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Abstract: This paper focuses on the command-filter control of nonstrict-feedback incommensurate
fractional-order systems. We utilized fuzzy systems to approximate nonlinear systems, and designed
an adaptive update law to estimate the approximation errors. To overcome the dimension explosion
phenomenon in the backstepping process, we designed a fractional-order filter and applied the
command filter control technique. The closed-loop system was semiglobally stable, and the tracking
error converged to a small neighbourhood of equilibrium points under the proposed control approach.
Lastly, the validity of the developed controller is verified with simulation examples.
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1. Introduction

Fractional-order calculus is an extension of classical integer-order calculus that has had
a history of several hundreds of years. Due to the lack of a practical application background,
the development of fractional-order theory has stagnated for a long time. In recent decades,
with the rapid development of science and technology, an increasing number of practical
physical systems were found to have fractional-order characteristic [1–4]. An ocean of
valuable results on linear fractional-order systems (FOSs) have been published in [5–8]. To
discuss the stability of nonlinear FOSs, the direct and indirect Lyapunov methods were
proposed in [9,10], respectively. Adaptive control, sliding mode control, fuzzy control, and
the comprehensive application of these schemes was extended to FOSs [11–15]. In [16,17],
Ding et al. constructed an adaptive backstepping controller for nonlinear FOSs with
additive disturbance.

Most of the existing results are on the control issue of commensurate fractional-order
systems. In practical applications, depicting the physical phenomenon with incommensu-
rate fractional models is more reasonable. It was experimentally verified that the incom-
mensurate model exhibited superior performance over its commensurate counterpart in
the field of thermal diffusion dynamics and lithium-ion batteries [18,19]. Thanks to the
proposal of the indirect Lyapunov method, Wei et al. developed an adaptive backstepping
control approach in [20], and an output-feedback control method in [21] for incommensu-
rate nonlinear FOSs. Sheng et al. [22] proposed an observer-based adaptive backstepping
control method for nonlinear FOSs, and a fractional-order auxiliary system was constructed
to compensate for the input saturation by generating a series of virtual signals. However,
in the process of backstepping controller design, reference signals need to be calculated
repeatedly, which leads to the problem of computational complexity explosion.

Dynamic surface control (DSC), which was first proposed in [23], is an effective
approach to reduce the complexity of computation. Zhou et al. [24] proposed a DSC
scheme for nonlinear systems with uncertainty, and external disturbances could be approx-
imated with radial-basis-function neural networks whose weight value is adjusted online.
Ning et al. [25] focused on the collective behaviors of robots beyond nearest-neighbor
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rules, for example, dispersion and flocking, when robots interact with others by applying
an acute-angle test-based interaction rule. Fan et al. [26] proposed bounded control for
preserving the connectivity of multiagent systems using the constraint function approach.
Cheng et al. [27] designed an event-triggered optimal nonlinear-system control method on
the basis of a state observer and neural network. Wang et al. [28] designed a DSC strategy
using a sliding-mode differential and constructed a tan-type barrier Lyapunov function
to handle the issue of full state constraints. Yoo [29] presented a recursive control design
strategy for lower triangular cyber–physical systems with unknown nonlinear dynamics
and unmatched time delays to the control input. Ma et al. [30] first introduced the DSC
technique to the strict feedback nonlinear FOSs. Yang et al. [31] extended the DSC approach
to nonstrict feedback nonlinear FOSs. However, the DSC method ignores the compensation
error caused by the filters; thus, the control effect deteriorates.

The command-filter method was first proposed in [32]. The core idea of a command
filter is that a filter is designed, such that its output output can track the derivative of
reference signals; then, error compensation signals are constructed to weaken the impact
of filtering errors on control quality. Numerous scholars have solved problems such as
observer design and output feedback [33], switching system control with output con-
straints [34], and unknown system control direction [35] on the basis of the command
filter. With increasing attention being paid to fractional-order backstepping control, re-
search on the corresponding improved algorithms has emerged like mushrooms after rain.
Wang et al. [36] proposed adaptive fault-tolerant control for switched nonlinear systems
based on the command-filter technique. Wang et al. [37] designed command-filter-based
adaptive neural control for nonstrict-feedback nonlinear systems with multiple actuator
constraints. Li [38] first investigated the command-filter adaptive asymptotic tracking
control of uncertain nonlinear systems with both time-varying parameters and uncertain
disturbances, and a novel quadratic Lyapunov function by incorporating the lower bounds
of control gains was proposed that guaranteed that the tracking error asymptotically con-
verges to zero. Liu et al. [39] proposed a command-filter backstepping control scheme
for fractional-order nonlinear systems with actuator faults. You et al. [40] presented a
finite-time fractional-order command-filtered implementation strategy for the backstepping
approach that was further applied to uncertain fractional-order nonlinear systems. The
published works focused on the command-filter design of only commensurate FOSs. The
proposed approach for commensurate FOSs was based on the direct Lyapunov method and
requires the fractional-order derivatives of the Lyapunov functions. Therefore, it cannot
be applied to incommensurate FOSs. To the best of the authors’ knowledge, there are few
works on command-filter-based control schemes for incommensurate FOSs.

Motivated by the above discussions, we developed an adaptive fuzzy ETC strategy
for nonstrict feedback incommensurate nonlinear FOSs with external disturbances. The
main contributions of the proposed approach are summarized as follows.

