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Abstract: The aim of this review is to highlight the possibility of applying the mathematical formalism
and methodology of quantum theory to model behavior of complex biosystems, from genomes and
proteins to animals, humans, and ecological and social systems. Such models are known as quantum-
like, and they should be distinguished from genuine quantum physical modeling of biological
phenomena. One of the distinguishing features of quantum-like models is their applicability to
macroscopic biosystems or, to be more precise, to information processing in them. Quantum-like
modeling has its basis in quantum information theory, and it can be considered one of the fruits of
the quantum information revolution. Since any isolated biosystem is dead, modeling of biological as
well as mental processes should be based on the theory of open systems in its most general form—the
theory of open quantum systems. In this review, we explain its applications to biology and cognition,
especially theory of quantum instruments and the quantum master equation. We mention the possible
interpretations of the basic entities of quantum-like models with special interest given to QBism, as it
may be the most useful interpretation.

Keywords: open quantum systems; biology; cognition; decision-making; psychology; quantum logic
and probability; quantum instruments

1. Introduction

The year 2022 was important for quantum information studies—Aspect, Clauser, and
Zeilinger were awarded the Nobel Prize for experimental and theoretical studies on quan-
tum foundations supporting quantum computing, cryptography, and teleportation. This is
a good time to highlight the not so commonly known output of the quantum information
revolution that is often called the second quantum revolution, namely, applications of
quantum foundations and formalism outside of physics quantum-like modeling [1,2].

This is a review of quantum-like modeling and its applications, with an emphasis on
the role of theory in open quantum systems. Such modeling is built on the methodology
and the mathematical apparatus of quantum theory, and it is directed to applications in
biology, cognition, psychology, decision-making, economics, finances, social and political
sciences, and artificial intelligence. It is of essential importance to clarify that this approach
can be explored for macroscopic systems, and the system’s size is not significant. The
quantum-like framework is applicable on all scales, that is to say, from proteins and genes
to animals, humans, and ecological and social systems. A crucial role is played by the
character of information processing by a system, which matches with the laws of quantum
information theory [3]. Systems are treated as information processors. Metaphorically,
one may say that a system’s “hardware”, its physical and biological structures, are not so
significant, but the system’s “software” plays the central role. We can speak about quantum
bioinformatics [4], which should not be confused with quantum biophysics [5]. The latter
studies the genuine quantum physical processes in biosystems, e.g., in cells.

This review cannot reflect all publications on quantum-like modeling. A Google search
generates 213,000,000 results for “quantum-like modeling” in 0.47 s. (This is really surpris-
ing to me). In part, this review represents the content of a forthcoming book [6] by reflecting
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related references, especially regarding applications of the theory of open quantum systems
to cognition and decision-making. The author (in cooperation with Accardi, Asano, Basieva,
Ohya, and Tanaka) was a pioneer in employing quantum information and open systems
outside of physics [7–14].

It is important to point out the immense influence of mathematics in physics, empha-
sized by many scientists and, in particular, by E. Wigner [15]. However, mathematical
tools commonly used in theoretical and mathematical biology, cognition, and psychology
are not as effective as in theoretical and mathematical physics. Gelfand pointed to “the
ineffectiveness of mathematics in biology” [16]. From my point of view, Gelfand’s statement
has to be reformulated, as one could instead speak about the ineffectiveness of mathematics
that is commonly used in biology, cognition, and psychology. Presumably, someone has the
intention to model micro-systems behavior, say of electrons, atoms, or photons, within
classical analysis of functions defined in phase space, A = A(q, p). In this case, one would
confront difficulties and soon would notice either the impossibility of such a description
of quantum phenomena or at least its ineffectiveness. Personally, I stress the effectiveness
of quantum description and do not highlight various no-go statements concerning the
impossibilities in the classical description.

Physicists have explored a new branch of mathematics, a theory of operators in
complex Hilbert space, in order to describe quantum phenomena in the effective way.
In quantum physics, noncommutative operator calculus works very well. Similarly, one
should search for novel mathematics techniques that are proper for biological and mental
phenomena. The quantum-like approach utilizes the same mathematics employed in
quantum physics, that is, noncommutative operator calculus in complex Hilbert space. Why
is this so attractive for the applications discussed? Personally, I have mainly been driven
by the particulars of quantum probability (QP) calculus that match mental phenomena
very well. This point will be discussed later in detail. However, one can look at the deeper
level as well. It is useful to discuss the basic problems in mathematical modeling of mental
phenomena highlighted by experts in the field.

The central objective of this paper is to illuminate some directions in the development
of quantum-like modeling [7–14,17–108]. First, we introduce the motivation for operating
with quantum formalism and, particularly, probability outside of physics. Then, we
compare classical and quantum probability (CP and QP) theories and set forth the principles
of quantum-like modeling of decision-making. In particular, consideration of a special
quantum-like model, “decision-making via decoherence” [9], leads to coupling with theory
of open quantum systems [109]. The latter is discussed in more detail by highlighting
its applications to the behavior of complex biosystems [110] (especially the problem of
stability), cognition, the brain’s functioning, theories of consciousness, and emotional
coloring of perceptions.

The theory of open quantum systems accommodates the formalism of quantum
instruments [111–114]. This formalism realizes the most general quantum state updates.
We stress that the combination of basic psychological effects, such as the question order
effect (QOE) and the response replicability effect (RRE), encourages us to inquire into
the possibility of proceeding using standard quantum measurement theory (with the
representation of observables by Hermitian operators and the quantum state update via
the projection postulate) [67]. We demonstrate that this psychological effect combination
can be modeled with quantum instruments [94,95].

This article is written schematically, with a minimal introduction to quantum method-
ology and mathematical apparatus (see Appendices A and B).

2. Exploring Quantum Formalism and Methodology

For newcomers to the field of quantum-like modeling who are searching for its mo-
tivation, I can recommend two handbooks [57,115] on quantum models in social science
and mathematical psychology, in particular, article [72] in the first book, and the preface
of the second one. In article [72], I argue that functioning of biosystems should include
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cognition and, in particular, that unconscious–conscious interaction can be modeled within
open quantum systems theory (see also [70]).

2.1. Edgar Allan Poe’s Reasoning in Favor of Quantum-like Modeling

The preface to the handbook on mathematical psychology [115] begins with the brilliant
citation from a story written by Edgar Allan Poe (1845) entitled The Purloined Letter. In this story,
the protagonist, Mr. C. Auguste Dupin, discussed the limits of the applicability of mathematics:

“Mathematical axioms are not axioms of general truth. What is true of relation — of
form and quantity — is often grossly false in regard to morals, for example. In this latter
science it is very usually untrue that the aggregated parts are equal to the whole. [ . . . ]
two motives, each of a given value, have not, necessarily, a value when united, equal to
the sum of their values apart.”

One can be surprised by Poe’s doubts as to the applicability of the mathematics of
the 19th century to moral phenomena (cf., with attempts of, for example, Freud to proceed
with “classical mathematics”). He also expressed doubts about the validity of the value-
additivity law. This is a very deep statement and, in quantum mathematics, it is formulated
as “eigenvalues of the sum of operators C = A + B are not equal to the sums of the
eigenvalues of the summands”, i.e., generally,

ci 6= ai + bi.

In fact, the violation of the value-additivity law is the key point of von Neumann’s no-go
theorem [116], which was the first statement about the impossibility of classical reduction
of quantum theory. The authors of [115] also pointed out the noncommutativity effect in
conjunctions,

A&B 6= B&A.

This order effect is also naturally formalized in the quantum framework. In fact, these two
effects, the value-nonadditivity and the order effects, are closely connected. In probabilistic
terms, they are jointly expressed in the violation of the formula of total probability and the
interference of probabilities [64,117,118].

The essential part of quantum-like modeling is devoted to the order effect [119]. Its
QP-realization in decision-making has been accomplished in article [120] (see also [121]).

Finally, we remark that someone can be skeptical and ask whether some mental fea-
tures are at all representable with mathematical models. To stay with the above example,
one can ask whether morals can be given comprehensive mathematical treatment at all.
Such doubts are rather common for neuro-physiologists and brain scientists. My personal
belief is that mathematical modeling can clarify a lot about the brain’s information process-
ing. For the moment, it is not clear at all which mathematical model might be successful.
The quantum-like approach is promising, and it has been successful for modeling some
cognitive tasks and psychological effects. However, it is too early to claim that this approach
is really adequate for explaining the mental phenomena. This discussion will be contin-
ued in Section 6.5, which is devoted to quantum-like modeling of unconscious–conscious
interactions.

2.2. Mathematical Models of Mental Phenomena: Why Quantum?

We remark that in [115] the discussion is not coupled to quantum-like modeling: the
authors searched for novel mathematical tools for psychology, but their considerations
call for an appeal to quantum formalism. The main message [115] was that a variety
of mathematical methods could be explored to solve the problems mentioned by Edgar
Allan Poe, with which I completely agree. Quantum formalism should not be treated as
pretending to be the unique mathematical tool for modeling of mental phenomena. A while
ago, in response to the developments of using quantum formalism outside of quantum
mechanics, the eminent quantum physicist Anton Zeilinger (Nobel Laureate 2022) told me,
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“Why should it be precisely the quantum mechanics formalism? Maybe its generalization
would be more adequate for mathemtical modeling of mental phenomena . . . ”

He is correct that, for the moment, despite its tremendous success, quantum-like mod-
eling is still at the testing stage. Perhaps one day, a new and more advanced mathematical
formalism will be suggested for modeling in cognition, psychology, and decision-making.

2.3. Simplicity, Elegance, and Generality

From my viewpoint, quantum formalism is very successful due to its simplicity.
The reader may be surprised: “Simplicity? But quantum theory is mysterious and very
complicated!” One can immediately recall the famous statement commonly attributed to
Richard Feynman,

“I think I can safely say that nobody understands quantum mechanics.”

Here, “understanding” is related to the interpretation problem of quantum mechanics;
its formalism, however, is very simple: it is linear algebra. In the form of quantum infor-
mation theory [3] that is the most useful for applications, including quantum engineering,
linear state spaces are finite dimensional. Therefore, this is the matrix calculus inH = Cn.
Linear evolution is very rapid, and this is the advantage of quantum-like representation of
mental states and their corresponding linear processing.

We also emphasize the generality of mathematical modeling based on quantum for-
malism: the same formalism and methodology cover a variety of biological and mental
processes.

2.4. The Quantum-like Model as a Linear Approximation of Nonlinear Biological Processes?

In engineering, linear models often appear as approximations of essentially more
complex nonlinear ones. Hence, the quantum-like representation of biological and men-
tal phenomena might just be an approximation of more complex nonlinear processes
in living systems. This viewpoint on quantum theory can be questioned. One of the
reviewers remarked,

Quantum theory is often presented as more general than classical theory. How does this
square with the idea that quantum theory might be just a linearization of a complex,
non-linear but classical theory? Is this relevant for understanding why quantum theories
of mental processes might be good models for the (non-linear) system of the brain?

The linearization viewpoint on quantum theory is supported by a few theoretical
models of emergence of quantum theory from nonlinear classical theories.

First, I point to my own studies devoted to prequantum classical statistical field theory
(PCSFT) [122]. Within PCSFT, quantum mechanical formalism is derived from nonlinear
classical field theory. Quantum formalism is treated as a machinery for approximate calcu-
lation of probabilities and averages. In particular, the Born rule appears as an approximate
rule. Linear Schrödinger dynamics is also an approximation of nonlinear subquantum
dynamics. PCSFT has been used in cognitive modeling (see [106] for details).

One can also refer to numerous attempts to modify quantum theory and create a
more general quantum theory with nonlinear dynamic equations. Einstein was the pioneer
of such studies, and his attitude was expressed very clearly in the book by Einstein and
Infeld [123]; Einstein worked on the creation of such a theory the last 20 years of his life,
but without success. Later, Białynicki-Birula (who was a graduate student of Infeld) tried
to develop the ideas of Einstein and Infeld, and he proceeded rather far in construction of
nonlinear quantum mechanics [124]. The main problem of the Einstein–Infeld–Białynicki-
Birula approach is overly direct coupling to the standard mechanics. The most difficult
problem of such nonlinear quantum theories is the formulation of a nonlinear analog of the
superposition principle. Unfortunately, they were not successful in solving this problem. In
contrast, coupling between PCSFT and quantum mechanics is more difficult and provides
more consistent interrelation between them.
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3. Classical vs. Quantum Probability

This short section presents the motivation for employing quantum probability (QP)
instead of classical probability (CP) for mathematical modeling in cognitive psychology
and decision-making. We refer to the works of Kahneman (the Nobel Prize laureate in
economics) and Tversky (the most cited psychologist) [125–129], who pointed out that
using CP as the basis of decision theory leads to inconsistencies and paradoxes (such as the
Allais [130] and Ellsberg [131] paradoxes; see also Erev et al. [132]).

