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S1.- Original Goodwin model: simulations, linear stability analysis and 

phase diagrams 

In the following, we present the derivation of the equations of the Goodwin model. 

In equation (1) the nonlinear differential equations that Goodwin assumed as true to 

derive the rest of the model equations are presented. The first is the so-called Philips 

curve [19], and the second is an assumption of the model itself, similar to the previous 

one, 
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As we see in equation (1), the structure of both equations is similar. An increase in both 

variables produces a fast raise or decrease, depending on the sign of the parenthesis. 

For 𝑣 > 𝛾/𝜌, 𝑤 will increase, and vice versa in the opposite situation. The contrary is 

observed for 𝑐: for 𝑢 > 1 , its value will diminish. 

Also, as we mentioned in the main text, Goodwin defined the increase of productivity 

and population as an exponential growth, so their differential equations are 𝑝′ = 𝛼 𝑝 

and also 𝑛′ = 𝛿 𝑛 with 𝑝′ =
𝑑𝑝

𝑑𝑡
 in all equations here considered.

With these two assumptions, we derive the equations for the rest of the variables of the 

model, which we will develop in the following equation (2), 
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Now, with the final expressions for 𝑢′ and 𝑣′, we will calculate the behavior of these 

equations using the lineal approximation, 
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We can see how the model will have a bifurcation when 𝜅−1 = 𝛼 + 𝛿 (remember that 

all the parameters are defined strictly positive). Looking at the sign of these 

eigenvalues, we see that we have one regime where there are periodic solutions and a 

saddle point (𝜅−1 > 𝛼 + 𝛿), and other regime where there is a saddle point and a stable 

point at the origin. We will represent these two configurations in Figure S1. 

Figure S1. Flow diagram that shows the dynamics of the two behaviors observed in the original Goodwin 

model, analogue to Figure 2 in the main paper. Notice that only the first diagram is considered a solution with 

economic meaning. The second one is just a mathematical solution without physical meaning. 

 

(3)



We observe in Figure S1 the known periodic solutions for the Goodwin model. Note 

that the fixed-point solutions (with a stable point at the origin) are a trivial solution as 

they correspond with a situation without employment and, thus, salary. 

If we graph the phase diagram for 𝜅 and the sum of 𝛼 + 𝛾, we obtain the figure S2: The 

red region is the region with a stable point solution, while the blue region maks the set 

of parameter values for the periodic dynamic. 

(a) 

(b) (c) 

Figure S2. (a). Phase diagram that shows the different regimes present in the model. The red region is the set 

of parameters where we obtain a stable point, and the blue region is a region where we obtain the 

characteristic periodic behaviors of the model. The green line that separates both regions represents a zone 

where we obtain a degenerate node, also without economic interest. (b). Evolution of the variables for an 

economy with parameters in the blue zone. In this case, the initial conditions are 𝑢 = 𝑣 = 2, 𝛾 = 0.5, 𝛼 = 0.2 

and  𝜅 = 1. (c). Evolution of the variables for an economy with parameters in the blue region. In this case, the 

initial conditions are 𝑢 = 𝑣 = 2, 𝛾 = 0.5, 𝛼 = 1.2 and  𝜅 = 1 

 

 

 



S2.- Examples of the networks used 

In the main text, we had used different types of networks. Here we provide details of 

the networks used and explain the differences between them. 

The first type of network is the Watts-Strogatz network (𝑊𝑆(𝑁, 𝑘, 𝑝)). It is a network 

where all the nodes involved have connections with their closest neighbors except for 

some connections with distant nodes. It depends on three parameters: the number of 

elements in the network, 𝑁; the mean connectivity of the nodes, 𝑘; and the parameter  

𝑝. The parameter 𝑝 is a probability that a node has connections with a distant node. I.e. 

networks with 𝑝~0 will be networks where nodes are only connected with the closest 

neighbors, and for those networks with 𝑝~1, all nodes will be randomly connected 

with the others. In fact, along the manuscript, the random networks used will be WS 

with 𝑝 = 1 in order to assure that the connectivity was kept constant. Figure S3a shows 

an example of a WS network and in Figure S3b the distribution of connectivities for 

this particular network. Figures S3c and S3d are an example of a WS network with 𝑝 = 
1. 

We also used a Barabási-Albert network  𝐵𝐴(𝑁, 𝑚). This type of network has the 

property that the connectivity of their nodes has an exponential behavior; there are 

many nodes with few connections and vice versa, few nodes with many connections. 

Unlike the Watts-Strogatz network, the distance between nodes is not relevant in this 

kind of network. The unique factor that matters in the Barabási-Albert network 

(besides the number of nodes 𝑁) is the parameter 𝑚, which is the minimum of 

connections that a node can stablish. With low 𝑚, the exponential form of the 

connectivity is more remarkable. However, for highs values of 𝑚, the exponential form 

is more difficult to appreciate. Figure S3e is a graph of an example of the BA networks 

used along the main manuscript. Figure S3f is the connectivity’s histogram for this 

network. 
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Figure S3. We represented a 𝑊𝑆(𝑁 = 15, 𝑘 = 4, 𝑝 = 0.05) in (a) and his connectivity histogram in (b). We did 

the same for a random network, that we computed as a 𝑊𝑆(𝑁 = 15, 𝑘 = 4, 𝑝 = 1); we represented it in (c) and 

his histogram connectivity in (d). Finally, we represented a 𝐵𝐴(𝑁 = 15,𝑚 = 1) in (e) and its histogram 

connectivity in (f).(g) Scheme of a mean field configuration. Note that only for these figures and for 

illustration purposes  𝑁 = 15, for the calculations shown in the main text 𝑁 = 50.  