1. An adaptive backstepping recursive algorithm was developed for strict feedback
incommensurate nonlinear FOSs, and the stability of closed-loop systems is analyzed
with the indirect Lyapunov method. Different from the results in [41,42], we consid-
ered a more general kind of systems, and the approach presented in this work has
more abundant applications in practice [43–45]. Accordingly, it introduces challenges
in the analysis and synthesis of controller design.

2. The command-filter control scheme was first proposed for incommensurate FOSs to
address the dimension explosion issue, and a fractional-order filter was designed. The
fuzzy approximation errors were estimated with adaptive update laws. In contrast to
the works in [20–22], the information of the high-order differentials of reference signals
is not essential. In addition, closed-loop control performance can be guaranteed.

3. The unknown control coefficient is considered in this paper, and the parameter update
law was constructed to estimate the control coefficient. Due to the sign function
introduced into the controller, the chattering phenomenon occurs. The hyperbolic
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tangent function was utilized to replace the sign function, proving that the stability of
the closed-loop system is still guaranteed.

The remainder of this article is organized as follows. Section 2 gives the system
descriptions and some useful preliminaries. Section 3 presents the synthesis process of
the adaptive fuzzy command-filter control for incommensurate nonlinear FOSs. Section 4
presents the simulation results to demonstrate the effectiveness of the proposed method.
Lastly, Section 5 concludes this work.

2. Problem Statement and Preliminaries

Definition 1 ([46]). The Caputo fractional-order derivative with zero initial time is defined as follows:

DαF(s) =
1

Γ(k− α)

∫ s
0 (s− τ)k−α−1F(k)(τ)dτ, (1)

where k− 1 < α ≤ k, k ∈ N, F(s) is a continuously differentiable function, F(k)(s) denotes the
traditional k-th differential order of F(s), and Γ(α) =

∫ ∞
0 τα−1e−τdτ is the gamma function.

Definition 2 ([46]). The fractional-order integral is defined as follows:

I αF(s) =
1

Γ(α)
∫ s

0 (s− τ)α−1F(τ)dτ, (2)

where α > 0.

Before proceeding, the following useful lemmas are introduced.

Lemma 1 ([47]). The differential equation DαX (t) = p(t) with α ∈ (0, 1), X (t) ∈ R and
p(t) ∈ R can be transformed into the following continuous frequency distributed model (FDM):

∂h(σ,t)
∂t = −σh(σ, t) + p(t),

X (t) =
∫ ∞

0 ζα(σ)h(σ, t)dσ,
(3)

where ζα(σ) =
sin(απ)

σαπ .

Lemma 2 ([40]). Let v(t) be a signal satisfying |υ(t)| ≤ ψ and |Dαυ(t)| ≤ ϑ. For ∀t ≥ 0 and
r > 0, one has

Dαω(t) = −r(ω(t)− υ(t)), (4)

where ω(0) = υ(0). There exists a constant d > 0, such that |ω(t)− υ(t)| ≤ 3ϑd
r .

Remark 1. The above lemma indicates that selecting a sufficiently large filter coefficient r can
ensure that the filtering error is small enough. Then, it is not necessary to consider filtering error
signals in the design process of Lyapunov functions.

2.1. System Descriptions

Consider the following uncertain nonlinear FOSs:
Dαi xi = xi+1 + fi(xi), i = 1, 2, · · · , n− 1,

Dαn xn = bu + fn(xn),

y = x1,

(5)

where x = [x1, x2, . . . , xn]T ∈ Rn denotes the pseudostate vector, u ∈ R and y ∈ R
represent the system input and output variable, respectively. αi is the system incom-
mensurate fractional order that satisfies that 0 < αi < 1 for i ∈ N , {1, 2, . . . , n},
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xi = [x1, x2, · · · , xi]
T ∈ Ri, b is the control coefficient, and fi(x) ∈ R is an unknown

smooth nonlinear function.
Control objective: considering uncertain nonlinear FOSs (5) to design a command-

filter-based adaptive fuzzy dynamic surface control approach, such that all the signals in
closed-loop system are uniformly ultimately bounded, and the tracking error asymptotically
converges to the equilibrium point.

Remark 2. In most existing work, the command-filter-based dynamic surface control approach was
proposed for commensurate fractional-order systems. The direct Lyapunov method is utilized to
analyze the stability of closed-loop systems. It is required to take the derivative of the Lyapunov
function; thus, these approaches are not applicable to incommensurate fractional-order systems.
The indirect Lyapunov method is established on the basis of the frequency distributed model, and
real states have an infinite dimensional property. If the Lyapunov function satisfies V̇ ≤ 0, real
states can converge to zero asymptotically. Then, the pseudostates converge to zero asymptotically,
while, because of the existence of filter errors, condition V̇ ≤ 0 cannot be obtained. To sum up, the
significant difficulty is in how to analyze the stability of pseudostates when the command-filter-based
method is applied to incommensurate fractional-order systems.

Some common assumptions are as follows.

Assumption 1. Reference signal yr and Dαi yr are available and bounded for all i ∈ N .

Assumption 2. The value of control coefficient b is unknown, while the sign of b is known.

Remark 3. In [20–22], it was required that the reference signal and its first ∑
j
i=1 αi-th order

derivatives were piecewise continuous and bounded, j ∈ N . The restrictive assumption was
removed in this article; thus, the dimension explosion issue is tackled, and the computational burden
is mitigated.

Remark 4. Assumption 1 is a common assumption for the backstepping control of incommensurate
fractional-order systems; see [20–22]. yd must be bounded; otherwise, the system output cannot
obviously track the reference signal. The fractional-order derivative of a reference signal is used in the
design process of virtual control variables. Dαi yd need to be bounded and available to guarantee that
the dynamic surface control method can be utilized for incommensurate fractional-order systems.