Such a motivation is not grounded in foundational principles. Here, we proceed in
parallel with quantum physics, a field created to resolve inconsistencies between classical
electrodynamics and experimental data for black-body radiation.

In cognitive psychology and decision-making, experiments on irrational behavior and
probability fallacies (including experiments demonstrating the basic paradoxes of Allais,
Ellsberg, and Machina) have generated a lot of statistical data that do not match, at least
straightforwardly, with the main CP laws [65]. These data were analyzed and modeled
within the QP framework. We mention some work along these lines [14,18,39,41,53,65,101,104].
This is just a sample from a series of publications on QP-structuring of statistical data col-
lected over the last 50–60 years in psychology, cognition, decision-making, and economics.
A detailed analysis of these publications charaterized by a variety of quantum techniques
is a topic for a separate review.

3.1. Contextuality: Physical vs. Mental

To support the use of QP, we highlight the quantum-like paradigm [2] by which context-
sensitive systems, including humans, process information in the form of superpositions,
i.e., without ambiguity resolution. Such processing can be effectively described by quan-
tum formalism. Once again, we appeal to effectiveness of the QP description, not to the
impossibility of exploring CP. Generally proving various no-go statements is counterpro-
ductive, in both physics and decision-making. If one is able to describe physical or mental
phenomenon with CP vs. QP, and if this description is effective, then one can proceed with
CP vs. QP.

QP is a contextual probabilistic formalism [64]. Its main power is in operating within
incompatible experimental contexts, with observables for which the joint probability dis-
tribution is not well-defined. Contextuality is a hot topic in quantum information theory.
Quantitative methods for estimation of the degree of contextuality are formed with the aid
of Bell-type inequalities. This topic is novel for psychology, cognition, and decision-making.
To generate statistical data, new experiments should be performed. Outputs of such ex-
periments can be found in articles [133–138] demonstrating violation Bell-type inequalities
(treated as non-contextual inequalities). This line of research is very promising. It provides
a fresh view of mental contextuality and new mathematical methods for its estimation. We
remark that inter-contextual experimenting is not typical for mental studies.

Mental Hysteresis

QP-stimulated research on mental contextuality has led to the experimental discovery
of mental hysteresis [139–141], which has some similarity with physical hysteresis, e.g., for
ferromagnetic materials. In an optical illusion experiment for an ambiguous figure, a figure
was cyclically rotated, and the probabilities of its recognition were determined for each
angle. These probabilities form the hysteresis curve with respect to the angle axis. Up to
now, only one experiment on this mental phenomenon has been performed [139–141] (at the
Tokyo University of Science). Unfortunately, the interest in this study of decision-making
and psychology was negligible. I am thankful to Anton Zelinger, who emphasized the
possible future impact of the discovery of mental hysteresis. Of course, his comment (at one
of the Växjö conferences on quantum information, probability, and foundations) expressed
the opinion of a physicist, with an opinion based on his physical intuition.

Finally, we point out that QP and the theory of open quantum systems have been ap-
plied to genetics and molecular biology [13]. Cells as well as DNA and RNA molecules can
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be treated as decision-makers. In particular, we studied gene expression and represented
the process of consumption of glucose and lactose by a cell as a quantum-like interfer-
ence [10]. Moreover, new experiments on populations of E. coli bacteria were performed at
the molecular biology lab of the Tokyo University of Science by Tanaka under supervision
of Yamato, a professor of genetics.

4. Quantum Formalism for Decision-making

We recount the fundamentals of the quantum-like modeling of decision-making,
e.g., [39,41,61,65,100]. The basic scheme explores the standard quantum measurement
theory. The basic components are represented as follows:

• Questions, problems, and tasks as quantum observables, Hermitian operators;
• Belief or mental states of decision-makers by quantum states normalized vectors in a

complex Hilbert space or general density operators;
• The quantum state updated via the projection postulate.

From the very beginning, we have highlighted that, in applications of the quantum
measurement theory to cognition and general biology, a crucial role is played by finding
the proper formalization of the state update resulting from decision-making. The projection
state update is the simplest one, and it cannot cover all cognitive phenomena. More general
state updates are explored in quantum information theory; they are formalized within
quantum instruments theory (Section 7).

We also mention a special quantum-like model, “decision-making via decoherence”,
coupled with open quantum systems theory (Section 6.4).

The problem of the belief-state interpretation can be discussed by paying attention
to the diversity of possible interpretations [142], which is one of the problems of quantum
foundations. We recount the basic quantum state interpretations, namely, individual and
statistical. We also mention QBism [143–150] as perhaps the most useful framework for
quantum-like decision-making.

I have a rather strange relationship with QBism and its creators. In fact, QBism has
shown up prominently at the Växjö conferences on quantum foundations since the year
2000 [143,144,151]. Initially, I actively struggled against QBism [152] since, for me, the use of
subjective probability in quantum physics and in statistical physics in general is nonsense.
In particular, I actively disrupted Christopher Fuchs during his talks in Växjö by trying to
explain him that probability cannot be assigned to individual physical events. However,
by being more involved in quantum-like modeling for decision-making, I began to treat
QBism as perhaps the best interpretation for QP quantum-like decision-making [153,154].

This is a good place to point out the applications of QBism to decision-making in
geology, specifically regarding the project on determination of the utility of the perspective
for intelligent petroleum reservoir characterization, monitoring, and management [155,156]

5. Quantum and Classical Logic of Thought

We start this section with the remark that Boole designed classical (Boolean) logic for
“investigation of the laws of thought” [157].

Although I have put so much effort into the justification of quantum-like modeling
through QP analysis and especially its contextual nature, I have slowly started to un-
derstand that the seed of cognition’s quantumness (not only of humans, but also other
biosystems) is in the logic structure of information processing (see, e.g., articles on quantum-
like modeling of the problem of common knowledge and violation of the Aumann theo-
rem [158,159] and on the impossibility of agreeing to disagree [108,160]).

Quantum logic corresponds to the linear representation of information. The basic law
distinguishing classical (Boolean) and quantum logic is the distributivity law, which is
violated in quantum logic (see article [161] for details). We now briefly recall the basics of
quantum logic [162,163] (cf., classical logic [157,164]).

Logical operations are defined on subspaces of complex Hilbert space H or equiva-
lently on the set of orthogonal projectors P(H). Subspaces (projections) are representations
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of propositions (events). Let P be projection, and let LP be its image, LP = PH. For a sub-
space L, PL is the projection on L. Denote the projection onto the orthogonal complement
to the subspace LP by the symbol P, i.e., H = LP ⊕ LP.

Negation of the proposition P is represented by P. The operations of conjunction ∧
and disjunction ∨ are defined as follows.

Let P and Q be orthogonal projections representing some propositions. The conjunction–
proposition (event) P∧Q is defined as the projector on the intersection of subspaces LP and
LQ, i.e., LP∧Q = LP ∩ LQ. We remark that this operation is well-defined even for noncom-
muting projectors, i.e., incompatible quantum observables. Moreover, it is commutative:

P ∧Q = Q ∧ P. (1)

The same can be said about the operation of disjunction. Here, subspace LP∨Q is
defined as the subspace generated by the union of subspaces LP and LQ, i.e., P ∨ Q is
a projector on this subspace. This operation is also well-defined for non-commuting
projectors and, moreover, it is commutative:

P ∨Q = Q ∨ P. (2)

Thus, quantum logic is commutative logic. This fact is never highlighted. Thus, in
quantum reasoning, noncommutativity is not present at the level of the basic operations
of quantum logic, conjunction, and disjunction. In light of this fact, the following natural
question arises:

What is the logical meaning of noncommutativity of quantum operators?

We can recall that noncommutativity is commonly considered the basic mathematical
feature of quantum theory. Hence, it should also play a crucial role at the level of quantum
logic. The answer is rather unexpected, and it is given by Theorem 1 below.

As one knows, classical Boolean logic is distributive [157,164], i.e., for any three
propositions (events) X, Y, Z, e.g., represented by subsets of some set,

X ∧ (Y ∨ Z) = (X ∧Y) ∨ (X ∧ Z). (3)

Theorem 1. [161] Let P, Q, R be projections. They are pairwise commutative if and only if the
distributivity law (3) holds for X, Y, Z = P, Q, R, P̄, Q̄, R̄.

Thus, noncommutativity encodes non-distributivity of quantum logic! Hence, the
existence of incompatible quantum observables, i.e., represented by noncommuting opera-
tors, is equivalent to non-transitivity of logical relations between quantum propositions. In
particular, Bohr’s complementarity principle [165–169] reflects this logical structure.

This statement is especially important for quantum-like modeling of cognition. The
existence of incompatible propositions or questions is a consequence of non-distributivity
of logic used by a quantum reasoner.

Are humans classical or quantum reasoners?

The answer to the above depends on the context of information processing. In some
situations, humans use distributive Boolean logic, but in other situations, they violate
distributivity law, and quantum logic can be employed to mathematically describe the
latter form of reasoning.

At first glance, it seems to be impossible to characterize distributive vs. non-distributive
(classical vs. non-classical) reasoning in an experimentally testable way. However, such
a characterization was obtained in [161] based on testing of the response replicability
effect (RRE).

The notion of response replicability plays an important role in quantum physics. This
property of observations is also a common feature of human behavior. Suppose that Alice
is asked some question A, and she replies, e.g., “yes”. If, immediately after answering, she
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is asked this question again, then she replies “yes” with a probability of 1. This is called
A− A response replicability. In probabilistic terms, this notion is formalized as

Pr(A = x, A = x′) = 0, x 6= x′. (4)

A− A RRE is valid for a classical observable represented by a random variable. Let
P = (Ω,F , P) be a Kolmogorov probability space (see Appendix A), and let A be a discrete
random variable. Then,

Pr(A = x, A = x′|P) ≡ P(ω ∈ Ω : A(ω) = x, A(ω) = x′) = 0, x 6= x′. (5)

A − A RRE is also valid for a quantum observable represented by Hermitian operator
A. Let (EA(x)) be its spectral family of projections corresponding to the eigenvalues (we
consider only operators with discrete spectra), i.e.,

A = ∑
x

xEA(x).

Then, for a pure state ψ,

Pr(A = x, A = x′|ψ) ≡ ||EA(x)EA(x′)ψ||2 = 0, x 6= x′. (6)

This is the distinguishing feature of quantum observables of the projection type.
Human decision-making commonly involves another property—A− B− A response

replicability. Suppose that after answering the A-question with the “yes”-answer, Alice is
asked another question B. She replies with some answer, and then she is asked A again. In
social opinion polls and other natural decision-making experiments, Alice definitely repeats
her original answer to A, “yes”. This is A− B− A response replicability. In probabilistic
terms, this notion is formalized as

Pr(A = x, B = y, A = x) = Pr(A = x, B = y). (7)

A− B− A RRE is valid for classical observables represented by random variables. Let
A, B be discrete random variables. Then,

Pr(A = x, B = y, A = x|P) ≡ P(ω ∈ Ω : A(ω) = x, B(ω) = y, A(ω) = x) = (8)

Pr(A = x, B = y|P).

A − B − A RRE is also valid for quantum observables represented by commuting
Hermitian operators A, B. Let (EA(x)) and (EB(y)) be their spectral families—projections
corresponding to the eigenvalues. Then, for a pure state ψ,

Pr(A = x, B = y, A = x|ψ) ≡ ||EA(x)EB(y)EA(x)ψ||2 = (9)

||EA(x)EB(y)ψ||2 = Pr(A = x, B = y|ψ).

Since commutativity implies the existence of the joint probability distribution, (8) im-
plies (9).

The combination of A− A with A− B− A and B− A− B response replicability is
called the response replicability effect (RRE). This effect holds for classical observables, random
variables, and compatible quantum observables of the projection type.

Theorem 2. [161] The projection observables P and Q show RRE in state ψ if and only if the
distributive law holds for this state, i.e.,

[X ∧ (Y ∨ Z)]ψ = [(X ∧Y) ∨ (X ∧ Z)]ψ, (10)

for X, Y, Z = P, Q, P̄, Q̄.
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As was shown in [161], RRE can be checked experimentally. For the moment, only one
experimental test has been done [170], and its design and methodology were questioned by
a few researchers; see comments on the PLOS One webpage for this article. Reference [161]
could possibly attract the attention of experimenters to RRE as a test for the non-classicality
of human logic.

5.1. Quantum vs. Quantum-like Cognition

We emphasize that quantum-like modeling of cognition should be sharply distin-
guished from quantum brain studies (see, e.g., [171–180]) attempting to reduce information
processing by cognitive systems, including “generation of consciousness”, to quantum
physical effects in the brain. However, we do not criticize the quantum brain project, even
though its difficulties are well known; e.g., the brain is too hot and big, and the scales of
neurons operating in the brain are too rough compared to quantum physical scales.

