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Abstract: Sequential Bayesian inference can be used for continual learning to prevent catastrophic
forgetting of past tasks and provide an informative prior when learning new tasks. We revisit
sequential Bayesian inference and assess whether using the previous task’s posterior as a prior for
a new task can prevent catastrophic forgetting in Bayesian neural networks. Our first contribution
is to perform sequential Bayesian inference using Hamiltonian Monte Carlo. We propagate the
posterior as a prior for new tasks by approximating the posterior via fitting a density estimator on
Hamiltonian Monte Carlo samples. We find that this approach fails to prevent catastrophic forgetting,
demonstrating the difficulty in performing sequential Bayesian inference in neural networks. From
there, we study simple analytical examples of sequential Bayesian inference and CL and highlight the
issue of model misspecification, which can lead to sub-optimal continual learning performance despite
exact inference. Furthermore, we discuss how task data imbalances can cause forgetting. From these
limitations, we argue that we need probabilistic models of the continual learning generative process
rather than relying on sequential Bayesian inference over Bayesian neural network weights. Our final
contribution is to propose a simple baseline called Prototypical Bayesian Continual Learning, which
is competitive with the best performing Bayesian continual learning methods on class incremental
continual learning computer vision benchmarks.

Keywords: continual learning; lifelong learning; sequential Bayesian inference; Bayesian deep
learning; Bayesian neural networks

1. Introduction

The goal of continual learning (CL) is to find a predictor that learns to solve a sequence
of new tasks without losing the ability to solve previously learned tasks. One key challenge
of CL with neural networks (NNs) is that model parameters from previously learned tasks
are “overwritten” during gradient-based learning of new tasks, which leads to catastrophic
forgetting of previously learned abilities [1,2]. One approach to CL hinges on using recursive
applications of Bayes’ Theorem, using the weight posterior in a Bayesian neural network
(BNN) as the prior for a new task [3]. However, obtaining a full posterior over NN
weights is computationally demanding and we often need to resort to approximations,
such as the Laplace method [4] or variational inference [5,6] to obtain a neural network
weight posterior.

When performing Bayesian CL, sequential Bayesian inference is performed with an
approximate BNN posterior, not the true posterior [7–12]. If we consider the performance
of sequential Bayesian inference with a variational approximation over a BNN weight
posterior, then we barely observe an improvement over simply learning new tasks with
stochastic gradient descent (SGD). We will develop this statement further in Section 2.2.
Therefore, if we had access to the true BNN weight posterior, would this be enough to
prevent forgetting by sequential Bayesian inference?
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Our contributions in this paper are to revisit Bayesian CL. (1) Experimentally, we
perform sequential Bayesian inference using the true Bayesian NN weight posterior. We do
this by using the gold standard of Bayesian inference methods, Hamiltonian Monte Carlo
(HMC) [13]. We use density estimation over HMC samples and use this approximate poste-
rior density as a prior for the next task within the HMC sampling process. Surprisingly, our
HMC method for CL yields no noticeable benefits over an approximate inference method
(VCL Nguyen et al. [9]) despite using samples from the true posterior. (2) As a result, we
consider a simple analytical example and highlight that exact inference with a misspecified
model can still cause forgetting. (3) We show mathematically that under certain assump-
tions, task data imbalances will cause forgetting in Bayesian NNs. (4) We propose a new
probabilistic model for CL and show that by explicitly modeling the generative process
of the data, we can achieve good performance, avoiding the need to rely on recursive
Bayesian inference over NN weights to prevent forgetting. Our proposed model, Prototypi-
cal Bayesian Continual Learning (ProtoCL), is conceptually simple, scalable, and competitive
with state-of-the-art Bayesian CL methods in the class-incremental learning setting.

2. Background
2.1. The Continual Learning Problem

Continual learning (CL) is a learning setting whereby a model must learn to make
predictions over a set of tasks sequentially while maintaining performance across all
previously learned tasks. In CL, the model is sequentially shown T tasks, denoted Tt for
t = 1, . . . , T. Each task, Tt, is comprised of a dataset Dt = {(xi, yi)}Nt

i=1, which a model
needs to learn to make predictions with. More generally, tasks are denoted by distinct tuples
comprised of the conditional and marginal data distributions, {pt(y|x), pt(x)}. After task
Tt, the model will lose access to the training dataset but its performance will be continually
evaluated on all tasks Ti for i ≤ t. We decompose predictors as g = h ◦ f such that
ŷ = g(x). We define f as an embedding function mapping f : X → Z and h as a head
mapping to outputs h : Z → Y . Some continual learning methods use a separate head
per task {hi}T

i=1, these methods are called multi-headed while those that use one head are
called single-headed.

2.2. Bayesian Continual Learning

We consider a setting in which task data arrives sequentially at timesteps,
t = 1, 2, . . . , T. At the first timestep, t = 1, that is, for task T1, the model receives the
first dataset D1 and learns the conditional distribution p(yi|xi, θ) for all (xi, yi) ∈ D1 (i
indexes a datapoint in D1). We denote the parameters θ as having a prior distribution p(θ)
for T1. The posterior predictive distribution for a test point x∗1 ∈ D1 is hence:

p(y∗1 |x∗1 ,D1) =
∫

p(y∗1 |x∗1 , θ)p(θ|D1)dθ. (1)

We note that computing this posterior predictive distribution requires p(θ|D1). For t = 2,
a CL model is required to fit p(yi|xi, θ) for (xi, yi) ∈ D1 ∪ D2. The posterior predictive
distribution for a new test point x∗2 ∈ D1 ∪D2 point is:

p(y∗2 |x∗2 ,D1,D2) =
∫

p(y∗2 |x∗2 , θ)p(θ|D1,D2)dθ. (2)

The posterior must thus be updated to reflect this new conditional distribution. We can use re-
peated application of Bayes’ rule to calculate the posterior distributions p(θ|D1, . . . ,DT) as:

p(θ|D1, . . . ,DT−1,DT) =
p(DT |θ)p(θ|D1, . . . ,DT−1)

p(DT |D1, . . . ,DT−1)
. (3)

In the CL setting, we lose access to previous training datasets; however, using repeated
applications of Bayes’ rule Equation (3) allows us to sequentially incorporate information
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from past tasks in the parameters θ. At t = 1, we have access to D1 and the posterior over
parameters is:

log p(θ|D1) = log p(D1|θ) + log p(θ)− log p(D1). (4)

At t = 2, we require p(θ|D1,D2) to calculate the posterior predictive distribution in
Equation (2). However, we have lost access to D1. According to Bayes’ rule, the posterior
may be written as:

log p(θ|D1,D2) = log p(D2|θ) + log p(θ|D1)− log p(D2|D1), (5)

where we used the conditional independence of D2 and D1 given θ. We note that the
likelihood p(D2|θ) is only dependent upon the current task dataset, D2, and that the prior
p(θ|D1) encodes parameter knowledge from the previous task. Hence, we can use the
posterior evaluated at t as a prior for learning a new task at t + 1. From Equation (3), we
require that our model with parameters θ is a sufficient statistic of D1, i.e., p(D2|θ,D1) =
p(D2|θ), making the likelihood conditionally independent of D1 given θ. This observation
motivates the use of high-capacity predictors, such as Bayesian neural networks, that are
flexible enough to learn from D1.