2.2. Fuzzy Logic Systems

Consider the following inference rules:
Rl : IF x1 is Gl

1 AND ... AND xp is Gl
p;

THEN y is yl
f (l = 1, 2, . . . , N),

where Gl
i is a fuzzy set, i ∈ N , yl

f is the crisp output of lth rule, and N is the total number
of rules.

Through the fuzzifier, product inference, and defuzzifier, the fuzzy logic system (FLS)
can be inferred as follows:

y(x) =
∑N

l=1 µl(x)yl
f

∑N
l=1 µl(x)

, (6)

where µl(x) =
n
∏
i=1

µGl
i
(xi), µGl

i
(xi) is the membership function. By introducing the fuzzy

basis functions, the FLS (6) can be expressed as follows:

y(x) = ΘTξ(x), (7)
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where ξ(x) = [ξ1(x), ξ2(x), . . . , ξN(x)], Θ = [y1
f , y2

f , . . . , yN
f ], and

ξl(x) =
µl(x)

∑N
i=1 µi(x)

, l = 1, 2, . . . , N. (8)

Lemma 3 ([48]). For a continuous function f (x) defined on a compact set Ω, there exists a FLS (7),
such that

sup
x∈Ω

∣∣∣ f (x)−ΘTξ(x)
∣∣∣ ≤ ε. (9)

According to Lemma 3, unknown nonlinear function fi(xi) can be expressed as follows:

fi(xi) = ΘT
i ξi(xi) + δi, (10)

where δi is the bounded approximation error satisfying |δi(xi)| ≤ Di, Di is the upper bound
of the approximation error, and

Θi = argmin
Θ̂i∈Ωi

{
sup
x∈Xi

∣∣∣ fi(xi)− Θ̂T
i ξi(xi)

∣∣∣}, (11)

where Θ̂i is the estimation of Θi, and Ωi and Xi are compact sets for Θ̂i and xi, respectively.

3. Command-Filter Control Scheme Design

Before the backstepping procedure, some signals are defined as follows:

ε1 = y− yr, εi = xi −ωi, zj = εj − sj, (12)

where i = 2, 3, . . . , n, j = 1, 2, . . . , n, εi and zj are error surfaces, sj are compensation signals,
υi−1 denote virtual controllers, and ωi denotes the filtered virtual signals.

The virtual controller is defined as follows:{
υ1 =− c1ε1 +Dα1 yr − Θ̂T

1 ξ1(x1)− sgn(z1)D̂1,

υi =− ciεi − εi−1 +Dαi ωi − Θ̂T
i ξi(xi)− sgn(zi)D̂i, i = 2, 3, · · · , n− 1.

(13)

The fractional-order filter is designed as follows:

Dαi ωi = riυi−1 − riωi, i = 2, 3, · · · , n. (14)

The compensation signal is constructed as follows:
Dα1 s1 = −c1s1 + s2 + ω2 − υ1,

Dαi si = −cisi − si−1 + si+1 + ωi+1 − υi, i = 2, 3, · · · , n− 1,

Dαn sn = −cnsn − sn−1.

(15)

The parameter update laws are designed as follows:
Dβi Θ̂i = πiziξi(xi), i = 1, 2, · · · , n,

Dγi D̂i = λi|zi|, i = 1, 2, · · · , n,

Dα ϕ̂ = −τsgn(b)znυn.

(16)

The actual control input was chosen as follows:{
u = ϕ̂υn,

υn =− cnεn − εn−1 +Dαn ωn − Θ̂T
nξn(x)− sgn(zn)D̂n,

(17)
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where 0 < α, βi, γi < 1 are the fractional order of update laws, define ϕ = 1
b , Θ̂i, D̂i and

ϕ̂i are the estimation of parameters Θi, Di, ϕi, respectively, ci, πi, λi, τ and rj are positive
designed parameters, i = 1, 2, · · · , n, j = 2, 3, · · · , n.

It follows from (10), (12), and (15) that
Dα1 z1 =z2 + f1(x1)−Dα1 yr + c1s1 + υ1,

Dαi zi =zi+1 + fi(xi)−Dαi ωi + cisi + si−1 + υi, i = 2, 3, · · · , n− 1,

Dαn zn =bu + fn(xn)−Dαn ωn + cnsn + sn−1.

(18)

Step 1. On the basis of Lemma 1, the related FDM of (18) can be obtained as follows:
∂hz1(σ, t)

∂t
=− σhz1(σ, t) + z2 + f1(x1)−Dα1 yr + c1s1 + υ1,

z1 =
∫ ∞

0
ζα1(σ)hz1(σ, t)dσ,

(19)

where ζα1(σ) =
sin(α1π)

σα1 π
.

Define the parameter estimation errors as Θ̃1 = Θ1 − Θ̂1 and D̃1 = D1 − D̂1; then,
we have 

∂hΘ1
(σ,t)

∂t = −σhΘ1(σ, t)−Dβ1 Θ̂1

Θ̃1 =
∫ ∞

0 ζβ1(σ)hΘ1(σ, t)dσ,
∂hD1 (σ,t)

∂t = −σhD1(σ, t)−Dγ1 D̂1,

D̃1 =
∫ ∞

0 ζγ1(σ)hD1(σ, t)dσ,

(20)

where ζβ1(σ) =
sin(β1π)

σβ1 π
and ζγ1(σ) =

sin(γ1π)
σγ1 π

.
Consider the following Lyapunov function:

V1 =
1

2π1

∫ ∞

0
ζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ

+
1

2λ1

∫ ∞

0
ζγ1(σ)h

2
D1
(σ, t)dσ +

1
2

∫ ∞

0
ζα1(σ)h

2
z1
(σ, t)dσ.