In quantum-like modeling, it is simply not important whether the genuine quantum
physical processes in brain cells contribute to cognition or not. Generally, quantum-like
modeling is performed on the meta-level of cognition; it does not concern the biophysical
processes in neurons. In this framework, a biosystem—specifically, the brain—is treated as
a black box whose information processing cannot be described by classical probability [181]
(CP) and, hence, by classical information theory. Non-classical probability and informa-
tion theories are in demand. In particular, in decision-making, exploring CP leads to
various paradoxes that are typically coupled to the irrational behavior of humans. My
suggestion [2] was to employ quantum probability (QP) and quantum information theories
instead of classical ones. Why should special quantum theory be involved? This is a
complex problem.

5.2. Classical, Quantum, or More General Probability Theories?

There exist a plethora of other models that are different than CP and QP. The use of QP
in, e.g., decision-making was not derived from basic principles of cognition and psychology.
Commonly, QP is used pragmatically, to resolve the basic paradoxes of classical decision
theory and to apply a general probabilistic framework to decision-making in all areas of
humanities and economics, as well as in biology. There is no a priori reason to hope that
QP will cover all problems that arise in decision-making. One might find paradoxes even
in QP-based decision theory. Perhaps other probabilistic models different from both CP
and QP should be employed.

Surprisingly, physicists have the same problem. In contrast to relativity theory, QM
was not derived from natural physical principles (see Zeilinger [182] for a discussion of
this problem). There is no reason to expect that all experiments in the micro-world would
match QP constraints.

In physics, one typically debates CP vs. QP and classical vs. quantum physics. How-
ever, one can test whether the physics of microsystems violate QP laws, i.e., whether
electrons and photons can behave exotically even from a QP viewpoint. The corresponding
test is given by the Sorkin equality [183] for the three-slit experiment. It is really surprising
that two- and three-slit experiments have such different probabilistic structures. The three-
slit experiment was done by the Weihs group (Austria). They did not find deviations from
QP, and the Sorkin inequality was not violated [184,185]. Similar experiments can be done
for decision-making by humans by using the theoretical formalism of the Sorkin inequality
in terms of quantum probabilities [186].

6. Biosystems as Open Quantum-like Systems

Any living biosystem is an open system and, to analyze its behavior, it is reasonable to
take advantage of the open quantum systems theory, whether or not the biosystems are
acknowledged as information processors and the open quantum systems theory is treated
as part of the quantum information theory. The latter is the most general information theory,
with classical information theory as a particular case. Thus, the open quantum systems
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part of quantum-like modeling concerns information processing in complex biosystems
interacting with their environments. From the information point of view, even cells or
proteins are very complex systems.

The challenging problem of mathematical formalization of the unconsciousness–
consciousness interrelation can also be handled by the open quantum systems theory [70,82].
Consciousness plays the role of an apparatus performing measurements over uncon-
sciousness. This formalism matches well with the Higher Order Theory of Conscious-
ness [187–191]. It is used to mathematically model the emotional coloring of conscious
experiences. Such coloring is framed as contextualization. Therefore, the theory of emotions
is coupled with the hot topic of contextuality in quantum foundations. Finally, we discuss
the Bell-type experiments [192–195] for emotional coloring [82] (see also [133–138] for such
experiments in cognition and decision-making).

6.1. What Is Life?

Treating biosystems as quantum-like information processors can explain order stability
in them, i.e., present the quantum-like formalization of Schrödinger’s speculations in his
well-known book “What is life?" [196] (see [197]). Schrödinger stressed that order stability
is one of the characteristic features of biosystems. Entropy can be used as a quantitative
measure of order. He also noted that, in physical systems, entropy has the tendency to
increase (the Second Law of Thermodynamics for isolated classical systems and dissipation
in open classical and quantum systems). In contrast, biosystems exceed this tendency.
Schrödinger asked: “How?” Quantum information and open systems theory may give the
answer to this fundamental question of modern science.

In [197], the process of biosystems’ adaptation to the surrounding environment is
described by the Gorini–Kossakowski–Sudarshan–Lindblad equation [110], where the von Neu-
mann and linear quantum entropies are employed as measures of the disorder degree. This
equation describes Markovian evolution, so we work with quantum Markov dynamics.
Markovianity possesses the strong constraint on the class of mental state dynamics. The de-
scription of information processing in biosystems with quantum non-Markovian dynamics
is more promising, but at the same time it is more complicated.

We highlight the role of a special class of quantum dynamics that generates a camel-like
shape for quantum entropies. The camel’s hump represents:

• (a) The entropy increase in the process of the initial adaptation to the environment;
• (b) The entropy decrease at the post-adaptation stage of the dynamics.

Our analysis [197] is based on a numerical simulation, and the analytical description
of such a class of quantum dynamics is necessary.

6.2. Order Stability in Complex Biosystems in Spite of Instability in Subsystems

Once again, the theory of open quantum systems is used (see [198]) in attempting to
bring more clarification to the question “What is life?” We consider a complex biosystem S
composed of many subsystems, such as proteins, cells, or neural networks in the brain, i.e.,
S = (Si). We study the following problem:

Whether the composed system S can preserve the “global order” in the situation of
increase in local disorder and whether S can preserve its entropy while some subsystems
Si increase their entropies.

It is shown that, within quantum information theory, the answer is positive [198].
Entanglement of the subsystems’ states plays a crucial role. In the absence of entanglement,
the increase in local disorder generates the increase in disorder in the compound system S
(as in the classical regime).

6.3. Modeling of Brain Functioning: From Electrochemical to Quantum Information States

As an application of the open quantum systems theory to cognition, we suggest a
quantum-like model of the brain’s functioning (see [70,76,82]). In this model, the general
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approach of quantum-like modeling—beginning directly with the quantum information
representation of the biosystems’ states—is broken. We start by considering the electro-
chemical states of neurons encoded in action potentials. Such states generate the brain’s
mental states, which are processed with open quantum systems dynamics.

The model does not refer to the genuine quantum physical processes in the brain.
Hence, it does not suffer from the well-known problem of matching the quantum and
neural scales, temporal, spatial, or temperature (cf., [171–180]). In this model, uncertainty
generated by the action potential of a neuron is represented as quantum-like superposi-
tion of the basic mental states corresponding to some neural code, e.g., quiescent/firing
neural code.

Mathematically, the neurons’ state space is described as a complex Hilbert space of
quantum information states. The state of a neural network is presented in the tensor
product of single-neuron state spaces.

The brain’s mental functions perform self-measurements by extracting concrete an-
swers to questions from the quantum information states. This extraction is modeled in the
framework of the theory of open quantum systems.

The notion of self-measurement (or self-observation) as used in this paper can be associ-
ated with the notion of representation employed by neuroscientists. This is not based on the
idea of “someone observing something” (cf., Dennett’s critique of the homunculus [199]).

The dynamics of the state of mental function F are described by the quantum dynami-
cal equation. Its stationary states represent classical statistical mixtures of possible outputs
(decisions) of mental function F. A stationary state ρstationary determines the probabilities of
possible outcomes. How does F select one concrete outcome? A possible model is based
on a classical random generator coupled to F, generating its outcomes with probabilities
encoded in ρstationary (see [9–14] for details). In this way, one can escape appealing to the
state collapse.

6.4. Decision-making via Decoherence

The above scheme of resolution of uncertainty through interaction with the environ-
ment is known as quantum dynamical decision-making or decision via decoherence [9–14] (see
also [200] on the experimental study of eye tracking in the process of decision-making and
its modeling with the Gorini–Kossakowski–Sudarshan–Lindblad equation [110]). Here, the
experimentally observed stabilization in eye tracking matches perfectly with stabilization
of the solution to this equation. One of specialties of this model is in employing three-
dimensional space of mental states. The equation is phenomenological, i.e., it is not derived
from neurophysiology beyond eye moving in the process of decision-making. We hope
that this study will stimulate further cooperation for finding the physical and physiological
signatures of the mental state stabilization in the process of decision-making. It would also
be interesting to perform new experiments with a design similar to the experiment in [200]
and check whether the same phenomenological equation as in [200] can be used.

The most promising realization of this scheme is the “differentiation” model [201], by
which the mental state experiences step-by-step state transitions under the influence of sur-
rounding electrochemical environmental factors. The differentiation leads to stabilization
of the biosystem’s state. This model is applicable for all biological and social scales, from
cells to ecological and social systems.

Decoherence is a deep foundational notion. Heuristically, it can be interpreted as
the loss of quantumness, transition from QP to CP, and washing out of interference of
probabilities (see, e.g., Zurek [202]). It is quantified with linear entropy, or the measure
of a state’s purity. In quantum information theory, typically decoherence is considered a
negative factor disturbing information processing. In quantum dynamical decision-making,
decoherence plays a constructive role as a generator of decisions.
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6.5. Consciousness as Observer on Unconsciousness: Quantum Formalization

The open quantum systems theory is also used for mathematical formalization of the
consciousness–unconsciousness interaction, as well as the information exchange between
them. Consciousness plays the role of a measurement device, as it performs observa-
tions over the states of unconsciousness. These observations can be interpreted as the
brain’s self-observations. Therefore, a human’s thoughts and decisions are generated in
the complex process of interaction between unconscious and conscious states. From the
viewpoint of quantum foundations, we use Bohr’s interpretation of the outcomes of quan-
tum measurements as generated in the complex process of interaction between a system
and measurement apparatus [165–169]. In particular, these outcomes are not objective
properties of a system that could be associated with it before measurement. This is a good
place to present the following widely cited statement of Bohr (1949) [165]:

This crucial point ... implies the impossibility of any sharp separation between the be-
haviour of atomic objects and the interaction with the measuring instruments which
serve to define the conditions under which the phenomena appear. In fact, the individu-
ality of the typical quantum effects finds its proper expression in the circumstance that
any attempt of subdividing the phenomena will demand a change in the experimental
arrangement introducing new possibilities of interaction between objects and measuring
instruments which in principle cannot be controlled. Consequently, evidence obtained un-
der different experimental conditions cannot be comprehended within a single picture, but
must be regarded as complementary in the sense that only the totality of the phenomena
exhausts the possible information about the objects.

We want to connect quantum foundations and especially this specific statement by
Bohr with consciousness studies. As is well known, there are two basic competing theoreti-
cal frameworks for consciousness (see [203] for a more systematic classification):

• First Order Theory of Consciousness [204–208];
• Higher Order Theory of Consciousness [171–189,191,199,203,209–211].

These theories can be characterized according to [191] as follows.
First-order theorists, such as Block, argue that processing related to a stimulus is

all that is needed for there to be phenomenal consciousness of that stimulus [204–208].
Conscious states, in this view, are states that make us aware of the external environment.
Additional processes, such as attention, working memory, and metacognition, simply allow
cognitive access to and introspection about the first-order state. In the case of visual stimuli,
the first-order representation underlying phenomenal consciousness is usually said to
involve the visual cortex, particularly the secondary rather than the primary visual cortex.
Cortical circuits, especially those involving the prefrontal and parietal cortex, simply make
possible cognitive (introspective) access to the phenomenal experience occurring in the
visual cortex.

In contrast, David Rosenthal and other higher-order theorists argue that a first-order
state resulting from stimulus-processing alone is not enough to make possible the conscious
experience of a stimulus. In addition to having a representation of the external stimulus,
one also must be aware of this stimulus representation. This is made possible by a HOR
(higher order representation), which makes the first-order state conscious. In other words,
consciousness exists by virtue of the relation between the first- and higher-order states.
Cognitive processes, such as attention, working memory, and metacognition, are key to the
conscious experience of the first-order state. In neural terms, the areas of the GNC, such as
the prefrontal and parietal cortex, make conscious the sensory information represented in
the secondary visual cortex.

The Higher Order Theory sharply distinguishes between unconscious and conscious
mental processing in the brain. Cognition is made conscious via a higher-order observation of
the first-order processing. In QM, an observation is not simply non-disturbative inspection
of the state of a quantum system. This is a complex process of interaction between a system
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and apparatus used for measurement. The latter statement is interpretation dependent. In
the physical state, collapse theory observation is reduced to instantaneous state collapse.

Bohr’s viewpoint on quantum measurement matches the Higher Order Theory of
Consciousness. A conscious experience is not simply introspection of the unconscious
state, but rather a complex interaction process modifying the state of the compound system
unconscious–conscious.

In the quantum-like model, unconsciousness and consciousness are two information
processors, denoted by the symbols UC and C. The corresponding state spaces, com-
plex Hilbert spaces, are denoted by the symbols HUC and HC . Their tensor product
H = HUC ⊗HC is the state space of a compound system S = (UC, C). C performs measure-
ments of various mental observables on the states of UC.

Consider a mental observable A (task, question) described mathematically by a Her-
mitian operator denoted by the same symbol A. Its measurement is based on interaction
between the states of unconsciousness and consciousness, described mathematically by
density operators ρ and Σ, acting inHUC andHC , respectively. The interaction is descried
as unitary operator U : H → H. Here U ≡ UA, i.e., interaction depends on the observable
under measurement. This is a good place to remark that “quantum interaction” should not
be identified with a classical force-like interaction. In the quantum information framework,
U represents the information exchange between the states ρ and Σ.