Continual Learning Example: Split-MNIST

For the MNIST dataset [14], we know that if we were to train a BNN we would achieve
good performance by inferring the posterior p(θ|D) and integrating out the posterior to
infer the posterior predictive over a test point Equation (1). Therefore, if we were to split the
dataset MNIST into 5 two-class classification tasks, then we should be able to recursively
recover the multi-task posterior p(θ|D) = p(θ|D1 . . . ,D5) using Equation (3). This problem
is called Split-MNIST [15], where the first task involves the classification of the digits {0, 1},
the second task classification of the digits {2, 3}, and so on.

We can define three different CL settings [16–18]. When we allow the CL agent to
make predictions with a task identifier τ the scenario is referred to as task-incremental.
The identifier τ could be used to select different heads Section 2.1, for instance. This
scenario is not compatible with sequential Bayesian inference outlined in Equation (3) since
no task identifier is required for making predictions. Domain-incremental learning is another
scenario that does not have access to τ during evaluation and requires the CL agent to
perform classification to the same output space for each task; for example, for Split-MNIST
the output space is {0, 1} for all tasks, so this amounts to classifying between even and odd
digits. Domain incremental learning is compatible with sequential Bayesian inference with
a Bernoulli likelihood. The third scenario is class-incremental learning which also does not
have access to τ but the agent needs to classify each example to its corresponding class.
For Split-MNIST, for example, the output space is {0, . . . , 9} for each task. Class-incremental
learning is compatible with sequential Bayesian inference with a categorical likelihood.

2.3. Variational Continual Learning

Variational CL (VCL; Nguyen et al. [9]) simplifies the Bayesian inference problem
in Equation (3) into a sequence of approximate Bayesian updates on the distribution over
random neural network weights θ. To do so, VCL uses the variational posterior from
previous tasks as a prior for new tasks. In this way, learning to solve the first task entails
finding a variational distribution q1(θ|D1) that maximizes a corresponding variational
objective. For the subsequent task, the prior is chosen to be q1(θ|D1), and the goal becomes
to learn a variational distribution q2(θ|D2) that maximizes a corresponding variational
objective under this prior. Denoting the recursive posterior inferred from multiple datasets
by qt(θ|D1:t), we can express the variational CL objective for the t-th task as:

L(θ,Dt) = DKL[qt(θ)||qt−1(θ|D1:t−1)]−Eqt [log p(Dt|θ)]. (6)
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When applying VCL to the problem of Split-MNIST Figure 1, we can see that single-
headed VCL barely performs better than SGD when remembering past tasks. Multi-
headed VCL performs better, despite not being a requirement from sequential Bayesian
inference Equation (3). Therefore, why does single-head VCL not improve over SGD if we
can recursively build up an approximate posterior using Equation (3)? We hypothesize
that it could be due to using a variational approximation of the posterior and so we are not
actually strictly performing the Bayesian CL process described in Section 2.2. We test this
hypothesis in the next section by propagating the true BNN posterior to verify whether we
can recursively obtain the true multi-task posterior and so improve on single-head VCL
and prevent catastrophic forgetting.
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Figure 1. Accuracy on Split-MNIST for various CL methods with a two-layer BNN, all accuracies are
an average and standard deviation over 10 runs with different random seeds. We compare an NN
trained with SGD (single-headed) with VCL. We consider single-headed (SH) and multi-head (MH)
VCL variants.

3. Bayesian Continual Learning with Hamiltonian Monte Carlo

To perform inference over BNN weights we use the HMC algorithm [13]. We then use
these samples and learn a density estimator that can be used as a prior for a new task (we
considered Sequential Monte Carlo, but it is unable to scale to the dimensions required for
the NNs we consider [19]. HMC on the other hand has recently been successfully scaled
to relatively small BNNs of the size considered in this paper [20] and ResNet models but
at large computational cost [21]). HMC is considered the gold standard in approximate
inference and is guaranteed to asymptotically produce samples from the true posterior (in
the NeurIPS 2021 Bayesian Deep Learning Competition (https://izmailovpavel.github.io/
neurips_bdl_competition), the goal was to find an approximate inference method that is as
“close” as possible to the posterior samples from HMC). We use posterior samples of θ from
HMC and then fit a density estimator over these samples, to use as a prior for a new task.
This allows us to use a multi-modal posterior distribution over θ rather than a diagonal
Gaussian variational posterior such as in VCL. More concretely, to propagate the posterior
p(θ|D1) we use a density estimator, defined p̂(θ|D1), to fit a probability density on HMC
samples as a posterior. For the next task T2 we can use p̂(θ|D1) as a prior for a new HMC
sampling chain and so on (see Figure 2). The density estimator priors need to satisfy two
key conditions for use within HMC sampling. Firstly, that they are a probability density
function. Secondly, that they are differentiable with respect to the input samples.

...

Figure 2. Illustration of the posterior propagation process; priors in blue are in the top row and
posterior samples on the bottom row. This is a two-step process where we first perform HMC with
an isotropic Gaussian prior for T1 then perform density estimation on the HMC samples from the
posterior to obtain p̂1(θ|D1). This posterior can then be used as a prior for the new task T2 and so on.

https://izmailovpavel.github.io/neurips_bdl_competition
https://izmailovpavel.github.io/neurips_bdl_competition
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We use a toy dataset (Figure 3) with two classes and inputs x ∈ R2 [22]. Each task is a
binary classification problem where the decision boundary extends from left to right for
each new task. We train a two-layer BNN, with a hidden state size of 10. We use Gaussian
Mixture Models (GMM) as a density estimator for approximating the posterior with HMC
samples. We also tried Normalizing Flows which should be more flexible [23]; however,
these did not work robustly for HMC sampling (RealNVP was very sensitive to the choice
of random seed, the samples from the learned distribution did not give accurate predictions
for the current task and led to numerical instabilities when used as a prior within HMC
sampling). To the best of our knowledge, we are the first to incorporate flexible priors into
the sampling methods such as HMC.
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Figure 3. On the left is the toy dataset of 5 distinct 2-way classification tasks that involve classifying
circles and squares [22]. Moreover, continual learning binary classification test accuracies over
10 seeds. The pink solid line is a multi-task (MT) baseline accuracy using SGD/HMC with the same
model as for the CL experiments.

Training a BNN with HMC on the same multi-task dataset obtains a test accuracy of 1.0.
Thus, the final posterior is suitable for continual learning under Equation (3) and we should
be able to recursively arrive at the multi-task posterior with our recursive inference method
with HMC. The results from Figure 3 demonstrate that using HMC with an approximate
multi-modal posterior fails to prevent forgetting and is less effective than using multi-head
VCL. In fact, multi-head VCL clearly outperforms HMC, indicating that the source of
the knowledge retention is not through the propagation of the posterior but through the
task-specific heads. For T2, we use p̂(θ|D1) instead of p(θ|D1) as a prior and this will bias
the HMC sampling for all subsequent tasks. In the next paragraph, we detail the measures
taken to ensure that our HMC chains have converged so we are sampling from the true
posterior. Moreover, we access the fidelity of the GMM density estimator with respect to
the HMC samples. We also repeated these experiments with another toy dataset of five
binary classification tasks where we observe similar results Appendix A.