(21)

By substituting Virtual Control Law (13) into the above inequality and taking the
derivative of V1, one can obtain that

V̇1 =− 1
π1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

π1
Θ̃T

1 Dβ1 Θ̂1

− 1
λ1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ−

∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ

− 1
λ1

D̃1D
γ1 D̂1 + z1z2 + c1z1(s1 − ε1) + z1[ f1(x1)− Θ̂T

1 ξ1(x1)]− |z1|D̂1.

(22)

Consider the following fact:

z1[ f1(x1)− Θ̂T
1 ξ1(x1)] ≤ |z1|D1 + z1Θ̃T

1 ξ1(x1). (23)

Substituting (23) into (22), we have

V̇1 ≤−
1

π1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

λ1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ

−
∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ− c1z2

1 + z1z2 + Θ̃T
1 [z1ξ1(x1)−

1
π1

Dβ1 Θ̂1]

+ D̃1(|z1| −
1

λ1
Dγ1 D̂1).

(24)
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Bearing (16) in mind, we obtain that

V̇1 ≤−
1

π1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

λ1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ

−
∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ− c1z2

1 + z1z2.
(25)

Step i (i = 2, . . . , n − 1). It follows from (18) that the FDM of zi can be expressed
as follows:

∂hzi (σ, t)
∂t

=− σhzi (σ, t) + zi+1 + fi(x)−Dαi ωi + cisi + si−1 + υi,

zi =
∫ ∞

0
ζαi (σ)hzi (σ, t)dσ,

(26)

where ζαi (σ) =
sin(αiπ)

σαi π
.

Select the Lyapunov function as follows:

Vi =Vi−1 +
1

2πi

∫ ∞

0
ζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ

+
1

2λi

∫ ∞

0
ζγi (σ)h

2
Di
(σ, t)dσ +

1
2

∫ ∞

0
ζαi (σ)h

2
zi
(σ, t)dσ.

(27)

Taking the derivative of Vi, we obtain that

V̇i =V̇i−1 −
1
πi

∫ ∞

0
σζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ− 1

πi
Θ̃T

i Dβi Θ̂i

− 1
λi

∫ ∞

0
σζγi (σ)h

2
Di
(σ, t)dσ− 1

λi
D̃iD

γi D̂i

−
∫ ∞

0
σζαi (σ)h

2
zi
(σ, t)dσ + zi[zi+1 + fi(xi)−Dαi ωi + cisi + si−1 + υi].

(28)

Substituting Virtual Control Law (13) into the above inequality, one has

V̇i =V̇i−1 −
1
πi

∫ ∞

0
σζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ− 1

λi

∫ ∞

0
σζγi (σ)h

2
Di
(σ, t)dσ

−
∫ ∞

0
σζαi (σ)h

2
zi
(σ, t)dσ− 1

πi
Θ̃T

i Dβi Θ̂i −
1
λi

D̃iD
γi D̂i

− ciz2
i + zizi+1 − zizi−1 + zi[ fi(xi)− Θ̂T

i ξi(xi)]− |zi|D̂i

≤V̇i−1 −
1
πi

∫ ∞

0
σζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ− 1

λi

∫ ∞

0
σζγi (σ)h

2
Di
(σ, t)dσ

−
∫ ∞

0
σζαi (σ)h

2
zi
(σ, t)dσ− ciz2

i + zizi+1 − zizi−1 + Θ̃T
i [ziξi(xi)−

1
πi

Dβi Θ̂i]

+ D̃i(|zi| −
1
λi

Dγi D̂i).

(29)

Bearing (16) in mind, it can be obtained that

V̇i ≤V̇i−1 −
1
πi

∫ ∞

0
σζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ− 1

λi

∫ ∞

0
σζγi (σ)h

2
Di
(σ, t)dσ

−
∫ ∞

0
σζαi (σ)h

2
zi
(σ, t)dσ− ciz2

i + zizi+1 − zizi−1.
(30)

The following theorem summarizes the main results of the controller design.

Theorem 1. Considering that System (5) satisfies Assumptions 1 and 2, the virtual controllers
were designed as in (13), the fractional-order filter was designed as in (14), the actual control signal
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was chosen as in (17), and the update laws were selected as in (16). Then, the presented method
guaranteed that all signals of closed-loop System (5) were bounded, and the tracking error could
asymptotically converge to the equilibrium point.

Proof. Step n. By defining parameter estimation error ϕ̃ = ϕ − ϕ̂, the fractional-order
derivative of ϕ̃ can be expressed as follows:

∂hϕ(σ, t)
∂t

=− σhϕ(σ, t)−Dα ϕ̂,

ϕ̃ =
∫ ∞

0
ζα(σ)hϕ(σ, t)dσ.

(31)

where ζα(σ) =
sin(απ)

σαπ .
Choose the Lyapunov function as follows:

Vn =Vn−1 +
1

2πn

∫ ∞

0
ζβn(σ)h

T
Θn

(σ, t)hΘn(σ, t)dσ +
|b|
2τ

∫ ∞

0
ζα(σ)h2

ϕ(σ, t)dσ

+
1

2λn

∫ ∞

0
ζγn(σ)h

2
Dn

(σ, t)dσ +
1
2

∫ ∞

0
ζαn(σ)h

2
zn(σ, t)dσ.