When C starts the measurement process over UC, the state R of the compound system
S (“brain’s state”) is separable, i.e., R = ρ⊗ Σ. Then, the interaction operator U generates
the entangled state RU = URU?. The process of observation is probabilistic, and the output
A = x is generated with its probability determined by the quantum instrument IA(x) (see
Appendix B for an introduction to quantum instruments). The change of the state ρ of the
system S caused by the measurement for the outcome A = x is represented with the aid of
the map IA(x) in the space of operators defined as

IA(x)ρ = TrHC [(I ⊗ EA(x))U(ρ⊗ σ)U?], (11)

where A = ∑x xEA(x) is the spectral decomposition of the Hermitian operator A. This is
the special application of the so-called indirect measurement scheme (see [94] for a simple
introduction). The process of conscious observation of unconscious states is probabilistic.
P(A = x|ρ) is determined by Formula (A2); see Appendix B.

The main message is that one can try to formalize unconsciousness–consciousness
interaction and generation of conscious experiences within the quantum information and
open systems framework. Thus, such still-mysterious spheres of mental information
processing can be embedded into quantum measurement theory. The latter is characterized
by operating with incompatible observables.

In the quantum-like model, consciousness can obtain answers to incompatible ques-
tions. Such questions cannot be combined consistently. Nevertheless, consciousness of the
quantum reasoner can handle them separately. Since incompatibility means the absence of
the common probabilistic picture, the quantum reasoner does not try to construct the joint
probability space for such questions. Construction of the classical probabilistic representa-
tion consumes time and computational resources. Therefore, the use of the quantum-like
representation can save resources.

In [70], this model was employed to model the process of transformation of sensation
into perceptions. This is the quantum realization of the von Helmholtz theory of sensation-
perception [212]. According to von Helmholtz [212], perceptions are not simply copies of
sensations, nor “impressions like the imprint of a key on wax”; they result from the com-
plex processing of signals coming from the external environment, including unconscious
cognitive processing. Creation of a perception is described in [213] as follows:

Sensory information undergoes extensive associative elaboration and attentional mod-
ulation as it becomes incorporated into the texture of cognition. This process occurs
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along a core synaptic hierarchy which includes the primary sensory, upstream unimodal,
downstream unimodal, heteromodal, paralimbic and limbic zones of the cerebral cortex.

It is important to stress that the above presentation is not about “understanding”
or “explanation” of unconsciousness and consciousness and their interaction. We are
discussing mathematical modeling. In fact, physics is not about “understanding” or
“explanation” either; it is also about mathematical modeling. I like to illustrate the situation
in physics by referring to the theory of the electromagnetic field. Its basic entities, the electric
and magnetic fields, E(t, x) and B(t, x), are just mathematical variables. They cannot be
measured (only energy can be measured; i.e., the quantity

∫
O(|E(t, x)|2 + |B(t, x)|2)dxdt,

where O is a domain in space-time). Before Einstein’s theory of relativity rejected ether,
one could imagine the fields as the waves in the ether ocean. However, in modern physics,
even such a heuristic picture is impossible. QM is even worse, as it can only predict the
probabilities of observations and mathematically model the process of the state evolution.
A quantum state |ψ〉 is also a mathematical quantity used for prediction of probabilities.
In this sense, the aim of quantum-like modeling of unconsciousness–consciousness is to
mathematically structure conscious experiences.

6.6. Emotional Coloring of Conscious Experiences

We start by citing LeDoux and Brown [191]:

Emotion schema are learned in childhood and used to categorize situations as one goes
through life. As one becomes more emotionally experienced, the states become more
differentiated: fright comes to be distinguished from startle, panic, dread, and anxiety.

This statement can be interpreted as follows: each emotion-generation scheme is
crystallized on the basis of life-contexts. Emotions are employed markers of contexts
corresponding to the surrounding physical and mental environment.

As was emphasized by Ekman [214], emotions represent adaptive reactions to environmen-
tal challenges; they are a result of human evolution; they provide optimal (from the viewpoint of
computational resources) solutions to ancient and recurring problems that faced our ancestors.

The unconscious–conscious framework can be explored for quantum-like modeling of
interconnected dynamics of perceptions and emotions [82]. More generally, this framework
describes the emotional coloring process for a variety of conscious experiences, including
decision-making. Two classes of observables are considered: perceptions and emotions.
These observables are represented by Hermitian operators acting in the corresponding
unconscious state spaces (or, more generally, by projection valued measures or PVMs).
The total unconscious state space is their tensor product. Emotional coloring is structured
within quantum contextuality formalism: emotional observables determine contexts. Such
contextualization reduces degeneration of spectra for observables representing conscious
experiences such as, for instance, perceptions or decision-making.

Reference [82] concludes with an experimental test of contextual emotional coloring
of conscious experiences (cf., [133–138]), namely, on the violation of the CHSH inequality—
the special Bell inequality associated with the names of Clauser, Horne, Shimony, and
Holt [195]. Undertaking emotion-contextuality experiments such as this could serve as
a step towards the experimental justification of the quantum-like model of emotional
contextualization of conscious experiences.

7. Quantum Instruments in Physics, Psychology, and Decision-making

One of the specialties of my research over the last few years is exploring quantum
instruments [111–114] in applications for psychology and decision-making, starting with
article [70] devoted to modeling unconscious–conscious interaction. Quantum instruments
are the basic tools of the modern theory of quantum measurements and open quantum
systems. They describe the probability distributions of measurements’ outcomes and the
quantum state transformations generated by measurements’ feedback. Thus, a quantum
instrument describes both probability and its update via quantum state update.
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Such updates are not reduced to ones based on the projections, i.e., given by the Lüders
projection postulate. Rather, more general state space transformations are also needed,
both in quantum physics, especially quantum information theory, and in quantum-like
modeling, e.g., in decision-making and psychology.

Instruments can represent quantum observables by a positive operator valued measure
(POVM), or generalized quantum observables. Typically, POVMs are considered the basic
entities of the modern theory of quantum measurements, especially in quantum information
theory. However, POVMs are just byproducts of quantum instruments. POVMs do not
uniquely determine a state transformation coupled to a measurement’s feedback on a
system’s state.

In physics, quantum instruments and, in particular, POVMs associated with them were
introduced at the advanced stage of quantum theory’s development. However, modeling
of cognition and decision-making should be based on quantum instruments even for basic
psychological effects; for example, the combination of the question order and response
replicability effects [94,95]. The von Neumann measurement theory has a restricted domain
of application [67,215].

Quantum instrument formalism is derived from open quantum systems theory through
the indirect measurement scheme employing the unitary operator realization of the interac-
tion between a system and a measurement apparatus [114].

8. Question Order and Response Replicability Effects and QQ-Equality

The question order effect (QOE) [119] is an effect of the dependence of the sequential
joint probability distribution of answers on the questions’ order:

pAB 6= pBA.

We remark that, for classical probability (see Appendix A),

pAB(x, y) = P(ω ∈ Ω : A(ω) = x, B(ω) = y) =

P(ω ∈ Ω : B(ω), A(ω) = x) = pBA(y, x).

Therefore, no-QOE exists in classical probability formalism. However, the experimen-
tal statistical data collected in social opinion polls demonstrated QOE [119]. A simple and
natural example is the Clinton–Gore opinion poll [119]. In this opinion-polling experiment,
people were asked one question at a time, e.g.,

• A = “Is Bill Clinton honest and trustworthy?”
• B = “Is Al Gore honest and trustworthy?”

Two sequential probability distributions were calculated on the basis of the experi-
mental statistical data, pAB and pBA (first question A and then question B, and vice versa).

Wang and Busemeyer [120] modelled QOE with observables of the projection type,
with state update given by the Lüders projection postulate (see also [121]). In the theory of
quantum instruments, these are projective instruments (see Appendix B).

We remark that, for compatible observables of the projection type, [A, B] = 0, there is
no QOE:

Pr(A = x, B = y|ψ) ≡ ||EB(y)EA(x)ψ||2 = (12)

||EA(x)EB(y)ψ||2 ≡ Pr(A = x, B = y|ψ).

Therefore, operators employed in [120] do not commute, and [A, B] 6= 0. However, this
strategy was challenged in [67]. This challenge is related to RRE and Theorem 2 (Section 5).

As was demonstrated in [67], the QOE+RRE combination cannot be modeled by
von Neumann observables with a projection state update. In [215], Khrennikov and Basivea
tried to resolve this problem by considering a more general class of observables given by
so-called atomic quantum instruments, which are the simplest instruments with the state
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update of the non-projective type (see Appendix B). However, even for such generalized
observables, QOE cannot be combined with RRE.

In article [94], Ozawa and Khrennikov overcame this difficulty within quantum instru-
ment theory by using the mathematical construction based on the indirect measurement
scheme [114]. The unitary operators describing the interaction of a system and an observ-
able (question) are directly written via their actions. The instruments employed in [94]
are non-atomic. In this model, the systems are humans, and the observables are questions
asked of them.

Reference [94] contains rather long calculations in Hilbert space. They are not com-
plicated but might be boring to the inexperienced reader. One may be satisfied by the
statement that, for QOE+RRE, it is possible to construct quantum instruments by using the
indirect measurement scheme. For the more experienced reader, the calculations can serve
as the basis for construction of instruments for various combinations of psychological or
social effects.

We remark that, in contrast to QOE, which has attracted a lot of attention in experi-
mental psychology and decision-making and which was strongly supported by statistical
data [119], RRE is not supported by experimental studies. We can mention just one experi-
ment [170]. We hope that the result and discussion in [161] will stimulate psychologists to
perform experiments to check RRE.

Wang and Busemeyer derived the famous QQ-equality (QQE), which is an amazing
(and unexpected) property of cognitive and social data [121]. This is a non-parametric
inequality which the probabilities of an experiment must satisfy in order for a quantum
model to exist for them, as follows:

p(AyBn) + p(AnBy)− p(ByAn)− p(BnAy) = 0,

where A and B correspond to questions with two possible outcomes ‘Yes’ and ‘No’. The
joint probabilities are the probabilities of receiving given answers to questions A and B in
the same order as they appear, e.g., P(AyBn) means the probability of obtaining a negative
answer to question B after obtaining an affirmative answer to question A.

QQE can be easily derived within the standard von Neumann measurement theory,
with Hermitian operators and the projection state update. However, von Neumann theory
is not powerful enough to describe the combination of QQE with other psychological
effects, e.g., QOE+RRE.

Ozawa and Khrennikov [95] proved that the combination QOE+RRE+QQE can be
modeled within the theory of quantum instruments.
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Appendix A. Classical Probability

Classical probability theory was mathematically formalized, set, and measured in a
theoretical framework by Kolmogorov in 1933 [181].

Let Ω be a set of any origin; its points are called elementary events. Consider a
collection of subsets F of Ω forming Boolean σ-algebra, i.e., it is closed with respect to
countable unions, intersections, and the operation of the complement. If Ω is finite, then F
is a collection of all its subsets. Let P be a probability measure on F .

The triple P = (Ω,F , P) is called the probability space.
A random variable is mapped as A : Ω→ R, having some special property: measura-

bility. We consider only random variables with the discrete range of values. For A and its
value x, set ΩA=x = {s ∈ Ω : A(s) = x}, and define the probability distribution of A as
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pA(x) = P(ΩA=x). In the discrete case, measurability means that all sets of the form ΩA=x
belong to F .

Appendix B. A Brief Summary of Quantum Formalism

Let H be a complex Hilbert space; for simplicity, we restrict consideration to finite
dimensional spaces. We recall that a pure quantum state can be represented by a normalized-
by-1 vector of H, i.e., ||ψ|| = 1. Two vectors that differ only by a phase, i.e., ψ = eiθφ,
represent the same quantum state. When considering a single state, its phase does not play
any role, but by manipulating a few states, the relative phases play a crucial role, e.g., in
the interference effect.

A density operator ρ is determined by the conditions:

• ρ = ρ? (therefore, it is a Hermitian operator);
• ρ ≥ 0;
• Trρ = 1.

The space of density operators is denoted by the symbol D ≡ D(H).
Density operators represent mixed quantum states, or statistical mixtures of pure states.

We note that each pure state ψ can be represented by a density operator, or projection on
the state vector, ψ.

The space of linear Hermitian operators in H is linear space over real numbers.
We consider linear operators acting in it to be superoperators. A superoperator is called

positive if it maps the set of positive operators onto itself: for ρ ≥ 0, T(ρ) ≥ 0.
Any map x → IA(x), where for each x, the map IA(x) is a positive super-operator and

∑
x
IA(x) : D → D (A1)

is called a quantum instrument. It represents one of the measurement procedures of an observ-
able A.