For HMC, we ensure that we are sampling from the posterior by assessing chain
convergence and effective sample sizes (Figure A5). The effective sample size measures the
autocorrelation in the chain. The effective sample sizes for the HMC chains for our BNNs
are similar to the literature [20]. Moreover, we ensure that the GMM approximate posterior
is multi-modal and has a more complex posterior in comparison to VCL, and that the
GMM samples produce equivalent results to HMC samples for the current task (Figure A4).
See Appendix B for details.

The 2-d benchmarks we consider in this section are from previous works and are
domain-incremental continual learning problems. The domain incremental setting is
also simpler [18] than the class-incremental setting and thus a good starting point when
attempting to perform exact sequential Bayesian inference. Despite this, we are not able to
perform sequential Bayesian inference in BNNs despite using HMC, which is considered
the gold standard of Bayesian deep learning. HMC and density estimation with a GMM
produces richer, more accurate, and multi-modal posteriors. Despite this, we are still not
able to sequentially build up the multi-task posterior or obtain much better results than an
isotropic Gaussian posterior such as single-head VCL. The weak point of this method is the
density estimation, the GMM removes probability mass over areas of the BNN weight space
posterior, which is important for the new task. This demonstrates just how difficult a task
it is to model BNN weight posteriors. In the next section, we study a different analytical
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example of sequential Bayesian inference and look at how model misspecification and task
data imbalances can cause forgetting in Bayesian CL.

4. Bayesian Continual Learning and Model Misspecification

We now consider a simple analytical example where we can perform the sequential
Bayesian inference Equation (3) in closed form using conjugacy. We consider a simple
setting where data points arrive online, one after another.

Observations y1, y2, . . . , yt arrive online, and each observation is generated by a hidden
variable θ1, θ2, . . . , θt ∼ p where p is a probability density function. At time t, we wish to
infer the filtering distribution p(θt|y1, y2, . . . , yt) [24] using sequential Bayesian inference,
similarly to the Kalman filter [25]. The likelihood is p(yt|θt) = N (yt; f ( · ; θt), σ2) such
that the mean is parameterized by a linear model yt = f ( · ; θt) + ε where ε ∼ N (0, σ2)
and f ( · ; θt) = θt. We consider a Gaussian prior over the mean parameters θ such that
p(θ0) = N (θ0; 0, σ2

0 ). Since the conjugate prior for the mean is also Gaussian, the prior and
posterior are N (θt−1; θ̂t−1, σ̂2

t−1) and N (θt; θ̂t, σ̂2
t ). By using sequential Bayesian inference

we can have closed-form update equations for our posterior parameters:

θ̂t = σ̂2
t

(
yt

σ2 +
θ̂t−1

σ̂2
t−1

)
= σ̂2

t

(
t

∑
i=1

yi
σ2 +

θ̂0

σ̂2
0

)
,

1
σ̂2

t
=

1
σ2 +

1
σ̂2

t−1
. (7)

From Equation (7), the posterior mean follows a Gaussian distribution, where the
posterior mean is a sum of the online observation and the online prior. Therefore, the
posterior mean is a weighted sum of the data and the final value of the posterior is not
dependent on the order of the data. We consider the situation where there is a task change
(this non-stationarity is referred to as a changepoint in the time-series literature, in Figure 4A
at t = 110). Concretely, for task 1 the dataset is generated according to N (−1, σ2), so we
want the model to regress to this task. For task 2, the data is generated according toN (1, σ2)
and so we want our continual learning agent to regress well to this task too. As with all
continual learning benchmarks, we require our model to retain performance on past tasks
and perform equally well on both tasks at the end of training at t = 220. From Figure 4A,
we can see that the linear model will regress to the first dataset well, as data is seen online
and the linear model is updated online. However, as is seen in data from the second task,
the linear model eventually tracks the global mean over both tasks Equation (7) rather than
a mean for each task Figure 4A. This is even more pronounced when there is a task dataset
imbalance Figure 4B.

0 100 200
t

1

0

1
A

0 100 200
t

B

t

task 1 data
task 2 data

Figure 4. Posterior estimate of the filtering distribution Equation (7) for a linear model where data
is divided into two tasks. We study two different scenarios with two tasks or changepoints, with a
balanced and an imbalanced task dataset. In scenario A, we perform 110 sequential inference updates
to the linear model with data from task 1, then another 110 sequential updates with data from task 2.
In scenario B, the task datasets are imbalanced. We perform 20 sequential Bayesian updates to the
linear model with data from task 1 and then 200 updates with data from task 2.

The model is clearly misspecified since a linear model cannot regress to both of
these tasks simultaneously. A more suitable model would be a mixture model, which is
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able to regress to both task datasets. Despite performing exact inference, a misspecified model
can forget, Figure 4. Performance on the first task is reduced while learning the second
task, this becomes even more pronounced with task dataset imbalances Figure 4B. In the
case of HMC, we verified that our Bayesian neural network had a perfect performance
on all tasks beforehand. In Figure 3, we had a well-specified model but struggled with
exact sequential Bayesian inference, Equation (3). When learning with linear models
online, we are performing exact inference; however, we have a misspecified model. It is
important to disentangle model misspecification and exact inference and highlight that
model misspecification is a caveat that has not been highlighted in the CL literature as far
as we are aware. Furthermore, we can only ensure that our models are well specified if
we have access to data from all tasks a priori. Therefore, in the scenario of online continual
learning [26–28], we cannot know if our model will perform well on all past and future
tasks without making assumptions on the task distributions.

5. Sequential Bayesian Inference and Imbalanced Task Data

Neural Networks are complex models with a broad hypothesis space and hence are a
suitably well-specified model when tackling continual learning problems [29]. However,
we struggle to fit the posterior samples from HMC to perform sequential Bayesian inference
in Section 3.

We continue to use Bayesian filtering and assume a Bayesian NN where the posterior
is Gaussian with a full covariance. By modeling the entire covariance, we enable modeling
of how each individual weight varies with respect to all others. We do this by interpreting
online learning in Bayesian NNs as filtering [30]. Our treatment is similar to Aitchison [31],
who derives an optimizer by leveraging Bayesian filtering. We consider inference in the
graphical model depicted in Figure 5. The aim is to infer the optimal BNN weights, θ∗t at
t given a single observation and the BNN weight prior. The previous BNN weights are
used as a prior for inferring the posterior BNN parameters. We consider the online setting,
where a single data point (xt, yt) is observed at a time.

θ∗t−1θ∗t−2 θ∗t θ∗t+1

yt−1yt−2 yt yt+1

xt−1xt−2 xt xt+1

. . . . . .

Figure 5. Graphical model for filtering. Grey and white nodes and latent variables are observed, re-
spectively.

Instead of modeling the full covariance, we instead consider each parameter θi as a
function of all the other parameters θ−it. We also assume that the values of the weights
are close to those of the previous timestep [32]. To obtain the updated equations for BNN
parameters given a new observation and prior, we make two simplifying assumptions
as follows.