(32)

By substituting Virtual Control Law (13) into the above inequality and taking the
derivative of V1, one has

V̇n =V̇n−1 −
1

πn

∫ ∞

0
σζβn(σ)h

T
Θn

(σ, t)hΘn(σ, t)dσ− 1
λn

∫ ∞

0
σζγn(σ)h

2
Dn

(σ, t)dσ

−
∫ ∞

0
σζαn(σ)h

2
zn(σ, t)dσ− |b|

τ

∫ ∞

0
σζα(σ)h2

ϕ(σ, t)dσ− 1
πn

Θ̃T
nDβn Θ̂n

− 1
λn

D̃nDγn D̂n + zn[υn + fn(x)−Dαn ωn + cnsn + sn−1]

− bϕ̃znυn −
|b|
τ

ϕ̃Dα ϕ̂.

(33)

By designing the update law as in (16) and substituting it into the derivative of the
Lyapunov function, we have

V̇n ≤V̇n−1 −
1

πn

∫ ∞

0
σζβn(σ)h

T
Θn

(σ, t)hΘn(σ, t)dσ− 1
λn

∫ ∞

0
σζγn(σ)h

2
Dn

(σ, t)dσ

−
∫ ∞

0
σζαn(σ)h

2
zn(σ, t)dσ− |b|

τ1

∫ ∞

0
σζα(σ)h2

ϕ(σ, t)dσ− cnz2
n − znzn−1

+ Θ̃T
n [znξn(x)− 1

πn
Dβn Θ̂n] + D̃n(|zn| −

1
λn

Dγn D̂n)− ϕ̃(bznυn −
|b|
τ

Dα ϕ̂)

≤−
n

∑
j=1

1
πj

∫ ∞

0
σζβ j(σ)h

T
Θj
(σ, t)hΘj(σ, t)dσ−

n

∑
j=1

1
λj

∫ ∞

0
σζγj(σ)h

2
Dj
(σ, t)dσ

−
n

∑
j=1

∫ ∞

0
σζαj(σ)h

2
zj
(σ, t)dσ− |b|

τ1

∫ ∞

0
σζα(σ)h2

ϕ(σ, t)dσ−
n

∑
j=1

cjz2
j

≤0.

According to (34), as in t → ∞, the real states of system hΘi (σ, t), hDi (σ, t), hzi (σ, t),
i = 1, 2, · · · , n and hϕ(σ, t) converge to zero. The pseudostates of closed-loop system
zi, Θ̃i, D̃i, i = 1, 2, · · · , n and ϕ̃ accordingly converge to zero.

Remark 5. The approaches proposed in [30,31] were based on the direct Lyapunov method and
require the fractional-order derivatives of Lyapunov functions. Therefore, it cannot be applied to
incommensurate FOSs. The indirect Lyapunov method is utilized to handle control problems of
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incommensurate FOSs, and Lyapunov functions are designed on the basis of the real states of systems.
In most existing works, the convergence of the real states is determined first; then, the convergence
of its pseudostates is judged. In this paper, we do not discuss the complex relationship between real
states and pseudostates, and we could directly conclude that the pseudostates were bounded.

Remark 6. According to the process of control scheme design, the following parameter adjustment
conclusions could be obtained. By increasing parameter ci, ri and decreasing µ, the bound of the
tracking error is lessened, but the transmission frequency is increased. Therefore, there exists a
trade-off between tracking quality and the number of actuator updates.

The sign function was introduced into the design of Virtual Control Law (13) and
Actual Control Input (17). This led to the chattering performance shown in the simulation
results. An improved method is proposed in the following theorem, and the chattering
phenomenon is avoided.

Theorem 2. Considering System (5) with Assumptions 1 and 2 satisfied, the virtual controllers,
fractional-order filter, actual control signal, and parameter update laws were designed as follows.
The virtual control law is as follows:

υ1 =− c1ε1 +Dα1 yr − Θ̂T
1 ξ1(x1)− tanh(

z1

ρ
)D̂1,

υi =− ciεi − εi−1 +Dαi ωi − Θ̂T
i ξi(xi)− tanh(

zi
ρ
)D̂i, i = 2, 3, · · · , n− 1.

(34)

The fractional-order filter is as follows:

Dαi ωi = riυi−1 − riωi, i = 2, 3, · · · , n. (35)

The parameter update law is as follows:
Dβi Θ̂i = πi,1εiξi(xi)− πi,2Θ̂i, i = 1, 2, · · · , n,

Dγi D̂i = λi,1|εi| − λi,2D̂i, i = 1, 2, · · · , n,

Dα ϕ̂ = −τ1sgn(b)εnυn − τ2 ϕ̂,

(36)

The actual control input is as follows:
u = ϕ̂υn,

υn =− cnεn − εn−1 +Dαn ωn − Θ̂T
nξn(x)− tanh(

zn

ρ
)D̂n,

(37)

where 0 < α, βi, γi < 1 are the fractional order of update laws defined as ϕ = 1
b , Θ̂i, D̂i and ϕ̂i are

the estimation of parameters Θi, Di, ϕi, respectively, ci, πi, λi, τ, ρ and rj are designed positive
parameters i = 1, 2, · · · , n, j = 2, 3, · · · , n. Then, the presented method guarantees that all signals
of closed-loop System (5) are bounded, and the tracking error can converge to a small neighbourhood
of the equilibrium point.