The probability of the output A = x is given by the Born rule in the form

P(A = x|ρ) = Tr [IA(x)ρ]. (A2)

We note that measurement with the output A = x generates the state-update by
transformation

ρ→ ρx =
IA(x)ρ

TrIA(x)ρ
. (A3)

An observable A can be measured by a variety of instruments generating the same
probability distribution but different state updates.

Let
IA(x)ρ = P(x)ρP(x), (A4)

where (P(x)) are projections constrained as

P(x)P(y) = 0, x 6= y, (A5)

∑
x

P(x) = I. (A6)

Such an instrument is called a projection instrument. Projection instruments
correspond to the standard quantum observables given by Hermitian operators; here,
A = ∑x xP(x). In fact, the later expression is ambiguous: it combines both the Born rule
for calculation of probabilities of outcomes and the rule for the quantum state update. The
basic idea beyond the quantum instrument theory is to split these two rules and then unify
them in superoperators (IA(x)).
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The most natural generalization of projective instruments is an atomic instrument. Let
(V(x)) be a family of linear operators. Similarly to (A6), the normalization condition has
the form

∑
x

V(x)?V(x) = I. (A7)

An atomic quantum instrument is a super-operator of the form:

ρ→ I(x)ρ = V(x)ρV?(x). (A8)

Applications of the quantum instrument theory to quantum information are typically
restricted by the use of atomic instruments.

We did not present here essentials of the POVMs theory. See [110] for a brief intro-
duction, and see [6] for applications of open quantum systems and instruments in biology,
decision-making and cognition, and social and political sciences.

References
1. Plotnitsky, A.; Haven, E. (Eds.) The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov; Springer: Berlin/Heidelberg,

Germany; New York, NY, USA, 2023.
2. Khrennikov, A. Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and

anomalous phenomena. Found. Phys. 1999, 29, 1065–1098. [CrossRef]
3. Jaeger, G. Entanglement, Information, and the Interpretation of Quantum Mechanics (The Frontiers Collection); Springer:

Berlin/Heidelberg, Germany; New York, NY, USA, 2009.
4. Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum information biology: From information

interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Found. Phys. 2015, 45,
1362–1378. [CrossRef]

5. Arndt, M.; Juffmann, T.; Vedral, V. Quantum physics meets biology. HFSP J. 2009, 3 386–400. [CrossRef]
6. Khrennikov, A. Open Quantum Systems in Biology, Cognitive and Social Sciences; Springer: Berlin/Heidelberg, Germany; New York,

NY, USA, 2023.
7. Accardi, L.; Khrennikov, A.; Ohya, M. Quantum Markov model for data from Shafir-Tversky experiments in cognitive psychology.

OSID 2009, 16, 371–385. [CrossRef]
8. Asano, M.; Ohya, M.; Tanaka, Y.; Khrennikov, A.; Basieva, I. On application of Gorini-Kossakowski-Sudarshan-Lindblad equation

in cognitive psychology. OSID 2011, 18, 55–69. [CrossRef]
9. Asano, M.; Ohya, M.; Tanaka, Y.; Basieva, I.; Khrennikov, A. Quantum-like model of brain’s functioning: Decision making from

decoherence. J. Theor. Biol. 2011, 281, 56–64. [CrossRef] [PubMed]
10. Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum-like model for the adaptive dynamics of the

genetic regulation of E. coli’s metabolism of glucose-lactose. Syst. Synth. Biol. 2012, 6, 1–7. [CrossRef] [PubMed]
11. Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Towards Modeling of Epigenetic Evolution with the Aid of

Theory of Open Quantum Systems; AIP: Melville, NY, USA, 2012; Volume 1508, pp. 75–85.
12. Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y. Quantum-like dynamics of decision-making. Physica A 2012, 391,

2083–2099. [CrossRef]
13. Asano, M.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Quantum Adaptivity in Biology: From Genetics to Cognition; Springer:

Berlin/Heidelberg, Germany; New York, NY, USA, 2015.
14. Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y. A quantum-like model of selection behavior. J. Math. Psychol. 2017,

78, 2–12. [CrossRef]
15. Wigner, E.P. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl. Math. 1960, 13, 1–14.

[CrossRef]
16. Arnol’d, V.I. On teaching mathematics. Rus. Math. Surv. 1998, 53, 229–248. [CrossRef]
17. Aerts, D.; Gabora, L.; Sozzo, S. Concepts and their dynamics: A quantum-theoretic modeling of human thought. Top. Cogn. Sci.

2013, 5, 737–772. [CrossRef]
18. Aerts, D.; Sozzo, S.; Tapia, J. Identifying quantum structures in the Ellsberg paradox. Int. J. Theor. Phys. 2014, 53, 3666–3682.

[CrossRef]
19. Alodjants, A.P.; Bazhenov, A.Y.; Khrennikov, A.Y.; Bukhanovsky, A.V. Mean-field theory of social laser. Sci. Rep. 2022, 12, 8566.

[CrossRef] [PubMed]
20. Asano, M.; Basieva, I.; Pothos, E.M.; Khrennikov, A. State entropy and differentiation phenomenon. Entropy 2018, 20, 394.

[CrossRef] [PubMed]
21. Bagarello, F. Quantum Dynamics for Classical Systems: With Applications of the Number Operator; Wiley Ed.: New York, NY,

USA, 2012.

http://doi.org/10.1023/A:1018885632116
http://dx.doi.org/10.1007/s10701-015-9929-y
http://dx.doi.org/10.2976/1.3244985
http://dx.doi.org/10.1142/S123016120900027X
http://dx.doi.org/10.1142/S1230161211000042
http://dx.doi.org/10.1016/j.jtbi.2011.04.022
http://www.ncbi.nlm.nih.gov/pubmed/21554890
http://dx.doi.org/10.1007/s11693-012-9091-1
http://www.ncbi.nlm.nih.gov/pubmed/23730359
http://dx.doi.org/10.1016/j.physa.2011.11.042
http://dx.doi.org/10.1016/j.jmp.2016.07.006
http://dx.doi.org/10.1002/cpa.3160130102
http://dx.doi.org/10.1070/RM1998v053n01ABEH000005
http://dx.doi.org/10.1111/tops.12042
http://dx.doi.org/10.1007/s10773-014-2086-9
http://dx.doi.org/10.1038/s41598-022-12327-w
http://www.ncbi.nlm.nih.gov/pubmed/35595814
http://dx.doi.org/10.3390/e20060394
http://www.ncbi.nlm.nih.gov/pubmed/33265484


Entropy 2023, 25, 886 19 of 24

22. Bagarello, F.; Oliveri, F. A phenomenological operator description of interactions between populations with applications to
migration. Math. Model. Meth. Appl. Sci. 2013, 23, 471–492. [CrossRef]

23. Bagarello, F.; Haven, E. Towards a formalization of a two traders market with information exchange. Phys. Scr. 2015, 90, 015203.
[CrossRef]

24. Bagarello, F.; Basieva, I.; Khrennikov, A. Quantum field inspired model of decision making: Asymptotic stabilization of belief
state via interaction with surrounding mental environment. J. Math. Psychol. 2018, 82, 159–168. [CrossRef]

25. Bagarello, F.; Basieva, I.; Pothos, E.M.; Khrennikov, A. Quantum like modeling of decision making: Quantifying uncertainty with
the aid of Heisenberg–Robertson inequality. J. Math. Psychol. 2018, 84, 49–56. [CrossRef]

26. Bagarello, F. Quantum Concepts in the Social, Ecological and Biological Sciences; Cambridge University Press: Cambridge, UK, 2019.
27. Bagarello, F.; Gargano, F.; Oliveri, F. Spreading of competing information in a network. Entropy 2020, 22, 1169. [CrossRef]
28. Basieva, I.; Pothos, E.; Trueblood, J.; Khrennikov, A.; Busemeyer, J. Quantum probability updating from zero prior (by-passing

Cromwell’s rule). J. Math. Psychol. 2017, 77, 58–69. [CrossRef]
29. Basieva, I.; Pandey, V.; Khrennikova, P. More Causes Less Effect: Destructive Interference in Decision Making. Entropy 2022,

24, 725. [CrossRef] [PubMed]
30. Basieva, I.; Khrennikov, A. Conditional probability framework for entanglement and its decoupling from tensor product structure.

J. Phys. A Math. Theor. 2022, 55, 395302. [CrossRef]
31. Bazhenov, A.Y.; Tsarev, D.V.; Alodjants, A.P. Mean-field theory of superradiant phase transition in complex networks. Phys. Rev.

E 2021, 103, 062309. [CrossRef]
32. Boyer-Kassem, T.; Duchene, S.; Guerci, E. Quantum-like models cannot account for the conjunction fallacy. Theor. Decis. 2015, 10,

479–510. [CrossRef]
33. Brenner, J.E. Logic in Reality; Springer: Dordrecht, The Netherlands, 2008.
34. Brenner, J.E.; Igamberdiev, A. Philosophy in Reality. A New Book of Changes; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 2021.
35. Broekaert, J.; Basieva, I.; Blasiak, P.; Pothos, E.M. Quantum-like dynamics applied to cognition: A consideration of available

options. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160387. [CrossRef]
36. Bruza, P.; Kitto, K.; Nelson, D.; McEvoy, C. Is there something quantum-like about the human mental lexicon? J. Math. Psychol.

2009, 53, 362–377. [CrossRef]
37. Dehdashti, S.; Fell, L.; Bruza, P. On the irrationality of being in two minds. Entropy 2020, 22, 174. [CrossRef]
38. Bruza, P.D.; Fell, L.; Hoyte, P.; Dehdashti, S.; Obeid, A.; Gibson, A.; Moreira, C. Contextuality and context-sensitivity in

probabilistic models of cognition. Cogn. Psychol. 2023, 140, 101529. [CrossRef]
39. Busemeyer, J.R.; Wang, Z.; Townsend, J.T. Quantum dynamics of human decision making. J. Math. Psychol. 2006, 50, 220–241.

[CrossRef]
40. Busemeyer, J.R.; Wang, Z.; Lambert-Mogiliansky, A. Empirical comparison of Markov and quantum models of decision making.

J. Math. Psychol. 2009, 53, 423–433. [CrossRef]
41. Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012.
42. Busemeyer, J.R.; Wang, Z.; Khrennikov, A.; Basieva, I. Applying quantum principles to psychology. Phys. Scr. 2014, T163, 014007.

[CrossRef]
43. Danilov, V.I.; Lambert-Mogiliansky, A. Expected utility theory under non-classical uncertainty. Theory Decis. 2010, 68, 25–47.

[CrossRef]
44. Danilov, V.I.; Lambert-Mogiliansky, A. Targeting in quantum persuasion problem. J. Math. Econ. 2018, 78, 142–149. [CrossRef]
45. Danilov, V.I.; Lambert-Mogiliansky, A. Preparing a (quantum) belief system. Theor. Comput. Sci. 2018, 752, 97–103. [CrossRef]
46. De Barros, J.A.; Suppes, P. Quantum mechanics, interference, and the brain. J. Math. Psychol. 2009, 53, 306–313. [CrossRef]
47. de Barros, A.J. Quantum-like model of behavioral response computation using neural oscillators. Biosystems 2012, 110, 171–182.

[CrossRef]
48. de Barros, J.A.; Oas, G. Quantum cognition, neural oscillators, and negative probabilities. In The Palgrave Handbook of Quantum

Models in Social Science: Applications and Grand Challenges; Haven, E., Khrennikov, A., Eds.; Macmillan Publishers Ltd.: London,
UK, 2017; pp. 195–228.