Assumption 1. For a Bayesian neural network with output f (xt; θ) and likelihood L(xt, yt; θ),
the derivative evaluated at θt is zt = ∂L(xt, yt; θ)/∂θ|θ=θt and the Hessian is H. We assume a
quadratic loss for a data point (xt, yt) of the form:

L(xt, yt; θ) = Lt(θ) = −
1
2

θ>Hθ+ z>t θ, (8)
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the result of a second-order Taylor expansion. The Hessian is assumed to be constant with respect to
(xt, yt) (but not with respect to θ).

To construct the dynamical equation for θ, consider the gradient for the i-th weight
while all other parameters are set to their current estimate at the optimal value for the θ∗it:

θ∗it = −
1

Hii
H>−iiθ−it, (9)

since zit = 0 at a mode. The equation above shows us that the dynamics of the optimal
weight θ∗it is dependent on all the other current values of the parameters θ−it. The dynamics
of θ−it are a complex stochastic process dependent on many different variables such as the
dataset, model architecture, learning rate schedule, etc.

Assumption 2. Since reasoning about the dynamics of θ−it is intractable, we assume that at the
next timestep, the optimal weights are close to the previous timesteps with a discretized Ornstein–
Uhlenbeck process for the weights θ−it with reversion speed ϑ ∈ R+ and noise variance η2

−i:

p(θ−i,t+1|θ−i,t) = N ((1− ϑ)θ−it, η2
−i), (10)

this implies that the dynamics for the optimal weight are defined by

p(θ∗i,t+1|θ∗i,t) = N ((1− ϑ)θ∗it, η2), (11)

where η2 = η2
−i H

>
−ii H−ii.

In simple terms, in Assumption 2, we assume a parsimonious model of the dynamics,
and that the next value of θ−i,t is close to their previous value according to a Gaussian,
similarly to Aitchison [31].

Lemma 1. Under Assumptions 1 and 2 the dynamics and likelihood are Gaussian. Thus, we are
able to infer the posterior distribution over the optimal weights using Bayesian updates and by
linearizing the BNN the update equations for the posterior of the mean and variance of the BNN for
a new data point are:

µt,post = σ2
t,post

(
µt,prior

σ2
t,prior(η

2)
+

yt

σ2 g(xt)

)
and

1
σ2

t,post
=

g(xt)2

σ2 +
1

σ2
t,prior(η

2)
, (12)

where we drop the notation for the i-th parameter, the posterior is N (θ∗t ; µt,post, σ2
t,post) and

g(xt) =
∂ f (xt ;θ∗it)

∂θ∗it
and σ2

t,prior is a function of η2.

See Appendix E for the derivation of Lemma 1. From Equation (12), we can notice
that the posterior mean depends linearly on the prior and a data-dependent term and
so will behave similarly to our previous example in Section 4. Under Assumption 1 and
Assumption 2, if there is a data imbalance between tasks in Equation (12), then the data-
dependent term will dominate the prior term if there is more data for the current task.

In Section 3, we showed that it is very difficult with current machine learning tools to
perform sequential Bayesian inference for simple CL problems with small Bayesian NNs.
When we disentangle Bayesian inference and model misspecification, we show showed
that misspecified models can forget despite exact Bayesian inference. The only way to
ensure that our model is well specified is to show that the multi-task posterior produces
reasonable posterior predictive distributions p(y|x,D) =

∫
p(y|x,D, θ)p(θ|D)dθ for one’s

application. Additionally, in this section, we have shown that if there is a task dataset size
imbalance, then we can obtain forgetting under certain assumptions.
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6. Related Work

There has been a recent resurgence in the field of CL [33] given the advent of deep
learning. Methods that approximate sequential Bayesian inference Equation (3) have been
seminal in CL’s revival and have used a diagonal Laplace approximation [3,7]. The diago-
nal Laplace approximation has been enhanced by modeling covariances between neural
network weights in the same layer [8]. Instead of the Laplace approximation, we can use
a variational approximation for sequential Bayesian inference, named VCL [9,34]. The
variational Gaussian variance of each Bayesian NN parameter can be used to pre-condition
the learning rates of each weight and create a mask per task by using pruning [10]. Using
richer priors has also been explored [11,35–38]. For example, one can learn a scaling of the
Gaussian NN weight parameters for each task by learning a new variational adaptation
parameter which can strengthen the contribution of a specific neuron [39]. The online
Laplace approximation can be seen as a special case of VCL where the KL-divergence
term Equation (6) is tempered and the temperature tends to 0 [12]. Gaussian processes
have also been applied to CL problems leveraging inducing points to retain previous task
functions [40,41].

Bayesian methods that regularize weights have not matched up to the performance of
experience replay-based CL methods [42] in terms of accuracy on CL image classification
benchmarks. Instead of regularizing high-dimensional weight spaces, regularizing task
functions is a more direct approach to combat forgetting [43]. Bayesian NN weights can
also be generated by a hypernetwork, where the hypernetwork needs only simple CL
techniques to prevent forgetting [44]. In particular, one can leverage the duality between
the Laplace approximation and Gaussian processes to develop a functional regularization
approach to Bayesian CL [45] or using function-space variational inference [46,47].

In the next section, we propose a simple Bayesian continual learning baseline that
models the data-generating continual learning process and performs exact sequential
Bayesian inference in a low-dimensional embedding space. Previous work has explored
modeling the data-generating process by inferring the joint distribution of inputs and
targets p(x, y) and learning a generative model to replay data to prevent forgetting [48],
and by learning a generative model per class and evaluating the likelihood of the inputs
given each class p(x|y) [49].

7. Prototypical Bayesian Continual Learning

We have shown that sequential Bayes over NN parameters is very difficult (Section 3),
and is only suitable for situations where the multi-task posterior is suitable for all tasks.
We now show that a more fruitful approach is to model the full data-generating process of
the CL problem and we propose a simple and scalable approach for doing so. In particular,
we represent classes by prototypes [50,51] to prevent catastrophic forgetting. We refer to
this framework as Prototypical Bayesian Continual Learning, or ProtoCL for short. This
approach can be viewed as a probabilistic variant of iCarl [51], which creates embedding
functions for different classes that are simply class means and predictions made by nearest
neighbors. ProtoCL also bears similarities to the few-shot learning model Probabilistic
Clustering for Online Classification [52], developed for few-shot image classification.

Model. ProtoCL models the generative CL process. We consider classes j ∈ {1, . . . , J},
generated from a categorical distribution with a Dirichlet prior:

yi,t ∼ Cat(p1:J), p1:J ∼ Dir(αt). (13)

Images are embedded into an embedding space by an encoder, z = f (x; w) with parameters
w. The per class embeddings are Gaussian, and their mean has a prior which is also
Gaussian:

zit|yit ∼ N (z̄yt, Σε), z̄yt ∼ N (µyt, Λ−1
yt ). (14)
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See Figure 6 for an overview of the model. To alleviate forgetting in CL, ProtoCL
uses a coreset of past task data to continue to embed past classes distinctly as prototypes.
The posterior distribution over class probabilities {pj}J

j=1 and class embeddings {z̄yj}
J
j=1

is denoted in short hand as p(θ) with parameters ηt = {αt, µ1:J,t, Λ−1
1:J,t}. ProtoCL models

each class prototype but does not use task-specific NN parameters or modules such as
multi-head VCL. By modeling a probabilistic model over an embedding space, this allows
us to use powerful embedding functions f ( · ; w) without having to parameterize them
probabilistically, and so this approach is more scalable than VCL, for instance.

enc enc

Embedding
Space

Embedding
Space

Figure 6. Overview of ProtoCL.