Proof. Step 1. Consider the following Lyapunov function:

V1 =
1

2π1,1

∫ ∞

0
ζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ

+
1

2λ1,1

∫ ∞

0
ζγ1(σ)h

2
D1
(σ, t)dσ +

1
2

∫ ∞

0
ζα1(σ)h

2
z1
(σ, t)dσ.

(38)
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Substituting Virtual Control Law (34) into the above inequality and taking the deriva-
tive of V1, one can obtain that

V̇1 =− 1
π1,1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

λ1,1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ

−
∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ− 1

π1,1
Θ̃T

1 Dβ1 Θ̂1 −
1

λ1,1
D̃1D

γ1 D̂1

+ z1z2 + c1z1(s1 − ε1) + z1[ f1(x1)− Θ̂T
1 ξ1(x1)]− z1tanh(

z1

ρ
)D̂1.

≤− 1
π1,1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

λ1,1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ

−
∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ− c1z2

1 + z1z2 + Θ̃T
1 [z1ξ1(x1)−

1
π1,1

Dβ1 Θ̂1]

+ D̃1(|z1| −
1

λ1,1
Dγ1 D̂1) + D̂1[|z1| − z1tanh(

z1

ρ
)].

(39)

According to the literature [49], the following fact can be deduced:

|z1| − z1tanh(
z1

ρ
) ≤ ρψ, (40)

where ψ is the solution of equation ψ = e−(ψ+1).
Substituting (40) into (39), we have

V̇1 ≤−
1

π1,1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

λ1,1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ

−
∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ− c1z2

1 + z1z2 +
π1,2

π1,1
Θ̃T

1 Θ̂1 +
λ1,2

λ1,1
D̃1D̂1 + ρψ|D̂1|

≤ − 1
π1,1

∫ ∞

0
σζβ1(σ)h

T
Θ1
(σ, t)hΘ1(σ, t)dσ− 1

λ1,1

∫ ∞

0
σζγ1(σ)h

2
D1
(σ, t)dσ

−
∫ ∞

0
σζα1(σ)h

2
z1
(σ, t)dσ− c1z2

1 + z1z2 −
π1,2

2π1,1
Θ̃T

1 Θ̃1 − (
λ1,2

2λ1,1
− ρψ)D̃2

1

+
π1,2

2π1,1
ΘT

1 Θ1 + (
λ1,2

2λ1,1
+ ρψ)D2

1.

(41)

Step i (i = 2, . . . , n− 1). Consider the following Lyapunov function:

Vi =Vi−1 +
1

2πi,1

∫ ∞

0
ζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ

+
1

2λi,1

∫ ∞

0
ζγi (σ)h

2
Di
(σ, t)dσ +

1
2

∫ ∞

0
ζαi (σ)h

2
zi
(σ, t)dσ.

(42)

By substituting Virtual Control Law (34) into the above inequality and taking the
derivative of Vi, one can obtain that

V̇i ≤V̇i−1 −
1

πi,1

∫ ∞

0
σζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ− 1

λi,1

∫ ∞

0
σζγi (σ)h

2
Di
(σ, t)dσ

−
∫ ∞

0
σζαi (σ)h

2
zi
(σ, t)dσ− ciz2

i + zizi+1 − zizi−1 + Θ̃T
i [ziξi(xi)−

1
πi,1

Dβi Θ̂i]

+ D̃i(|εi| −
1

λi,1
Dγi D̂i) + ρψ|D̂i|.

(43)
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Substituting Parameter Update Law (36) into (43), one has

V̇i ≤V̇i−1 −
1

πi,1

∫ ∞

0
σζβi (σ)h

T
Θi
(σ, t)hΘi (σ, t)dσ− 1

λi,1

∫ ∞

0
σζγi (σ)h

2
Di
(σ, t)dσ

−
∫ ∞

0
σζαi (σ)h

2
zi
(σ, t)dσ− ciz2

i + zizi+1 − zizi−1 −
πi,2

2πi,1
Θ̃T

i Θ̃i − (
λi,2

2λi,1
− ρψ)D̃2

i

+
πi,2

2πi,1
ΘT

i Θi + (
λi,2

2λi,1
+ ρψ)D2

i .

(44)

Step n. Choose the following Lyapunov function:

Vn =Vn−1 +
1

2πn,1

∫ ∞

0
ζβn(σ)h

T
Θn

(σ, t)hΘn(σ, t)dσ +
|b|
2τ1

∫ ∞

0
ζα(σ)h2

ϕ(σ, t)dσ

+
1

2λn,1

∫ ∞

0
ζγn(σ)h

2
Dn

(σ, t)dσ +
1
2

∫ ∞

0
ζαn(σ)h

2
zn(σ, t)dσ

(45)

By substituting Actual Control Input (37) into (45) and taking the derivative of Vn,
we have

V̇n =V̇n−1 −
1

πn,1

∫ ∞

0
σζβn(σ)h

T
Θn

(σ, t)hΘn(σ, t)dσ− 1
λn,1

∫ ∞

0
σζγn(σ)h

2
Dn

(σ, t)dσ

−
∫ ∞

0
σζαn(σ)h

2
zn(σ, t)dσ− 1

πn,1
Θ̃T

nDβn Θ̂n −
|b|
τ1

∫ ∞

0
σζα(σ)h2

ϕ(σ, t)dσ− 1
λn,1

D̃nDγn D̂n

− bϕ̃znυn −
|b|
τ1

ϕ̃Dα ϕ̂ + zn[−cnεn − zn−1 − Θ̂T
nξn(x)− tanh(

zn

ρ
)D̂n + fn(x)].