 

 

The final configuration used is a mean-field network that describes a situation where 

all the nodes in the network are connected to an imaginary node endowed with a value 



for the variables equal to the average of the variable values for all the nodes. A scheme 

of this configuration is plotted in Figure S3g.  

S3.- Connectivity in the spiral solutions 

As shown in Figure 4 in the main paper, we obtain a spiral solution for values of 𝑔 ≤ 
10−2. Figure S4 shows the evolution of the Salary (Figure S4a) and Employment 

(Figure S4b) for a WS network of economies and for a set of parameters that warrants a 

spiral solution. Two areas are marked in gray at the beginning of the numerical 

simulation and at the end. We measure the maxima of each variable in both areas and 

plot them versus the time when the maxima are achieved. We color code each node 

depending on the connectivity of the node. The results are in Figure S4c to S4f. Note in 

Figure S4c and S4d that there is no correlation between the amplitude of the oscillation 

and the connectivity of that node. Nevertheless, as time evolves the results change as 

plotted in Figures S4e and S4f. Here, the moment in time when the maximum is 

reached correlates with the connectivity of the nodes, those nodes with less 

connectivity oscillating first. 

(a) (b) 

(c) (d) (e) (f) 

Figure S4. Synchronization of the spiral solutions. Time evolution of (a) the Salary variable for 

all nodes (economies) in the network and of (b) the Employment variable. Areas in gray mark 

the regions where maxima are evaluated. (c) and (d) plot Salary and Employment maxima 

values and the time they happened at the beginning of the simulation (first gray area). The 



color of each dot reflects the connectivity of that particular node. (e) and (f) shows Salary and 

Employment maxima and the time they happened at the end of the simulation (second gray 

area). 

Increasing the average connectivity of the network, we further explore this 

phenomenon. The results are plotted in Figure S5 for both variables. At a final stage of 

the simulation, we plot the amplitude of the oscillations for each node and each 

variable (Salary in Figure S5a and Employment in Figure S5b). We observe that 

increasing connectivity of the node produces oscillations with larger amplitude that 

reach the maximum at a later moment. These results were confirmed using different 

types of networks (i.e. BA, not shown). Although the values of the oscillation’s 

amplitudes measured are quite small, the tendency seems quite clear. 

Figure S5. Maximum values for the (a) Salary and (b) Employment and the times when they happened 

measured at the end of a simulation The color for each do in the figure encodes the value of the 

connectivity for that specific node. 

Decreasing the network weight (𝑔) makes this synchronization harder to see as its 

origin is on the interaction with the network. In fact, for values of 𝑔 ≈ 10−4, the 

synchronization becomes negligible. These observations are independent of whether 

the oscillations are clockwise or counterclockwise. 

S4.- Dispersion of the economies’ variables as a function of the network weight 𝒈 

for other types of networks. 

In this section we show the analogue of Figure 7 in the main text for other types of 

networks. 
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Figure S6. Dispersion of the economies’ variables as a function of the network weight 𝑔 for other types of 

networks (analogue of Figure 7 in the main manuscript). (a) and (b) consider a BA network (𝑁 = 50, 𝑚 = 
2). (c) and (d) use a random network (𝑁 = 50, 𝑘 = 15, 𝑝 = 1). (e) and (f) use a WS network (𝑁 = 50, 𝑘 = 
2, 𝑝 = 0.05) 



S5.- Linear dependence of the stable points in employment for other types 

of networks. 

In the main text, we establish a linear dependence between the connectivity of each 

node in the network with the steady state reached. Those results were calculated using 

a WS network. In Figure S7, we plot equivalent results calculated using 

different network topologies.  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure S7. Linear dependence of the stable points in employment for other types of networks. (a) BA 

network with log10 𝑔 = −2 and 𝑚 = 10. (b) BA network with log10 𝑔 = −2 and 𝑚 = 25. (c) BA network 
 

with log10 𝑔 = −3 and 𝑚 = 10. (d) WS network with 𝑝 = 1 (random network), log10 𝑔 = −2 and 𝑘 = 10. (e)  
WS network with 𝑝 = 1 (random network), log10 𝑔 = −2 and 𝑘 = 25. (f) WS network with 𝑝 = 1 (random 

network), log10 𝑔 = −3 and 𝑘 = 10. (g) WS network with 𝑝 = 0.01, log10 𝑔 = −2 and 𝑘 = 10. (h) WS  
network with 𝑝 = 0.01, log10 𝑔 = −2 and 𝑘 = 25. (i) WS network with 𝑝 = 0.01, log10 𝑔 = −3 and 𝑘 = 10. 