Inference. As the Dirichlet prior is conjugate with the categorical distribution and
likewise, the Gaussian over prototypes with a Gaussian prior over the prototype mean,
we can calculate posteriors in closed form and update the parameters ηt as new data is
observed without using gradient-based updates. We optimize the model by maximizing
the posterior predictive distribution and use a softmax over class probabilities to perform
predictions. We perform gradient-based learning of the NN embedding function f ( · ; w)
and update the parameters ηt at each iteration of gradient descent as well, see Algorithm 1.

Algorithm 1 ProtoCL continual learning

1: Input: task datasets T1:T , initialize embedding function: f ( · ; w), coreset:M = ∅.
2: for T1 to TT do
3: for each batch in Ti ∪M do
4: Optimize f (·; w) by maximizing the posterior predictive p(z, y) Equation (18)
5: Obtain posterior over θ by updating η, Equations (15)–(17).
6: end for
7: Add random subset from Ti toM.
8: end for

Sequential updates. We can obtain our parameter updates for the Dirichlet posterior
by Categorical-Dirichlet conjugacy:

αt+1,j = αt,j +
Nt

∑
i=1

I(yi
t = j), (15)

where Nt are the number of points seen during the update at timestep t. Moreover, due to
Gaussian-Gaussian conjugacy, the posterior for the Gaussian prototypes is governed by:
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Λyt+1 = Λyt + NyΣ−1
ε (16)

Λyt+1 µyt+1 = NyΣ−1
ε z̄yt + Λyt µyt , ∀yt ∈ Ct, (17)

where Ny are the number of samples of class y and z̄yt = (1/Ny)∑
Ny
i=1 zyi, see Appendix D.2

for the detailed derivation.
Objective. We optimize the posterior predictive distribution of the prototypes and

classes:

p(z, y) =
∫

p(z, y|θt; ηt)p(θt; ηt)dθt = p(y)
Nt

∏
i=1
N (zit|yit; µyt ,t, Σε + Λ−1

yt ,t). (18)

where the p(y) = αy/ ∑J
j=1 αj, see Appendix D.3 for the detailed derivation. This objec-

tive can then be optimized using gradient-based optimization for learning the prototype
embedding function z = f (x; w).

Predictions. To make a prediction for a test point x∗, the class with the maximum
(log)-posterior predictive is chosen, where the posterior predictive is:

p(y∗ = j|x∗, x1:t, y1:t) = p(y∗ = j|z∗, θt) =
p(y∗ = j, z∗|θt)

∑i p(y = i, z∗|θt)
, (19)

see Appendix D.4 for further details.
Preventing forgetting. As we wish to retain the class prototypes, we make use of

coresets: experience from previous tasks. At the end of learning a task Tt, we retain a subset
Mt ⊂ Dt and augment each new task dataset to ensure that posterior parameters ηt and
prototypes are able to retain previous task information.

Class-incremental learning. In this CL setting, we do not tell the CL agent which
task it is being evaluated on with a task identifier τ. Therefore, we cannot use the task
identifier to select a specific head to use for classifying a test point. Moreover, we require
the CL agent to identify each class, {0, . . . , 9} for Split-MNIST and Split-CIFAR10, and
not just {0, 1} as in domain-incremental learning. Class-incremental learning is more
general, realistic, and harder a problem setting, and thus important to focus on rather than
other settings, despite domain-incremental learning also being compatible with sequential
Bayesian inference as described in Equation (3).

Implementation. For Split-MNIST and Split-FMNIST, the baselines and ProtoCL all
use two-layer NNs with a hidden state size of 200. For Split-CIFAR10 and Split-CIFAR100,
the baselines and ProtoCL use a four-layer convolution neural network with two fully
connected layers of size 512 similarly to Pan et al. [22]. For ProtoCL and all baselines
that rely on replay, we fix the size of the coreset to 200 points per task. For all ProtoCL
models, we allow the prior Dirichlet parameters to be learned and set their initial value to
0.7 found by a random search over MNIST with ProtoCL. An important hyperparameter
for ProtoCL is the embedding dimension of the Gaussian prototypes for Split-MNIST and
Split-FMNIST, this was set to 128, while for the larger vision datasets, this was set to 32
found using grid-search.

Results. ProtoCL produces good results on CL benchmarks on par or better than
S-FSVI [47], which is state-of-the-art among Bayesian CL methods while being a lot more
efficient to train and without requiring expensive variational inference. ProtoCL can
flexibly scale to larger CL vision benchmarks, producing better results than S-FSVI. The
code to reproduce all experiments can be found here https://github.com/skezle/bayes_cl_
posterior. All our experiments are in the more realistic class incremental learning setting,
which is a harder setting than those reported in most CL papers, so the results in Table 1 are
lower for certain baselines than in the respective papers. We use 200 data points per task,
see Figure A6 for a sensitivity analysis of the performance over the Split-MNIST benchmark
as a function of core size for ProtoCL. In Table 2 we show how ProtoCL is able to scale to
larger and more challenging CL vision benchmarks. ProtoCL demonstrates competitive

https://github.com/skezle/bayes_cl_posterior
https://github.com/skezle/bayes_cl_posterior
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performance versus the baselines we consider while at the same time requiring a fraction
of the computational cost in terms of training times benchmarked on the same GPU.

Table 1. Mean accuracies across all tasks over CL vision benchmarks for class incremental learning [17].
All results are averages and standard errors over 10 seeds. ∗ Uses the predictive entropy to make a
decision about which head for class incremental learning.

Method Coreset Split-MNIST Split-FMNIST

VCL [9] 7 33.01± 0.08 32.77± 1.25
+ coreset 3 52.98± 18.56 61.12± 16.96

HIBNN ∗ [11] 7 85.50± 3.20 43.70± 20.21
FROMP [22] 3 84.40± 0.00 68.54± 0.00
S-FSVI [47] 3 92.94± 0.17 80.55± 0.41
ProtoCL (ours) 3 93.73± 1.05 82.73± 1.70

Table 2. Mean accuracies across all tasks over CL vision benchmarks for class incremental learning [17].
All results are averages and standard errors over 10 seeds. Training times have been benchmarked
using an Nvidia RTX3090 GPU.

Method Training Time (s) (↓) Split CIFAR-10 (Acc) (↑)
FROMP [22] 1425± 28 48.92± 10.86
S-FSVI [47] 44434± 91 50.85± 3.87

ProtoCL (ours) 384± 6 55.81± 2.10

Split CIFAR-100 (Acc) (↑)
S-FSVI [47] 37355± 1135 20.04± 2.37

ProtoCL (ours) 1425± 28 23.96± 1.34

The stated aim of ProtoCL is not to provide a novel state-of-the-art method for CL,
but rather to propose a simple baseline that takes an alternative route than weight-space
sequential Bayesian inference. We can achieve strong results that mitigate forgetting,
namely by modeling the generative CL process and using sequential Bayesian inference
over a few parameters in the class prototype embedding space. We argue that modeling
the generative CL process is a fruitful direction for further research rather than attempting
sequential Bayesian inference over the weights of a BNN. ProtoCL scales to 10 tasks of
Split-CIFAR100, which, to the best of our knowledge, is the highest number of tasks and
classes that have been considered by previous Bayesian continual learning methods.