(46)

Bearing Update Law (36) in mind, we can obtain that

V̇n ≤−
n

∑
j=1

1
πj,1

∫ ∞

0
σζβ j(σ)h

T
Θj
(σ, t)hΘj(σ, t)dσ−

n

∑
j=1

1
λj,1

∫ ∞

0
σζγj(σ)h

2
Dj
(σ, t)dσ

−
n

∑
j=1

∫ ∞

0
σζαj(σ)h

2
j (σ, t)dσ−

n

∑
j=1

cjz2
j −
|b|
τ1

∫ ∞

0
σζα(σ)h2

ϕ(σ, t)dσ−
n

∑
j=1

πj,2

2πj,1
Θ̃T

j Θ̃j

−
n

∑
j=1

(
λj,2

2λj,1
− ρψ)D̃2

j −
|b|τ2

2τ1
ϕ̃2 +

n

∑
j=1

πj,2

2πj,1
ΘT

j Θj +
n

∑
j=1

(
λj,2

2λj,1
+ ρψ)D2

j +
|b|τ2

2τ1
ϕ2,

(47)

where parameter λi,1, λi,2 is selected to satisfy λi,2
λi,1
− ρψ > 0, (i = 1, 2, · · · , n).

Define that

C = min
{

c1, · · · , cn,
π1,2

2π1,1
, · · · ,

πn,2

2πn,1
,

λ1,2

2λ1,1
− ρψ, · · · ,

λn,2

2λn,1
− ρψ,

|b|τ2

2τ1

}
(48)

and K =
n
∑

j=1

πj,2
2πj,1

ΘT
j Θj +

n
∑

j=1
(

λj,2
2λj,1

+ ρψ)D2
j +

|b|τ2
2τ1

ϕ2. It follows from (47) that

V̇n ≤ −C
n

∑
j=1

z2
j − C

n

∑
j=1

Θ̃T
j Θ̃j − C

n

∑
j=1

D̃2
j − Cϕ̃2 + K. (49)

According to LaSalle’s invariance principle, system signals converge to the region{
(z1, Θ̃1, D̃1, . . . , zn, Θ̃n, D̃n, ϕ̃)|V̇n = 0

}
. Bearing (49) in mind, one can conclude that, as

t→ ∞, error surfaces zi, parameter estimation errors Θ̃i, and D̃i are bounded on compact
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set E =

{
n
∑

j=1
z2

j +
n
∑

j=1
θ̃2

j +
n
∑

j=1
D̃2

j + ϕ̃2 ≤ K
C

}
. Thus, all the signals of closed-loop systems

are bounded.

Remark 7. In Theorem 2, hyperbolic tangent function is utilized to replace the sign function in the
controller design. The hyperbolic tangent function is an approximation of the sign function; thus,
an approximation error is introduced into the closed-loop system. This leads to the tracking error
not being able to asymptotically converge to zero. Therefore, the method proposed in Theorem 2 can
avoid the chattering phenomenon in the control input, while steady-state performance is affected.
This is a trade-off in practical application.

4. Numerical Examples

Example 1. Consider the following uncertain incommensurate nonlinear fractional-order system:{
D0.5x1 = x2 + f1(x1),

D0.8x2 = bu + f2(x2),
(50)

where uncertain system model f1(x1) = −0.5x2
1, f2(x2) = −x2 +

x2−x2
2

1+x2
1
− sin(x1), unknown

control coefficient b = 5, and the reference signal is yr(t) = 0.5[sin(2t + π
4 ) + sin(4t)]. The

control parameters were adopted to be c1 = c2 = 1, β1 = β2 = γ1 = γ2 = 0.8, α = 0.9,
π1 = π2 = λ1 = λ2 = 1, ϕ1 = ϕ2 = τ1 = τ2 = 1, and r2 = 20. Given the zero initial value
of estimation parameters and initial state x(0) = [1 0]T. In Case 1, the following simulation
results could be obtained by applying the approach proposed in Theorem 1 to the FOS in (50).
Figure 1 illustrates the reference signal, system output, and tracking error, Figures 2 and 3 show the
estimation error of the upper bound of approximation error D and unknown control coefficient b,
respectively, and Figure 4 depicts the actual control input.
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Figure 1. Reference signal, system output, and tracking error with the method proposed in Theorem 1.
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Figure 2. The estimation error of D with the method proposed in Theorem 1.
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Figure 3. The estimation error of b with the method proposed in Theorem 1.
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Figure 4. Actual control input with the method proposed in Theorem 1.

The system output could track the reference signal with satisfying control performance.
However, there existed an obvious chattering phenomenon in the actual control input that
is not acceptable in practical application. In Case 2, the following simulation results show
the effect of the improved method presented in Theorem 2. The control parameters and
the initial values of system were chosen to be the same as those in the above simulation.
Figure 5 illustrates the reference signal, system output, and tracking error, Figures 6 and 7
show the estimation error of the upper bound of approximation error D and unknown
control coefficient b, respectively, and Figure 8 depicts the actual control input.
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Figure 5. Reference signal, system output, and tracking error with the method proposed in Theorem 2.
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Figure 6. The estimation error of D with the method proposed in Theorem 2.
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Figure 7. The estimation error of b with the method proposed in Theorem 2.
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Figure 8. Actual control input with the method proposed in Theorem 2.

The chattering phenomenon disappeared by utilizing the method proposed in Theorem 2.
The tracking error could converge to a small neighborhood of equilibrium points. The
approach in [40] was proposed for commensurate fractional-order systems via the direct
Lyapunov method, which cannot be applied to this example. This reflects the progressive-
ness of the method proposed in this paper.