49. Dzhafarov, E.N.; Kujala, J.V. Selectivity in probabilistic causality: Where psychology runs into quantum physics. J. Math. Psychol.
2012, 56, 54–63. [CrossRef]

50. Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H.; Zhang, R.; Jones, M. On contextuality in behavioral data. Phil. Trans. Royal Soc. A
2016, 374, 20150234. [CrossRef]

51. Han, S.; Liu, X. An extension of multi-attribute group decision making method based on quantum-like Bayesian network
considering the interference of beliefs. Inf. Fusion 2023, 95, 143–162. [CrossRef]

52. Haven, E. Pilot-wave theory and financial option pricing. Int. J. Theor. Phys. 2005, 44, 1957–1962. [CrossRef]
53. Haven, E.; Khrennikov, A. Quantum mechanics and violation of the sure-thing principle: The use of probability interference and

other concepts. J. Math. Psychol. 2009, 53, 378–388.
54. Haven, E.; Khrennikov, A. Quantum Social Science; Cambridge University Press: Cambridge, UK, 2013.
55. Haven, E.; Khrennikov, A. Quantum probability and the mathematical modelling of decision-making. Phil. Trans. Royal Soc. A

2016, 374, 20150105. [CrossRef] [PubMed]

http://dx.doi.org/10.1142/S0218202512500534
http://dx.doi.org/10.1088/0031-8949/90/1/015203
http://dx.doi.org/10.1016/j.jmp.2017.10.002
http://dx.doi.org/10.1016/j.jmp.2018.03.004
http://dx.doi.org/10.3390/e22101169
http://dx.doi.org/10.1016/j.jmp.2016.08.005
http://dx.doi.org/10.3390/e24050725
http://www.ncbi.nlm.nih.gov/pubmed/35626608
http://dx.doi.org/10.1088/1751-8121/ac8bb3
http://dx.doi.org/10.1103/PhysRevE.103.062309
http://dx.doi.org/10.1007/s11238-016-9549-9
http://dx.doi.org/10.1098/rsta.2016.0387
http://dx.doi.org/10.1016/j.jmp.2009.04.004
http://dx.doi.org/10.3390/e22020174
http://dx.doi.org/10.1016/j.cogpsych.2022.101529
http://dx.doi.org/10.1016/j.jmp.2006.01.003
http://dx.doi.org/10.1016/j.jmp.2009.03.002
http://dx.doi.org/10.1088/0031-8949/2014/T163/014007
http://dx.doi.org/10.1007/s11238-009-9142-6
http://dx.doi.org/10.1016/j.jmateco.2018.04.005
http://dx.doi.org/10.1016/j.tcs.2018.02.017
http://dx.doi.org/10.1016/j.jmp.2009.03.005
http://dx.doi.org/10.1016/j.biosystems.2012.10.002
http://dx.doi.org/10.1016/j.jmp.2011.12.003
http://dx.doi.org/10.1098/rsta.2015.0234
http://dx.doi.org/10.1016/j.inffus.2023.02.018
http://dx.doi.org/10.1007/s10773-005-8973-3
http://dx.doi.org/10.1098/rsta.2015.0105
http://www.ncbi.nlm.nih.gov/pubmed/26621995


Entropy 2023, 25, 886 20 of 24

56. Haven, E.; Khrennikov, A.; Robinson, T.R. Quantum Methods in Social Science: A First Course; WSP: Singapore, 2017.
57. Haven, E.; Khrennikov, A. The Palgrave Handbook of Quantum Models in Social Science; Macmillan Publishers Ltd: London, UK, 2017.
58. Haven, E. Quantum mechanical pragmatic rules and social science. Act. Nerv. Super. 2019, 61, 83–85 [CrossRef]
59. Khrennikov, A. (Ed.) Växjö interpretation of quantum mechanics. In Quantum Theory: Reconsideration of Foundations; Series

Mathematical Modeling arXiv:quant-ph/0202107; Växjö University Press: Växjö, Sweden, 2002; Volume 2, pp. 163–170.
60. Khrennikov, A. Quantum-like formalism for cognitive measurements. Biosystems 2003, 70, 211–233. [CrossRef]
61. Khrennikov, A. On quantum-like probabilistic structure of mental information. OSID 2004, 11, 267–275. [CrossRef]
62. Khrennikov, A. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena; Fundamental Theories of Physics;

Kluwer: Dordrecht, The Netherlands, 2004.
63. Khrennikov, A. Quantum-like model of cognitive decision making and information processing. Biosystems 2009, 95, 179–187.

[CrossRef]
64. Khrennikov, A. Contextual Approach to Quantum Formalism; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2009.
65. Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 2010.
66. Khrennikov, A.; Basieva, I. Quantum model for psychological measurements: From the projection postulate to interference of

mental observables represented as positive operator valued measures. NeuroQuantology 2014, 12, 324–336. [CrossRef]
67. Khrennikov, A.; Basieva, I.; Dzhafarov, E.N.; Busemeyer, J.R. Quantum models for psychological measurements: An unsolved

problem. PLoS ONE 2014, 9, e110909. [CrossRef]
68. Khrennikov, A. Quantum-like modeling of cognition. Front. Phys. 2015, 22, 77. [CrossRef]
69. Khrennikov, A. Towards information lasers. Entropy 2015, 17, 6969–6994. [CrossRef]
70. Khrennikov, A. Quantum-like model of unconscious-conscious dynamics. Front. Psychol. 2015, 6, 997–1010. [CrossRef]
71. Khrennikov, A. Social laser: Action amplification by stimulated emission of social energy. Phil. Trans. Royal Soc. A 2016,

374, 20150094. [CrossRef]
72. Khrennikov, A. Why quantum? In The Palgrave Handbook of Quantum Models in Social Science: Applications and Grand Challenges;

Haven, E., Khrennikov, A., Eds.; Palgrave Macmillan Ltd.: London, UK, 2017; pp. 321–334.
73. Khrennikov, A. Social laser model: From color revolutions to Brexit and election of Donald Trump. Kybernetes 2018, 47, 273–278.

[CrossRef]
74. Khrennikov, A.; Alodjants, A.; Trofimova, A.; Tsarev, D. On interpretational questions for quantum-Like modeling of social lasing.

Entropy 2018, 20, 921. [CrossRef] [PubMed]
75. Basieva, I.; Khrennikova, P.; Pothos, E.M.; Asano, M.; Khrennikov, A. Quantum-like model of subjective expected utility. J. Math.

Econ. 2018, 78, 150–162. [CrossRef]
76. Khrennikov, A.; Basieva, I.; Pothos, E.M.; Yamato, I. Quantum probability in decision making from quantum information

representation of neuronal states. Sci. Rep. 2018, 8, 16225. [CrossRef]
77. Khrennikov, A.; Toffano, Z.; Dubois, F. Concept of information laser: From quantum theory to behavioural dynamics. Eur. Phys. J.

2019, 227, 2133–2153. [CrossRef]
78. Khrennikov, A. Social Laser; Jenny Stanford Publishing: Singapore, 2020.
79. Khrennikov, A. Social laser model for the Bandwagon effect: Generation of coherent information waves. Entropy 2020, 22, 559.

[CrossRef]
80. Khrennikov, A.; Asano, M. A quantum-like model of information processing in the brain. Appl. Sci. 2020, 10, 707. [CrossRef]
81. Khrennikov, A. God as Decision Maker and Quantum Bayesianism. 2021. Available online: https://www.researchgate.net/

publication/356916021_God_as_decision_maker_and_Quantum_Bayesianism (accessed on 28 May 2023).
82. Khrennikov, A. Quantum-like model for unconscious-conscious interaction and emotional coloring of perceptions and other

conscious experiences. Biosystems 2021, 208, 104471. [CrossRef]
83. Khrennikov, A. Order stability via Fröhlich condensation in bio, eco, and social systems: The quantum-like approach. Biosystems

2022, 212, 104593. [CrossRef] [PubMed]
84. Khrennikov, A. Social Fröhlich condensation: Preserving societal order through sufficiently intensive information pumping.

Kybernetes 2022, 51, 138–155. [CrossRef]
85. Khrennikov, A. Social Laser as a Tool for Social Engineering with Illustration by COVID19 Protests, Pro-war and Anti-war

Beaming. Preprints 2022. Available online: https://www.preprints.org/manuscript/202210.0343/v1 (accessed on 28 May 2023).
86. Khrennikova, P. A quantum framework for ‘Sour Grapes’ in cognitive dissonance. In Quantum Interaction 2013; Atmanspacher,

H., Haven, E., Kitto, K., Raine, D., Eds.; Lecture Notes in Computer Science 8369; Springer: Berlin/Heidelberg, Germany, 2014.
87. Khrennikova, P.; Haven, E.; Khrennikov, A. An application of the theory of open quantum systems to model the dynamics of

party governance in the US Political System. Int. J. Theor. Phys. 2014, 53, 1346–1360. [CrossRef]
88. Khrennikova, P. Quantum dynamical modeling of competition and cooperation between political parties: The coalition and

non-coalition equilibrium model. J. Math. Psychol. 2016, 71, 39–50. [CrossRef]
89. Khrennikova, P. Modeling behavior of decision makers with the aid of algebra of qubit creation-annihilation operators. J. Math.

Psychol. 2017, 78, 76–85. [CrossRef]
90. Khrennikova, P. New Paradigm of Economic Thinking Under Uncertainty. In Credible Asset Allocation, Optimal Transport Methods,

and Related Topics; Springer International Publishing: Cham, Switzerland, 2022; pp. 107–119.

http://dx.doi.org/10.1007/s41470-019-00036-1
http://dx.doi.org/10.1016/S0303-2647(03)00041-8
http://dx.doi.org/10.1023/B:OPSY.0000047570.68941.9d
http://dx.doi.org/10.1016/j.biosystems.2008.10.004
http://dx.doi.org/10.14704/nq.2014.12.3.750
http://dx.doi.org/10.1371/journal.pone.0110909
http://dx.doi.org/10.3389/fphy.2015.00077
http://dx.doi.org/10.3390/e17106969
http://dx.doi.org/10.3389/fpsyg.2015.00997
http://dx.doi.org/10.1098/rsta.2015.0094
http://dx.doi.org/10.1108/K-03-2017-0101
http://dx.doi.org/10.3390/e20120921
http://www.ncbi.nlm.nih.gov/pubmed/33266645
http://dx.doi.org/10.1016/j.jmateco.2018.02.001
http://dx.doi.org/10.1038/s41598-018-34531-3
http://dx.doi.org/10.1140/epjst/e2018-800027-6
http://dx.doi.org/10.3390/e22050559
http://dx.doi.org/10.3390/app10020707
https://www.researchgate.net/publication/356916021_God_as_decision_maker_and_Quantum_Bayesianism
https://www.researchgate.net/publication/356916021_God_as_decision_maker_and_Quantum_Bayesianism
http://dx.doi.org/10.1016/j.biosystems.2021.104471
http://dx.doi.org/10.1016/j.biosystems.2021.104593
http://www.ncbi.nlm.nih.gov/pubmed/34973355
http://dx.doi.org/10.1108/K-10-2021-0932
https://www.preprints.org/manuscript/202210.0343/v1
http://dx.doi.org/10.1007/s10773-013-1931-6
http://dx.doi.org/10.1016/j.jmp.2016.02.009
http://dx.doi.org/10.1016/j.jmp.2016.10.003


Entropy 2023, 25, 886 21 of 24

91. Lambert-Mogiliansky, A.; Busemeyer, J. Quantum type indeterminacy in dynamic decision-making: Self-control through identity
management. Games 2012, 3, 97–118. [CrossRef]

92. Lambert-Mogiliansky, A. Quantum-like type indeterminacy: A constructive approach to preferences à la Kahneman and Tversky.
In The Palgrave Handbook of Quantum Models in Social Science: Applications and Grand Challenges; Palgrave Macmillan UK: London,
UK, 2017; pp. 229–250.

93. Lawless, W.F. Quantum-Like interdependence theory advances autonomous human-machine teams (A-HMTs). Entropy 2020,
22, 1227. [CrossRef]

94. Ozawa, M.; Khrennikov, A. Application of theory of quantum instruments to psychology: Combination of question order effect
with response replicability effect. Entropy 2020, 22, 37. [CrossRef]

95. Ozawa, M.; Khrennikov, A. Modeling combination of question order effect, response replicability effect, and QQ-equality with
quantum instruments. J. Math. Psychol. 2021, 100, 102491. [CrossRef]

96. Pothos, E.M.; Busemeyer, J.R. Quantum Cognition. Annu. Rev. Psychol. 2022, 73, 749–778. [CrossRef] [PubMed]
97. Pothos, E.M.; Lewandowsky, S.; Basieva, I.; Barque-Duran, A.; Tapper, K.; Khrennikov, A. Information overload for (bounded)

rational agents. Proc. R. Soc. B 2021, 288, 20202957. [CrossRef] [PubMed]
98. Tsarev, D.; Trofimova, A.; Alodjants, A.; Khrennikov, A. Phase transitions, collective emotions and decision-making problem in

heterogeneous social systems. Sci. Rep. 2019, 9, 18039. [CrossRef]
99. Xin, L.; Xin, H. Decision-making under uncertainty—A quantum value operator approach. Int. J. Theor. Phys. 2023, 62, 48.

[CrossRef]
100. Yukalov, V.I.; Sornette, D. Physics of risk and uncertainty in quantum decision making. Eur. Phys. J. B 2009, 71, 533–548. [CrossRef]
101. Yukalov, V.I.; Sornette, D. Mathematical structure of quantum decision theory. Adv. Complex Syst. 2010, 13, 659–698. [CrossRef]
102. Yukalov, V.I.; Sornette, D. Conditions for quantum interference in cognitive sciences. Top. Cogn. Sci. 2014, 6, 79–90. [CrossRef]
103. Yukalov, V.I.; Sornette, D. Quantum probabilities as behavioral probabilities. Entropy 2017, 19, 112. [CrossRef]
104. Ishwarya, M.S.; Cherukuri, A.K. Decision-making in cognitive paradoxes with contextuality and quantum formalism. Appl. Soft

Comput. 2020, 95, 106521.
105. Wendt, A. Quantum Mind and Social Science: Unifying Physical and Social Ontology; Cambridge University Press: New York, NY,

USA, 2015.
106. Khrennikov, A. Quantum-like model of processing of information in the brain based on classical electromagnetic field. Biosystems

2011, 105, 250–262. [CrossRef]
107. Wendt, A. Social theory as a Cartesian science: An auto-critique from a quantum perspective. In Constructivism and International

Relations; Guzzini, S., Leander, A., Eds.; Taylor and Francis: Abingdon, UK, 2006; pp. 181–219.
108. Khrennikov, A.; Basieva, I. Possibility to agree on disagree from quantum information and decision making. J. Math. Psychol.