8. Discussion and Conclusions

In this paper, we revisited the use of sequential Bayesian inference for CL. We can use
sequential Bayes to recursively build up the multi-task posterior Equation (3). Previous
methods have relied on approximate inference and see little benefit over SGD. We test the
hypothesis of whether this poor performance is due to the approximate inference scheme
by using HMC in two simple CL problems. HMC asymptotically samples from the true
posterior, and we use a density estimator over HMC samples to use as a prior for a new task
within the HMC sampling process. This density is multi-modal and accurate with respect
to the current task but is not able to improve over using an approximate posterior. This
demonstrates just how challenging it is to work with BNN weight posteriors. The source
of error comes from the density estimation step. We then look at an analytical example of
sequential Bayesian inference where we perform exact inference; however, due to model
misspecification, we observe forgetting. The only way to ensure a well-specified model is to
assess the multi-task performance over all tasks a priori. This might not be possible in online
CL settings. We then model an analytical example over Bayesian NNs and, under certain
assumptions, show that if there are task data imbalances then this will cause forgetting.
Because of these results, we argue against performing weight space sequential Bayesian
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inference and instead model the generative CL problem. We introduce a simple baseline
called ProtoCL. ProtoCL does not require complex variational optimization and achieves
competitive results to the state-of-the-art in the realistic setting of class incremental learning.

This conclusion should not be a surprise since the latest Bayesian CL papers have all
relied on multi-head architectures or inducing points/coresets to prevent forgetting, rather
than better weight-space inference schemes. Our observations are in line with recent theory
from [53], which states that optimal CL requires perfect memory. Although the results
were shown with deterministic NNs the same results follow for BNN with a single set of
parameters. Future research directions include enabling coresets of task data to efficiently
and accurately approximate the posterior of a BNN to remember previous tasks.
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GMM Gaussian Mixture Model
ProtoCL Prototypical Bayesian Continual Learning

Appendix A. The Toy Gaussians Dataset

See Figure A1 for a visualization of the toy Gaussians dataset, which we use as a simple
CL problem. This is used for evaluating our method for propagating the true posterior by
using HMC for posterior inference and then using a density estimator on HMC samples as
a prior for a new task. We construct 5, 2-way classification problems for CL. Each 2-way
task involves classifying adjacent circles and squares Figure A1. With a 2 layer network
with 10 neurons we obtain a test accuracy of 1.0 for the multi-task learning of all 5 tasks

https://github.com/skezle/bayes_cl_posterior
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together. Hence, according to Equation (3) a BNN with the same size should be able to
learn all 5 binary classification tasks continually by sequentially building up the posterior.

Appendix B. HMC Implementation Details

We set the prior for T1, to p1(θ) = N (0, τ−1I) with τ = 10. We burn-in the HMC
chain for 1000 steps and sample for 10, 000 more steps and run 20 different chains to obtain
samples from our posterior, which we then pass to our density estimator. We use a step
size of 0.001 and trajectory length of L = 20, see Appendix C for further implementation
details of the density estimation procedure. For the GMM, we optimize for the number of
components by using a holdout set of HMC samples.

Appendix C. Density Estimation Diagnostics

We provide plots to show that the HMC chains indeed sample from the posterior
have converged in Figures A3 and A5. We run 20 HMC sampling chains and randomly
select one chain to plot for each seed (of 10). We run HMC over 10 seeds and aggregate the
results Figures 3 and A1. The posteriors p(θ|D1), . . . are approximated with a GMM and
used as a prior for the second task and so forth.

We provide empirical evidence to show that the density estimators have fit to HMC
samples of the posterior in Figures A2 and A4, where we show the number of components
of the GMM density estimator, which we use as a prior for a new task, are all multi-modal
posteriors. We show the BNN accuracy when sampling BNN weights from our GMM all
recover the accuracy of the converged HMC samples. The effective sample size (ESS) of the
20 chains is a measure of how correlated the samples are (higher is better). The reported
ESS values for our experiments are in line with previous work which uses HMC for BNN
inference [20].
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Figure A1. Continual learning binary classification accuracies from the toy Gaussian dataset similar
to [44] using 10 random seeds. The pink solid line is a multi-task (MT) baseline test accuracy using
SGD/HMC.
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Figure A2. Diagnostics from using a GMM prior fit to samples of the posterior generated from HMC,
all results are for 10 random seeds. Left, effective sample sizes (ESS) of the resulting HMC chains of
the posterior, all are greater than those reported in other works using HMC for BNNs [20]. Middle,
the accuracy of the BNN when using samples from the GMM density estimator instead of the samples
from HMC. Right, The optimal number of components of each GMM posterior fitted with a holdout
set of HMC samples by maximizing the likelihood.
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Figure A3. Convergence plots from a one randomly sampled HMC chain (of 20) for each task over
10 different runs (seeds) for 5 tasks from the toy Gaussian dataset similar to Henning et al. [44]
(visualized in Figure A1). We use a GMM density estimator as the prior conditioned on the previous
task data.
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Figure A4. Diagnostics from using a GMM to fit samples of the posterior HMC samples, all results
are for 10 random seeds on the toy dataset from Pan et al. [22] (and visualized in Figure 3). Left,
effective sample sizes (ESS) of the resulting HMC chains of the posterior, all are greater than those
reported in other works using HMC for BNNs [20]. Middle left. the current task accuracy from
HMC sampling. Middle right, the accuracy of the BNN when using samples from the GMM density
estimator instead of the converged HMC samples. Right, The optimal number of components of each
GMM posterior fitted with a holdout set of HMC samples by maximizing the likelihood.
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Figure A5. Convergence plots from a randomly sampled HMC chain (of 20) for each task over
10 different seeds for 5 tasks from the toy dataset from [22] (see Figure 3 for a visualization of the
data). We use a GMM density estimator as a prior.

Appendix D. Prototypical Bayesian Continual Learning

ProtoCL models the generative process of CL where new tasks are comprised of new
classes j ∈ {1, . . . , J} of a total of J and can be modeled by using a categorical distribution
with a Dirichlet prior:

yi,t ∼ Cat(p1:J), p1:J ∼ Dir(αt). (A1)

We learn a joint embedding space for our data with a NN, z = f (x; w) with parameters
w. The embedding space for each class is Gaussian whose mean has a prior which is also
Gaussian:

zit|yit ∼ N (z̄yt, Σε), z̄yt ∼ N (µyt, Λ−1
yt ). (A2)
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By ensuring that we have an embedding per class and using a memory of past data, we
ensure that the embedding does not drift. The posterior parameters are
ηt = {αt, µ1:J,t, Λ−1

1:J,t}.