Example 2. Consider the following uncertain incommensurate nonlinear fractional-order system:
D0.8x1 = x2 + f1(x),
D0.9x2 = u + f2(x),
y = x1,

(51)

where uncertain system model f1(x) = 0.5(−x1 + x2), f2(x) = x1x2, the unknown control
coefficient was chosen to be b = 5, and the reference signal was chosen to be yd(t) = sin(1.5t + π

4 ).
The adopted control parameters were c1 = c2 = c = 15, β1 = β2 = γ1 = γ2 = G = 0.8,
π1 = π2 = λ1 = λ2 = 100, ϕ1 = ϕ2 = τ1 = τ2 = k = 1, r2 = 20, given the zero initial value of
the estimation parameters and initial state x(0) = [1 0]T. In order to illustrate the superiority of
the command-filter-based method designed for incommensurate fractional-order systems, the method
proposed in our paper was adopted in Case 1, and the backstepping control approach proposed
in [20] was utilized in Case 2. Figure 9 illustrates the reference signal, system output, and tracking
error, Figures 10 and 11 show the estimation error of the upper bound of approximation error D
and unknown control coefficient b, respectively, Figure 12 depicts the actual control input, and the
specific simulation results are summarized in Table 1.
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Figure 9. Reference signal, system output, and tracking error in Example 2.
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Figure 10. The estimation error of D in Example 2.
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Figure 11. The estimation error of b in Example 2.
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Figure 12. Actual control input in Example 2.
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Table 1. Comparison of the control performance of the two methods in Example 2.

‖ε(t)‖2 ‖D̃1‖2 ‖D̃2‖2 ‖ϕ̃‖2 ‖u(t)‖2

case 1 11.889 167.56 221.70 7.2698 106.82
case 2 18.867 124.94 235.26 6.6809 93.505

The tracking error in Case 1 had faster convergence speed and better control perfor-
mance. According to the data in Table 1, the norm of the tracking error in Case 1 was 37.0%
less than that in Case 2, and the norm of the control input in Case 1 was 12.5% lager than
that in Case 2. Although the control cost slightly increased, the improvement in control
effectiveness was even greater. Repeatedly calculating the fractional-order derivative of
virtual control variables was avoided in Case 1. The issue of the explosion of computational
complexity in the traditional backstepping design process was solved with the method
proposed in this paper.

Parameter adjustment is a significant and difficult work in practical application. Next,
we discuss the problem of parameter selection via the following simulation results. The
control variate method was adopted, and one parameter was changed each time. Tables 2–4
show the influence of parameters c, G, k, and η on control performance, respectively.

Table 2. Changing parameter c.

‖ε(t)‖2 ‖D̃1‖2 ‖D̃2‖2 ‖ϕ̃‖2 ‖u(t)‖2

c = 5 20.650 150.99 238.68 139.87 97.527
c = 10 14.611 162.13 192.21 28.065 100.84
c = 15 11.889 167.56 221.70 7.2698 106.82
c = 20 10.360 168.65 202.19 8.3325 115.75

Table 3. Changing parameter G.

‖ε(t)‖2 ‖D̃1‖2 ‖D̃2‖2 ‖ϕ̃‖2 ‖u(t)‖2

G = 0.9 12.175 167.02 219.15 7.1657 106.41
G = 0.8 11.889 167.56 221.70 7.2698 106.82
G = 0.7 12.155 168.29 224.54 7.4307 106.66
G = 0.6 12.126 168.92 227.02 7.5888 106.84

Table 4. Changing parameter k.

‖ε(t)‖2 ‖D̃1‖2 ‖D̃2‖2 ‖ϕ̃‖2 ‖u(t)‖2

k = 5 11.501 90.087 112.93 98.327 113.01
k = 1 11.889 167.56 221.70 7.2698 106.82

k = 0.5 12.640 189.28 247.04 3.3027 107.19
k = 0.1 13.781 214.46 261.48 7.4787 109.44

According to the results in Tables 2–4, the following conclusions could be obtained.

1. As the c parameter increases, the overall tracking error decreases, the tracking effect
improves, and the control cost correspondingly increases. Especially in the transitional
process, this often caused the output of the system to overshoot and oscillate. If this
performance is required, a differentiator or other methods could be utilized to arrange
the transitional process.

2. The G parameter does not have a linear relationship with the tracking error. In these
simulation results, tracking performance was the best when G was 0.8. The adap-
tive command-filter dynamic surface control combined with intelligent optimization
algorithms to tune parameters is a promising future research direction.
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3. As the k parameter increases, the norm of the tracking error decreased, and tracking
performance improves. The estimation effect of the bound of approximation error
improves, while the estimation effect of the unknown control coefficient worsens.

5. Conclusions

In this article, a command-filter control scheme of incommensurate nonlinear uncertain
FOSs was studied. An adaptive fuzzy logic system was employed to estimate the system
uncertainty. The FDM was introduced to analyze the stability of closed-loop systems
via the indirect Lyapunov method. For the sake of eschewing the dimension explosion
phenomenon, command-filter technology was utilized in the backstepping process. All the
signals in closed-loop systems could converge to a minute neighborhood of equilibrium
points.A numerical example indicated the effectiveness and advantages of the proposed
control scheme. In future work, the predefined performance of tracking error will be taken
into consideration in the proposed method. Fixed time command-filter-based dynamic
surface control for incommensurate fractional-order systems is a future research hotspot.
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