2014, 62, 1–15. [CrossRef]
109. Ingarden, R.S.; Kossakowski, A.; Ohya, M. Information Dynamics and Open Systems: Classical and Quantum Approach; Kluwer:

Dordrecht, The Netherlands, 1997.
110. Basieva, I.; Khrennikov, A.; Ozawa, M. Quantum-like modeling in biology with open quantum systems and instruments.

Biosystems 2021, 201, 104328. [CrossRef] [PubMed]
111. Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Comm. Math. Phys. 1970, 17, 239–260. [CrossRef]
112. Davies, E.B. Quantum Theory of Open Systems; Academic Press: London, UK, 1976.
113. Ozawa, M. An operational approach to quantum state reduction. Ann. Phys. 1997, 259, 121–137. [CrossRef]
114. Ozawa, M. Probabilistic interpretation of quantum theory. New Gener. Comput. 2016, 34, 125–152. [CrossRef]
115. Ashby, G.; Colonius, H.; Dzhafarov, E.N. (Eds.) Preface: Mathematical Psychology in a Quest for Conceptual Clarity. New Handbook of

Mathematical Psychology 3, Perceptual and Cognitive Processes (Cambridge Handbooks in Psychology); Cambridge University Press:
Cambridge, UK, 2023.

116. Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Originally published: Mathematische Grundlagen der Quanten-
Mechanik; Springer: Berlin/Heidelberg, Germany, 1932; Princeton University Press: Princeton, NJ, USA, 1955.

117. Khrennikov, A.Y. Interpretations of Probability; VSP International Science Publishers: Utrecht, The Netherlands; Tokyo, Japan, 1999.
118. Khrennikov, A.Y. Linear representations of probabilistic transformations induced by context transitions. J. Phys. A Math. Gen.

2001, 34, 9965–9981. [CrossRef]
119. Moore, D.W. Measuring new types of question-order effects. Public Opin. Q. 2012, 60, 80–91. [CrossRef]
120. Wang, Z.; Busemeyer, J.R. A quantum question order model supported by empirical tests of an a priori and precise prediction.

Top. Cogn. Sci. 2013, 5, 689–710.
121. Wang, Z.; Solloway, T.; Shiffrin, R.M.; Busemeyer, J.R. Context effects produced by question orders reveal quantum nature of

human judgments. Proc. Natl. Acad. Sci. USA 2014, 111, 9431–9436. [CrossRef]
122. Khrennikov, A. Beyond Quantum; Pan Stanford Publishing: Singapore, 2014.
123. Einstein, A.; Infeld, L. The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta; Cambridge

University Press: Cambridge, UK, 1938.
124. Bialynicki-Birula, I.; Mycielski, J. Nonlinear wave mechanics. Ann. Phys. 1976, 100, 62–93. [CrossRef]
125. Kahneman, D.; Tversky, A. Subjective probability: A judgment of representativeness. Cogn. Psychol. 1972, 3, 430–454. [CrossRef]
126. Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [CrossRef]

http://dx.doi.org/10.3390/g3020097
http://dx.doi.org/10.3390/e22111227
http://dx.doi.org/10.3390/e22010037
http://dx.doi.org/10.1016/j.jmp.2020.102491
http://dx.doi.org/10.1146/annurev-psych-033020-123501
http://www.ncbi.nlm.nih.gov/pubmed/34546804
http://dx.doi.org/10.1098/rspb.2020.2957
http://www.ncbi.nlm.nih.gov/pubmed/33529555
http://dx.doi.org/10.1038/s41598-019-54296-7
http://dx.doi.org/10.1007/s10773-023-05308-w
http://dx.doi.org/10.1140/epjb/e2009-00245-9
http://dx.doi.org/10.1142/S0219525910002803
http://dx.doi.org/10.1111/tops.12065
http://dx.doi.org/10.3390/e19030112
http://dx.doi.org/10.1016/j.biosystems.2011.05.014
http://dx.doi.org/10.1016/j.jmp.2014.09.003
http://dx.doi.org/10.1016/j.biosystems.2020.104328
http://www.ncbi.nlm.nih.gov/pubmed/33347968
http://dx.doi.org/10.1007/BF01647093
http://dx.doi.org/10.1006/aphy.1997.5706
http://dx.doi.org/10.1007/s00354-016-0205-2
http://dx.doi.org/10.1088/0305-4470/34/47/304
http://dx.doi.org/10.1086/338631
http://dx.doi.org/10.1073/pnas.1407756111
http://dx.doi.org/10.1016/0003-4916(76)90057-9
http://dx.doi.org/10.1016/0010-0285(72)90016-3
http://dx.doi.org/10.2307/1914185


Entropy 2023, 25, 886 22 of 24

127. Kahneman, D.; Tversky, A. Choices, values and frames. Am. Psychol. 1984, 39, 341–350. [CrossRef]
128. Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. Am. Econ. Rev. 2003, 5, 1449–1475. [CrossRef]
129. Kahneman, D.; Thaler, R. Utility Maximization and eperienced utility. J. Econ. Perspect. 2006, 20, 221–232. [CrossRef]
130. Allais, M. Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’ cole amricaine.

Econometrica 1953, 21, 503–536. [CrossRef]
131. Ellsberg, D. Risk, Ambiguity, and the Savage Axioms. Q. J. Econ. 1961, 75, 643–669. [CrossRef]
132. Erev, I.; Ert, E.; Plonsky, O.; Cohen, D.; Cohen, O. From anomalies to forecasts: Toward a descriptive model of decisions under

risk, under ambiguity, and from experience. Psychol. Rev. 2017, 124, 369. [CrossRef]
133. Conte, E.; Khrennikov, A.; Todarello, O.; Federici, A.; Mendolicchio, L.; Zbilut, J.P. A preliminary experimental verification on the

possibility of Bell inequality violation in mental states. NeuroQuantology 2008, 6, 214–221. [CrossRef]
134. Aerts, D.; Sozzo, S. Quantum structure in cognition: Why and how concepts are entangled. In Proceedings of the Quantum

Interaction: 5th International Symposium, QI 2011, Aberdeen, UK, 26–29 June 2011; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 116–127.

135. Asano, M.; Hashimoto, T.; Khrennikov, A.; Ohya, M.; Tanaka, Y. Violation of contextual generalization of the Leggett–Garg
inequality for recognition of ambiguous figures. Phys. Scr. 2014, 2014, 014006. [CrossRef]

136. Bruza, P.D.; Kitto, K.; Ramm, B.J.; Sitbon, L. A probabilistic framework for analysing the compositionality of conceptual
combinations. J. Math. Psychol. 2015, 67, 26–38. [CrossRef]

137. Cervantes, V.H.; Dzhafarov, E.N. Snow queen is evil and beautiful: Experimental evidence for probabilistic contextuality in
human choices. Decision 2018, 5, 193. [CrossRef]

138. Basieva, I.; Cervantes, V.H.; Dzhafarov, E.N.; Khrennikov, A. True contextuality beats direct influences in human decision making.
J. Exp. Psychol. Gen. 2019, 148, 1925. [CrossRef] [PubMed]

139. Tanaka, Y.; Ohya, M.; Khrennikov, A.; Asano, M. Non-Kolmogorov probability and its use for constructing a model of human
perception process. In Proceedings of the 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive
Computing, London, UK, 18–20 August 2014; pp. 44–47.

140. Accardi, L.; Khrennikov, A.; Ohya, M.; Tanaka, Y.; Yamato, I. Application of non-Kolmogorovian probability and quantum
adaptive dynamics to unconscious inference in visual perception process. Open Syst. Inf. Dyn. 2016, 23, 1650011. [CrossRef]

141. Asano, M.; Khrennikov, A.; Ohya, M.; Tanaka, Y. A hysteresis effect on optical illusion and non-Kolmogorovian probability theory.
In White Noise Analysis and Quantum Information; Wold Sc. Publ.: Singapore, 2018; pp. 201–213.

142. Khrennikov, A. Probability and Randomness. Quantum versus Classical; WSP: Singapore, 2016.
143. Fuchs, C.A. (Ed.) Quantum mechanics as quantum information (and only a little more). In Quantum Theory: Reconsideration of

Foundations; Series Mathematical Modeling; Växjö University Press: Växjö, Sweden, 2002; Volume 2, pp. 463–543.
144. Fuchs, C.A. The anti-Växjö interpretation of quantum mechanics. In Quantum Theory: Reconsideration of Foundations; Series

Mathematical Modeling; Khrennikov, A., Ed.; Växjö University Press: Växjö, Sweden, 2002; Volume 2, pp. 99–116.
145. Fuchs, C.A.; Schack, R. A quantum-Bayesian route to quantum-state space. Found. Phys. 2011, 41, 345–356. [CrossRef]
146. Fuchs, C.A.; Schack, R. QBism and the Greeks: Why a quantum state does not represent an element of physical reality. Phys. Scr.

2014, 90, 015104. [CrossRef]
147. Fuchs, C.A.; Mermin, N.D.; Schack, R. An Introduction to QBism with an Application to the Locality of Quantum Mechanics. Am.

J. Phys. 2014, 82, 749. [CrossRef]
148. Fuchs, C.A. Notwithstanding Bohr, the reasons for QBism. Mind Matter 2017, 15, 245–300.
149. Fuchs, C.A. QBism, the perimeter of Quantum Bayesianism. arXiv 2010, arXiv:1003.5209.
150. Fuchs, C.A. QBism, Where Next? arXiv 2023, arXiv:2303.01446.
151. Khrennikov, A. (Ed.) Foundations of Probability and Physics; Växjö-2000, Sweden; WSP: Singapore, 2001; pp. 180–200.
152. Khrennikov, A. Towards better understanding QBism. Found. Sci. 2018, 23, 181–195. [CrossRef] [PubMed]
153. Khrennikov, A. Quantum Bayesianism as the basis of general theory of decision-making. Philos. Trans. R. Soc. A 2016, 374,

20150245. [CrossRef]
154. Haven, E.; Khrennikov, A. Statistical and subjective interpretations of probability in quantum-like models of cognition and

decision making. J. Math. Psychol. 2016, 74, 82–91. [CrossRef]
155. Qgeology1 Lozada Aguilar, M.Á.; Khrennikov, A.; Oleschko, K. From axiomatics of quantum probability to modelling geological

uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems. Philos. Trans. R.
Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170225. [CrossRef]

156. Lozada Aguilar, M.Á.; Khrennikov, A.; Oleschko, K.; de Jesús Correa, M. Quantum Bayesian perspective for intelligence reservoir
characterization, monitoring and management. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160398. [CrossRef]
[PubMed]

157. Boole, G. An Investigation of the Laws of Thought; Dover: New York, NY, USA, 1958.
158. Aumann, R.J. Agreeing to Disagree; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 859–862.
159. Aumann, R.J. Backward induction and common knowledge of rationality. Games Econ. Behav. 1995, 8, 6–19. [CrossRef]
160. Khrennikov, A. Quantum version of Aumann’s approach to common knowledge: Sufficient conditions of impossibility to agree

on disagree. J. Math. Econ. 2015, 60, 89–104. [CrossRef]

http://dx.doi.org/10.1037/0003-066X.39.4.341
http://dx.doi.org/10.1257/000282803322655392
http://dx.doi.org/10.1257/089533006776526076
http://dx.doi.org/10.2307/1907921
http://dx.doi.org/10.2307/1884324
http://dx.doi.org/10.1037/rev0000062
http://dx.doi.org/10.14704/nq.2008.6.3.178
http://dx.doi.org/10.1088/0031-8949/2014/T163/014006
http://dx.doi.org/10.1016/j.jmp.2015.06.002
http://dx.doi.org/10.1037/dec0000095
http://dx.doi.org/10.1037/xge0000585
http://www.ncbi.nlm.nih.gov/pubmed/31021152
http://dx.doi.org/10.1142/S1230161216500116
http://dx.doi.org/10.1007/s10701-009-9404-8
http://dx.doi.org/10.1088/0031-8949/90/1/015104
http://dx.doi.org/10.1119/1.4874855
http://dx.doi.org/10.1007/s10699-017-9524-0
http://www.ncbi.nlm.nih.gov/pubmed/29563848
http://dx.doi.org/10.1098/rsta.2015.0245
http://dx.doi.org/10.1016/j.jmp.2016.02.005
http://dx.doi.org/10.1098/rsta.2017.0225
http://dx.doi.org/10.1098/rsta.2016.0398
http://www.ncbi.nlm.nih.gov/pubmed/28971950
http://dx.doi.org/10.1016/S0899-8256(05)80015-6
http://dx.doi.org/10.1016/j.jmateco.2015.06.018


Entropy 2023, 25, 886 23 of 24

161. Ozawa, M.; Khrennikov, A. Nondistributivity of human logic and violation of response replicability effect in cognitive psychology.
J. Math. Psychol. 2023, 112, 102739. [CrossRef]

162. Birkhoff, G.; von Neumann, J. The logic of quantum mechanics. An. Math. 1936, 37, 823–843. [CrossRef]
163. Beltrametti, E.G.; Cassinelli, C. The logic of quantum mechanics. SIAM 1983, 25, 429–431. [CrossRef]
164. Boole, G. On the theory of probabilities. Phil. Trans. Royal Soc. 1862, 152, 225–242.
165. Bohr, N. The Philosophical Writings of Niels Bohr, 3 vols; Ox Bow Press: Woodbridge, CT, USA, 1987.
166. Plotnitsky, A. Epistemology and Probability: Bohr, Heisenberg, Schrödinger and the Nature of Quantum-Theoretical Thinking; Springer:

Berlin/Heidelberg, Germany; New York, NY, USA, 2009.
167. Plotnitsky, A. Reality, Indeterminacy, Probability, and Information in Quantum Theory. Entropy 2020, 22, 747. [CrossRef] [PubMed]
168. Plotnitsky, A. Reality without Realism. Matter, Thought, and Technology in Quantum Physics; Springer: Berlin/Heidelberg, Germany;

New York, NY, USA, 2021.
169. Khrennikov, A. Roots of quantum computing supremacy: Superposition, entanglement, or complementarity? Eur. Phys. J. Spec.