Appendix D.1. Inference

As the Dirichlet prior is conjugate with the categorical distribution and so is the
Gaussian distribution with a Gaussian prior over the mean of the embedding, then we can
calculate posteriors in closed form and update our parameters as we see new data online
without using gradient-based updates. We perform gradient-based learning of the NN
embedding function f ( · ; w) with parameters w. We optimize the model by maximizing
the log-predictive posterior of the data and use the softmax over class probabilities to
perform predictions. The posterior over class probabilities {pj}J

j=1 and class embeddings

{z̄yj}
J
j=1 is denoted as p(θ) for short hand and has parameters are ηt = {αt, µ1:J,t, Λ−1

1:J,t}
are updated in closed form at each iteration of gradient descent.

Appendix D.2. Sequential Updates

We can obtain our posterior:

p(θt|Dt) ∝ p(Dt|θt)p(θt) (A3)

=
Nt

∏
i=1

p(zi
t|yi

t; z̄yt , Σε,yt)p(yi
t|p1:J)p(pi:J ; αt)p(z̄yt ; µyt ,t, Λ−1

yt ,t) (A4)

= N (µt+1, Σt+1)Dir(αt+1), (A5)

where Nt is the number of data points seen during update t. Concentrating on the
Categorical-Dirichlet conjugacy:

Dir(αt+1) ∝ p(p1:J ; αt)
Nt

∏
i=1

p(yi
t; pi:J) (A6)

∝
J

∏
j=1

p
αj−1
j

Nt

∏
i=1

J

∏
j=1

pI(y
i
t=j)

j (A7)

=
J

∏
j=1

p
αj−1+∑

Nt
i=1 I(y

i
t=j)

j . (A8)

Thus:

αt+1,j = αt,j +
Nt

∑
i=1

I(yi
t = j). (A9)

Moreover, due to Gaussian-Gaussian conjugacy, then the posterior for the Gaussian proto-
type of the embedding for each class is:

N (µt+1, Λt+1) ∝
Nt

∏
i=1
N (zi

t|yi
t; z̄yt , Σε)N (z̄yt ; µyt ,t, Λ−1

yt ) (A10)

= ∏
yt∈{1,...,J}

N (zyt |yt; z̄yt ,
1

Nyt

Σε)N (z̄yt ; µyt+1 , Λ−1
yt ) (A11)

= ∏
yt∈{1,...,J}

N (z̄yt ; µt+1, Λ−1
yt+1

), (A12)
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where Nyt is the number of points of class yt from the set of all classes C = {1, . . . , J}.
The update equations for the mean and variance of the posterior are:

Λyt+1 = Λyt + Nyt Σ
−1
ε , ∀yt ∈ Ct (A13)

Λyt+1 µyt+1 = Nyt Σ
−1
ε z̄yt + Λyt µyt , ∀yt ∈ Ct. (A14)

Appendix D.3. ProtoCL Objective

The posterior predictive distribution we want to optimize is:

p(z, y) =
∫

p(z, y|θ; η)p(θ; η)dθ, (A15)

where p(θ) denotes the distributions over class probabilities {pj}J
j=1 and mean embeddings

{z̄yj}
J
j=1,

p(z, y) =
∫ Nt

∏
i=1

p(zit|yit; z̄yt , Σε)p(yit|p1:J)p(p1:J ; αt)p(z̄yt ; µyt ,t, Λ−1
yt ,t)dp1:Jdz̄yt (A16)

=
∫ Nt

∏
i=1

p(zit|yit; zyt , Σε)p(z̄yt ; µyt ,t, Λ−1
yt ,t)dz̄yt

∫ Nt

∏
i=1

p(yit|p1:J)p(p1:J ; αt)dp1:J︸ ︷︷ ︸
∏i p(yi)=p(y)

(A17)

= p(y)
Nt

∏
i=1

Z−1
i

∫
N (z̄yit ; c, C)dz̄yt (A18)

= p(y)
Nt

∏
i=1
N (zit|yit; µyt ,t, Σε + Λ−1

yt ,t). (A19)

where in Equation (A18) we use §8.1.8 in [54]. The term p(y) is:

p(y) =
∫

p(y|p1:J)p(p1:J ; αt)dp1:J (A20)

=
∫

py
Γ(∑J

j=1 αj)

∏J
j=1 Γ(αj)

J

∏
j=1

p
αj−1
j dp1:J (A21)

=
Γ(∑J

j=1 αj)

∏J
j=1 Γ(αj)

∫ J

∏
j=1

p
I(y=j)+αj−1
j dp1:J (A22)

=
Γ(∑J

j=1 αj)

∏J
j=1 Γ(αj)

∏J
j=1 Γ(I(y = j) + αj)

Γ(1 + ∑J
j=1 αj)

(A23)

=
�����Γ(∑J

j=1 αj)

∏J
j=1 Γ(αj)

∏J
j=1 Γ(I(y = j) + αj)

∑J
j=1 αj�����Γ(∑J

j=1 αj)
(A24)

=
∏J

j=1,j 6=y Γ(αj)

∏J
j=1 Γ(αj)

Γ(1 + αy)

∑J
j=1 αj

(A25)

=
∏J

j=1,j 6=y Γ(αj)

∏J
j=1 Γ(αj)

αyΓ(αy)

∑J
j=1 αj

(A26)

=
αy

∑J
j=1 αj

, (A27)

where we use the identity Γ(n + 1) = nΓ(n).
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Figure A6. Split-MNIST average test accuracy over five tasks for different memory sizes. On the
x-axis, we show the size of the entire memory buffer shared by all five tasks. Accuracies are over a
mean and standard deviation over five different runs with different random seeds.
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Figure A7. The evolution of the Dirichlet parameters αt for each class in Split-MNIST tasks for
ProtoCL. All αj are shown over 10 seeds with ±1 standard error. By the end of training, all classes are
roughly equally likely, as we have trained on equal amounts of all classes.

Appendix D.4. Predictions

To make a prediction for a test point x∗:

p(y∗ = j|x∗, x1:t, y1:t) = p(y∗ = j|z∗, θt) (A28)

=
p(z∗|y∗ = j, θt)p(y∗ = j|θt)

∑i p(z∗|y∗ = i, ηt)p(y∗ = i|θt)
(A29)

=
p(y∗ = j, z∗|θt)

∑i p(y = i, z∗|θt)
, (A30)

where θt are sufficient statistics for (x1:t, y1:t).
Preventing forgetting. As we wish to retain the task-specific prototypes, at the end of
learning a task Tt we take a small subset of the data as a memory to ensure that posterior
parameters and prototypes do not drift, see Algorithm 1.
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Appendix D.5. Experimental Setup

The prototype variance, Σε is set to a diagonal matrix with the variances of each
prototype set to 0.05. The prototype prior precisions, Λyt, are also diagonals and initialized
randomly and exponentiated to ensure a positive semi-definite covariance for the sequential
updates. The parameters αj ∀j are set to 0.78, which was found by random search over
the validation set on MNIST. We also allow αj to be learned in the gradient update step in
addition to the sequential update step (lines 4 and 5 Algorithm 1), see Figure A7 to see the
evolution of the αj or all classes j over the course of learning Split-MNIST.

