∈V/L2

∣∣〈0L1 |W(β)0L2〉
∣∣2 =

∣∣〈0L1 |0L2〉
∣∣2 ∑

β∈L1∨L2/L2

1 =
∣∣〈0L1 |0L2〉

∣∣2 pd(L1,L2). (2)

The following equation follows from Formula (2):∣∣〈0L1 |0L2〉
∣∣2 = p−d(L1,L2). (3)

Taking into account Formula (1) and the equality (3), we obtain a proof of Theorem 2.
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In the case of d(L1, L2) = 1, the subspacesHa, a ∈ V/(L1 ∨ L2) have dimension p. As
can be seen from the construction of the graph of lattices, there are exactly p + 1 pieces of
self-dual lattices with unit pairwise distances (the complete graph Kp+1). These lattices
define a complete set of MUB in each subspaceHa.

In the case of d(L1, L2) = 2, the subspaces Ha, a ∈ V/(L1 ∨ L2) have dimension p2.
As can be seen from the construction of the graph of lattices, there are exactly p(p + 1)
pieces of self-dual lattices lying at a distance of 2 from lattice L1. The bases corresponding
to these lattices are not mutually unbiased. However, among this set there are families
consisting of p + 1 pieces of mutually unbiased bases. These bases saturate the entropic
uncertainty relations [15,16].

Remark 2. Instead of the field Qp, we can consider its algebraic extension of degree n. Such
extensions exist for any n. In this case, the elementary building block of the lattice graph will be
the complete graph Kpn+1, which has vertex pn + 1. The coherent state bases corresponding to the
vertices of this graph form a complete set of mutually unbiased bases in pn-dimensional space.

The theorem makes the following definitions natural.

Definition 3. LetH be an infinite-dimensional Hilbert space. The orthonormal bases {|ei〉} and
{| f j〉} are mutually unbiased if there exists a decomposition

H = ⊕Hk, dimHk = nk < ∞,

such that the sub-bases {|ei〉}|Hk and {| f j〉}|Hk are mutually unbiased for all k.

We now make two important remarks. First, the above definition assumes that the
bases are divided into finite blocks of size nk, each of which forms a sub-base in the corre-
sponding subspace Hk. Second, in the case under consideration, that is, the representation
of CCR over a field of p-adic numbers with the dimension of the subspaces being Hk, there
are powers of p. This construction can be extended to the case of CCR over Vilenkin groups,
in which case the above dimensions can be arbitrary natural numbers.

5. p-Adic Dynamics: Hadamard Operators

The proposed definition of mutually unbiased bases for the case of an infinite-
dimensional Hilbert space makes it possible to introduce the concept of the Hadamard
operator for such spaces in a similar way.

Definition 4. The operator A in the Hilbert spaceH is called the Hadamard operator if for some
orthonormal basis {|ei〉} inH the bases {|ei〉} and A({|ei〉}) are mutually unbiased.

In other words, the Hadamard operator is provided by an infinite block-diagonal
matrix with diagonal blocks that are ordinary finite Hadamard matrices.

It turns out that the dynamics of p-adic quantum systems are determined by Hadamard
operators. More detailed information about p-adic quantum theory can be found in [17,18]. The
dynamics of a classical system are provided by a linear symplectic transformation g ∈ Sp(V)
of the phase space V. A one-parameter family gt of such transformations can be specified, in
which case the parameter t ∈ Qp is interpreted as time. For example, the dynamics of a free
particle of unit mass are provided by the family gt, t ∈ Qp, which in some fixed basis of space
V has the foollowing form:

gt =

(
1 t
0 1

)
, t ∈ Qp.

If the dynamics of a classical system are determined by the action of a symplectic group on
the phase space, then the dynamics of the corresponding quantum system are provided by
the so-called metaplectic representation of the symplectic group in the Hilbert space of the
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representation of CCR. The existence of such a representation follows from the uniqueness
of irreducible representations of CCR.

Let (W,H) be a representation (irreducible) of CCR and g ∈ Sp(V). Then, by
virtue of the uniqueness of the representation, the representations (W,H) and (Wg,H),
Wg(z) = W(gz), z ∈ V are unitarily equivalent, that is, there is a unitary operator U(g)
satisfying the condition

U(g)W(z) = Wg(z)U(g), z ∈ V.

The operators U(g), g ∈ Sp(V) define a metaplectic representation of Sp(V).

Theorem 3. Let L be a lattice in V such that d(L, gL) ≥ 1. Then, U(g) is the Hadamard operator
for bases {|α〉L} and {|β〉gL}.

As mentioned above, the symplectic group acts transitively on the set of self-dual
lattices. Thus, if a self-dual lattice L is given, its image gL under the action of the symplectic
transformation g is a self-dual lattice as well. Thus, the validity of Theorem 3 follows from
Theorem 2 for a pair of lattices L and gL.
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