Top. 2021, 230, 1053–1057. [CrossRef]
170. Busemeyer, J.R.; Wang, Z. Is there a problem with quantum models of psychological measurements? PLoS ONE 2017, 2, e0187733.

[CrossRef]
171. Ricciardi, L.M.; Umezawa, H. Brain and physics of many-body problems. Kibernetik 1967, 4, 44–48. [CrossRef]
172. Penrose, R. The Emperor’s New Mind; Oxford University Press: New York, NY, USA, 1989.
173. Hameroff, S. Quantum coherence in microtubules. A neural basis for emergent consciousness? J. Cons. Stud. 1994, 1, 91–118.
174. Umezawa, H. Advanced Field Theory: Micro, Macro and Thermal Concepts; AIP: New York, NY, USA, 1995.
175. Vitiello, G. My Double Unveiled: The Dissipative Quantum Model of Brain. Advances in Consciousness Research; John Benjamins

Publishing Company: Amsterdam, The Netherlands, 2001.
176. Sabbadini, S.A.; Vitiello, G. Entanglement and Phase-Mediated Correlations in Quantum Field Theory. Application to Brain Mind

States. Appl. Sci. 2019, 9, 3203. [CrossRef]
177. Bernroider, G.; Summhammer, J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn.

Comput. 2012, 4, 29–37. [CrossRef]
178. Bernroider, G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the

question of consciousness. J. Adv. Neurosci. Res. 2017, 4, 1–9. [CrossRef]
179. Igamberdiev, A.U.; Shklovskiy-Kordi, N.E. The quantum basis of spatiotemporality in perception and consciousness. Prog.

Biophys. Mol. Biol. 2017, 130, 15–25. [CrossRef]
180. Nishiyama, A.; Tanaka, S.; Tuszynski, J.A. Renormalization in Quantum Brain Dynamics. Appl. Math. 2023, 3, 117–146. [CrossRef]
181. Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publ. Company: New York, NY, USA, 1956.
182. Zeilinger, A. A foundational principle for quantum mechanics. Found. Phys. 1999, 29, 631–643. [CrossRef]
183. Sorkin, R.D. Quantum Mechanics as Quantum Measure Theory. Mod. Phys. Lett. A 1994, 9, 31119. [CrossRef]
184. Sinha, U.; Couteau, C.; Medendorp, Z.; Sillner, I.; Laflamme, R.; Sorkin, R.; Weihs, G. Testing Born’s rule in quantum mechanics

with a triple slit experiment. In Foundations of Probability and Physics-5; Accardi, L., Adenier, G., Fuchs, C., Jaeger, G., Khrennikov,
A., Larsson, J.-A., Stenholm, S., Eds.; American Institute of Physics, Ser. Conference Proceedings: Melville, NY, USA, 2009; Volume
1101, pp. 200–207.

185. Sinha, U.; Couteau, C.; Jenewein, T.; Laflamme, R.; Weihs, G. Ruling out Multi-Order Interference in Quantum Mechanics. Science
2010, 329, 418–421. [CrossRef] [PubMed]

186. Rafai, I.; Duchene, S.; Guerci, E.; Basieva, I.; Khrennikov, A. The triple-store experiment: A first simultaneous test of classical and
quantum probabilities in choice over menus. Theory Decis. 2022, 92, 387–406. [CrossRef]

187. LeDoux, J.E. Emotional colouration of consciousness: How feelings come about. In Frontiers of Consciousness. Chichele Lectures;
Weiskrantz, L., Davies, M., Eds.; Oxford University Press: Oxford, UK, 2008.

188. LeDoux, J.E. Cognition and emotion: Processing functions and brain systems. In Handbook of Cognitive Neuroscience; Gazzaniga,
M.S., Ed.; Plenum: New York, NY, USA, 1984; pp. 357–368.

189. Carruthers, P. Consciousness: Essays from a High-Order Perspective; Oxford University Press: Oxford, UK, 2005.
190. LeDoux, J.E. Emotion. In Handbook of Physiology. 1: The Nervous System; Plum, F., Ed.; Higher Functions of the Brain; American

Physiological Society: Bethesda, MD, USA, 1987; Volume V, pp. 419–460.
191. LeDoux, J.E.; Brown, R. A higher-order theory of emotional consciousness. Proc. Natl. Acad. Sci. USA 2017, 114, E2016–E2025.

[CrossRef]
192. Bell, J. On the Einstein-Podolsky-Rosen paradox. Physics 1964, 1, 195–200. [CrossRef]
193. Bell, J.S. On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 1966, 38, 450–480. [CrossRef]
194. Bell, J. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1987.
195. Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.

1969, 23, 880–884. [CrossRef]
196. Schrödinger, E. What is Life?; Cambridge University Press: Cambridge, UK, 1944.
197. Khrennikov, A.; Basieva, I. “What is life?”: Open quantum systems approach. Open Syst. Inf. Dyn. 2022, 29, 2250016. [CrossRef]
198. Khrennikov, A.; Watanabe, N. Order-stability in complex biological, social, and AI-systems from quantum information theory.

Entropy 2021, 23, 355. [CrossRef]

http://dx.doi.org/10.1016/j.jmp.2022.102739
http://dx.doi.org/10.2307/1968621
http://dx.doi.org/10.1063/1.2915400
http://dx.doi.org/10.3390/e22070747
http://www.ncbi.nlm.nih.gov/pubmed/33286518
http://dx.doi.org/10.1140/epjs/s11734-021-00061-9
http://dx.doi.org/10.1371/journal.pone.0187733
http://dx.doi.org/10.1007/BF00292170
http://dx.doi.org/10.3390/app9153203
http://dx.doi.org/10.1007/s12559-012-9126-7
http://dx.doi.org/10.15379/2409-3564.2017.01
http://dx.doi.org/10.1016/j.pbiomolbio.2017.02.008
http://dx.doi.org/10.3390/appliedmath3010009
http://dx.doi.org/10.1023/A:1018820410908
http://dx.doi.org/10.1142/S021773239400294X
http://dx.doi.org/10.1126/science.1190545
http://www.ncbi.nlm.nih.gov/pubmed/20651147
http://dx.doi.org/10.1007/s11238-021-09823-2
http://dx.doi.org/10.1073/pnas.1619316114
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://dx.doi.org/10.1103/RevModPhys.38.447
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.21203/rs.3.rs-143923/v1
http://dx.doi.org/10.3390/e23030355


Entropy 2023, 25, 886 24 of 24

199. Denett, D.C. Consciousness Explained; Back Bay Books: New York, NY, USA, 1992.
200. Rosner, A.; Basieva, I.; Barque-Duran, A.; Glökner, A.; von Helversen, B.; Khrennikov, A.; Pothos, E.M. Ambivalence in decision

making: An eye tracking study. Cogn. Psychol. 2022, 134, 101464. [CrossRef] [PubMed]
201. Asano, M.; Basieva, I.; Khrennikov, A.; Yamato, I. A model of differentiation in quantum bioinformatics. Prog. Biophys. Mol. Biol.

Part A 2017, 130, 88–98. [CrossRef] [PubMed]
202. Zurek, W.H. Decoherence and the Transition from Quantum to Classical—Revisited. In Quantum Decoherence: Progress in

Mathematical Physics; Duplantier, B., Raimond, J.M., Rivasseau, V., Eds.; Birkhäuser Basel: Basel, Switzerland, 2006; Volume 48,
pp. 1–31.

203. Signorelli, C.M.; Szczotka, J.; Prentner, R. Explanatory profiles of models of consciousness—Towards a systematic classification.
Neurosci. Conscious. 2021, 2021, niab021. [CrossRef]

204. Dretske, F. Naturalizing the Mind; MIT Press: Cambridge, MA, USA, 1995.
205. Tye, M. Consciousness, Color, and Content; MIT Press: Cambridge, MA, USA, 2000.
206. Lamme, V.A.F. Independent Neural Definitions of Visual Awareness and Attention. Cognitive Penetrability of Perception: Attention, Action,

Strategies, and Bottom-Up Constraints, ed Raftopoulos A; Nova Science: New York, NY, USA, 2005; pp. 171–191.
207. Block, N. Perceptual consciousness overflows cognitive access. Trends Cogn. Sci. 2011, 15, 567–575. [CrossRef]
208. Block, N. Consciousness, accessibility, and the mesh between psychology and neuroscience. Behav. Brain Sci. 2007, 30, 481–499;

discussion 499–548. [CrossRef]
209. Rosenthal, D.M. Consciousness and Mind; Oxford University Press: Oxford, UK, 2005.
210. Lau, H.; Rosenthal, D. Empirical support for higher-order theories of conscious awareness. Trends Cogn. Sci. 2011, 15, 365–373.

[CrossRef] [PubMed]
211. Basieva, I.; Khrennikov, A. Testing boundaries of applicability of quantum probabilistic formalism to modeling of cognition:

Metaphors of two and three slit experiments. In International Symposium on Quantum Interaction; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 49–56.

212. von Helmholtz, H. Treatise on Physiological Optics. Translation by Optical Society of America in English; Optical Society of America:
New York, NY, USA, 1866.

213. Mesulam, M.M. From sensation to cognition. Brain 1998, 121, 1013–1052. [CrossRef] [PubMed]
214. Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [CrossRef]
215. Basieva, I.; Khrennikov, A. On the possibility to combine the order effect with sequential reproducibility for quantum measure-

ments. Found. Phys. 2015, 45, 1379–1393. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cogpsych.2022.101464
http://www.ncbi.nlm.nih.gov/pubmed/35298978
http://dx.doi.org/10.1016/j.pbiomolbio.2017.05.013
http://www.ncbi.nlm.nih.gov/pubmed/28579516
http://dx.doi.org/10.1093/nc/niab021
http://dx.doi.org/10.1016/j.tics.2011.11.001
http://dx.doi.org/10.1017/S0140525X07002786
http://dx.doi.org/10.1016/j.tics.2011.05.009
http://www.ncbi.nlm.nih.gov/pubmed/21737339
http://dx.doi.org/10.1093/brain/121.6.1013
http://www.ncbi.nlm.nih.gov/pubmed/9648540
http://dx.doi.org/10.1080/02699939208411068
http://dx.doi.org/10.1007/s10701-015-9932-3

	Introduction
	Exploring Quantum Formalism and Methodology
	Edgar Allan Poe's Reasoning in Favor of Quantum-like Modeling 
	Mathematical Models of Mental Phenomena: Why Quantum?
	Simplicity, Elegance, and Generality
	The Quantum-like Model as a Linear Approximation of Nonlinear Biological Processes?

	Classical vs. Quantum Probability
	Contextuality: Physical vs. Mental

	Quantum Formalism for Decision-making
	Quantum and Classical Logic of Thought
	Quantum vs. Quantum-like Cognition
	Classical, Quantum, or More General Probability Theories?

	Biosystems as Open Quantum-like Systems
	What Is Life? 
	Order Stability in Complex Biosystems in Spite of Instability in Subsystems
	Modeling of Brain Functioning: From Electrochemical to Quantum Information States
	Decision-making via Decoherence
	Consciousness as Observer on Unconsciousness: Quantum Formalization
	Emotional Coloring of Conscious Experiences

	Quantum Instruments in Physics, Psychology, and Decision-making
	Question Order and Response Replicability Effects and QQ-Equality
	Classical Probability
	A Brief Summary of Quantum Formalism
	References