For the Split-MNIST and Split-FMNIST benchmarks, we use an NN with two layers of
size 200 and trained for 50 epochs with an Adam optimizer. We perform a grid-search over
learning rates, dropout rates, and weight decay coefficients. The embedding dimension
is set to 128. For the Split-CIFAR10 and Split-CIFAR100 benchmarks, we use the same
network as Pan et al. [22], which consists of four convolution layers and two linear layers.
We train the networks for 80 epochs for each task with the Adam optimizer with a learning
rate of 1× 10−3. The embedding dimension is set to 32. All experiments are run on a single
GPU NVIDIA RTX 3090.

Appendix E. Sequential Bayesian Estimation as Bayesian Neural
Network Optimization

We shall consider inference in the graphical model depicted in Figure A8. The aim is
to infer the optimal BNN weights, θ∗t at time t given observations and the previous BNN
weights. We assume a Gaussian posterior over weights with full covariance; hence, we
model interactions between all weights. We shall consider the online setting where we see
one data point (xt, yt) at a time and we will make no assumption as to whether the data
comes from the same task or different tasks over the course of learning.

θ∗t−1θ∗t−2 θ∗t θ∗t+1

yt−1yt−2 yt yt+1

xt−1xt−2 xt xt+1

. . . . . .

Figure A8. Graphical model of under which we perform inference in Section 5. Grey nodes are
observed and white are latent variables.

We set up the problem of sequential Bayesian inference as a filtering problem and we
leverage the work of Aitchison [31], which casts NN optimization as Bayesian sequential
inference. We make the reasonable assumption that the distribution over weights is a
Gaussian with full covariance. Since reasoning about the full covariance matrix of a BNN
is intractable, we instead consider the i-th parameter and reason about the dynamics
of the optimal estimates θ∗it as a function of all the other parameters θ−it. Each weight
is functionally dependent on all others. If we had access to the full covariance of the
parameters, then we could reason about the unknown optimal weights θ∗it given the values
of all the other weights θ−it. However, since we do not have access to the full covariance,
another approach is to reason about the dynamics of θ∗it given the dynamics of θ−it and
assume that the values of the weights are close to those of the previous timestep [32] and
so we cast the problem as a dynamical system.
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Consider a quadratic loss of the form:

L(xt, yt; θ) = Lt(θ) = −
1
2

θ>Hθ+ z>t θ, (A31)

which we can arrive at by simple Taylor expansion, where H is the Hessian which is
assumed to be constant across data points but not across the parameters θ. If the BNN
output takes the form f (xt; θ), then the derivative evaluated at θt is zt =

∂L(xt ,yt ;θ)
∂θ |θ=θt .

To construct the dynamical equations for our weights, consider the gradient for a single
datapoint:

∂Lt(θ)

∂θ
= −Hθ+ zt. (A32)

If we consider the gradient for the i-th weight while all other parameters are set to their
current estimate:

∂L(θi, θ−i)

∂θi
= −Hiiθit − H>−iiθ−it + zti. (A33)

When the gradient is set to zero we recover the optimal value for θit, denoted as θ∗it:

θ∗it = −
1

Hii
H>−iiθ−it. (A34)

since zti = 0 at the modes. The equation above shows us that the dynamics of the optimal
weight θ∗it is dependent on all the other current values of the parameters θ−it. That is,
the dynamics of θ∗it are governed by the dynamics of the weights θ−it. The dynamics of θ−it
are a complex stochastic process dependent on many different variables. Since reasoning
about the dynamics is intractable, we instead assume a discretized Ornstein–Uhlenbeck
process for the weights θ−it with reversion speed ϑ ∈ R+ and noise variance η2

−i:

p(θ−i,t+1|θ−i,t) = N ((1− ϑ)θ−it, η2
−i), (A35)

this implies that the dynamics for the optimal weight are defined by

p(θ∗i,t+1|θ∗i,t) = N ((1− ϑ)θ∗it, η2), (A36)

where η2 = η2
−i H

>
−ii H−ii. This same assumption is made in Aitchison [31]. This assumes a

parsimonious model of the dynamics. Together with our likelihood:

p(yt|xt; θ∗t ) = N (yt; f (xt; θ∗t ), σ2) (A37)

where f ( · , θ) is a neural network prediction with weights θ, we can now define a linear
dynamical system for the optimal weight θ∗i by linearizing the Bayesian NN [32] and by
using the transition dynamics in Equation (A36). Thus, we are able to infer the posterior
distribution over the optimal weights using Kalman filter-like updates [25]. As the dynam-
ics and likelihood are Gaussian, then the prior and posterior are also Gaussian, for ease of
notation we drop the index i such that θ∗it = θ∗t :

p(θ∗t |(x, y)t−1, . . . , (x, y)1) = N (µt,prior, σ2
t,prior) (A38)

p(θ∗t |(x, y)t, . . . , (x, y)1) = N (µt,post, σ2
t,post) (A39)

By using the transition dynamics and the prior we can obtain closed-form updates:
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p(θ∗t |(x, y)t−1, . . . , (x, y)1) =
∫

p(θ∗t |θ∗t−1)p(θ∗t−1|(x, y)t−1, . . . , (x, y)1)dθ∗t−1 (A40)

N (θ∗t ; µt,prior, σ2
t,prior) =

∫
N (θ∗t ; (1− ϑ)θ∗t−1, η2)N (θ∗t−1; µt−1,post, σ2

t−1,post)dθ∗t−1. (A41)

Integrating out θ∗t−1 we can obtain updates for the prior for the next timestep as follows:

µt,prior = (1− ϑ)µt−1,post (A42)

σ2
t,prior = η2 + (1− ϑ)−2σ2

t−1,post. (A43)

The updates for obtaining our posterior parameters: µt,post and σ2
t,post, comes from applying

Bayes’ theorem:

logN (θ∗t ; µt,post, σ2
t,post) ∝ logN (yt; f (xt; θ∗t ), σ2) + logN (θ∗t ; µt,prior, σ2

t,prior), (A44)

by linearizing our Bayesian NN such that f (xt, θ0) ≈ f (xt, θ0) +
∂ f (xt ;θ∗t )

∂θ∗t
(θ∗t − θ0) and by

substituting into Equation (A44) we obtain our update equation for the posterior of the
mean of our BNN parameters:

− 1
2σ2

t,post
(θ∗t − µt,post)

2 = − 1
2σ2 (y− g(xt)θ

∗
t )

2 − 1
2σ2

t,prior
(θ∗t − µt,prior)

2 (A45)

µt,post = σ2
t,post

(
µt,prior

σ2
t,prior

+
y
σ2 g(xt)

)
, (A46)

where g(xt) =
∂ f (xt ;θ∗t )

∂θ∗t
, and the update equation for the variance of the Gaussian posterior

is:

1
σ2

t,post
=

g(xt)2

σ2 +
1

σ2
t,prior

. (A47)

From our updated equations, Equation (A46) and Equation (A47), we can notice that
the posterior mean depends linearly on the prior and an additional data dependent term.
These equations are similar to the filtering example in Section 4. Therefore, under certain
assumptions above, a BNN should behave similarly. If there exists a task data imbalance,
then the data term will dominate the prior term in Equation (A46) and could lead to
forgetting of previous tasks.
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