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Abstract: This paper considers the active fault isolation problem for a class of uncertain multimode
fault systems with a high-dimensional state-space model. It has been observed that the existing
approaches in the literature based on a steady-state active fault isolation method are often accompa-
nied by a large delay in making the correct isolation decision. To reduce such fault isolation latency
significantly, this paper proposes a fast online active fault isolation method based on the construction
of residual transient-state reachable set and transient-state separating hyperplane. The novelty and
benefit of this strategy lies in the embedding of a new component called the set separation indicator,
which is designed offline to distinguish the residual transient-state reachable sets of different system
configurations at any given moment. Based on the results delivered by the set separation indicator,
one can determine the specific moments at which the deterministic isolation is to be implemented
during online diagnostics. Meanwhile, some alternative constant inputs can also be evaluated for
isolation effects to determine better auxiliary excitation signals with smaller amplitudes and more
differentiated separating hyperplanes. The validity of these results is verified by both a numerical
comparison and an FPGA-in-loop experiment.

Keywords: active fault isolation; constant auxiliary input; set separation indicator; residual reachable
set; transient-state separating hyperplane

1. Introduction

In pursuit of a high production efficiency, most of today’s control engineering systems
are already equipped with various abnormal condition monitoring modules. In particular,
the fault diagnosis unit in these modules is widely employed to detect and identify system
faults and provide critical abnormal information to enable timely maintenance. In the
literature, the fault diagnosis methods are usually divided into model-based, data-driven,
and knowledge-based approaches [1–6]. Among them, the model-based fault diagnosis
methods can be further classified as passive and active, depending on whether or not
an auxiliary input/excitation signal is used to enhance the representation of fault char-
acteristics [7,8]. Specifically, the passive fault diagnostic methods only use the system’s
input and output data to monitor the system status without interfering with the system’s
evolutionary patterns. Due to the low signal-to-noise ratio of a fault or masking of a fault
by the current operating mode, some faults may remain undiagnosed for an unacceptable
long period of time by passive fault diagnostic methods [9–11]. Compared to noninvasive
passive methods that rely only on input–output data to monitor the system status, active
fault diagnostic methods can increase the amount of diagnostically relevant information
in the input–output data by injecting auxiliary signals into the system [12,13], which can
effectively improve the diagnostic precision and accuracy.

Active fault diagnosis (AFD) techniques have been widely developed in recent
years [7,14,15]. Depending on the description of the uncertainty in the system, the reported
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methods can be classified as deterministic [16], stochastic [17], and hybrid methods [18].
This present research focuses on the AFD of dynamic systems with a deterministic uncer-
tainty, i.e., an uncertainty with known bounded sets [19,20]. The relevant methods in the
literature are commonly called set-based or set-theoretic AFD methods and the objective
is to design an auxiliary input signal to separate healthy and faulty sets in a finite time.
Some recently published results can be found in [21–24]. These AFD methods have the
advantages of a high diagnostic efficiency and low design conservatism, since the gener-
ated auxiliary excitation is dynamically optimized in real time according to the updated
system states or outputs. The real-time determination of these auxiliary inputs, however,
is often accompanied by optimization problems with high computational demands or
parallel diagnostic structures with a reliance on multiple observers. Their embedded
implementations may not be suitable for situations where the available computing and
storage resources of the hardware controller unit are constrained. Moreover, the online
continuous configurations of auxiliary inputs in a system with unknown faults may also
cause instability [25,26]. As an alternative, the offline design strategy of AFD provides a
helpful insight. Although such auxiliary excitations designed offline may be not as efficient
as the online ones, the offline AFD methods have also received a great deal of attention
due to their convenient synthesizability and effective realizability. Some remarkable results
and conclusions have been presented in [16,27,28]. However, it is noted that the offline
design of the auxiliary excitation in the existing set-based studies usually requires the
computation of a forward set propagation and projection. This is generally difficult to
achieve in multivariable systems with high-dimensional state-space models.

Recently, an easy-to-implement AFD method was proposed in [29,30] and this method
promised to address the above problems. In order to facilitate the explanation of the
construction idea, the studies in [29,30] specifically addressed the issue of active fault
isolation (AFI) for AFD based on the assumption of a periodical diagnosis or certain
performance-triggered diagnosis. Later, such AFI method was extended to deal with an
integrated fault-tolerant predictive control problem in [31]. Note that the main strategy of
AFI in [29–31] consisted in employing the vertex of the input constraint set as the design
reference for the constant auxiliary inputs and further adopting the implicit set represen-
tation of the residual steady-state set to design hyperplanes that separated the healthy
and faulty residual limit sets. In the offline design phase, the constant auxiliary input
and associated separation hyperplanes could be determined by solving linear constrained
quadratic programming problems. Since the implicit set representation avoided the set
iterative computation involved in an explicit set representation, the complexity of the
offline design was significantly reduced and such an AFI method was suitable for the
monitoring design of large-scale systems. In addition, the online diagnosis was reduced
to determining only the positioning of the residuals generated by a recently identified
observer with respect to the current separation hyperplanes. This design tactics would
impose little computational burden on the control processing unit and therefore could
significantly improve the practicality of AFI. However, as the implementation principle of
this AFI strategy was based on the auxiliary excitation driving the states of the system to
some steady-state operating point, the final isolation was usually accompanied by a large
decision delay. In addition, the auxiliary excitation signal usually needed to be set to a
larger value in order to highlight the variability of state trajectories for different system
configurations. This may not only further deviate the operating point of the system far
from the desired operating point and cause a much larger isolation delay but may also
impose heavy burdens on the faulty actuator or cause serious constraint violations. For
these reasons, this paper was dedicated to designing an improved AFI method that can
accomplish the correct isolation of the fault modes as early as possible even if the auxiliary
excitation signal is not large. This was the main motivation of the current research.

Considering the previously mentioned problems, a novel, fast, online AFI method
is constructed in this paper. The specific characteristic of the proposed approach lies
in the concept of a residual transient-state reachable set and a transient-state separating
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hyperplane being proposed for the first time to improve the existing steady-state AFI
strategy. In formulating the transient-based AFI method, a novel set separation indicator
is defined, which is offline designed to distinguish the residual transient-state reachable
sets of different system configurations at any given moment and is used to determine the
specific moments at which the deterministic isolation is to be implemented during online
diagnostics. The embedding of the transient analysis makes the proposed AFI method not
only suitable for a residual reachable analysis of high-dimensional multivariate systems
but also facilitates a significant reduction of the delay in making correct isolation decisions.

The specific advantages and the main contributions are summarized as follows:
(i) Instead of using the residual steady-state limit sets to design separation hyperplanes

to distinguish different fault modes as in [29–31], this paper advocates the construction
of approximate residual transient-state reachable sets and transient-state separation hy-
perplanes to exploit features in the evolution of different system dynamics. This design
method avoids the need to wait for the system to be driven to a steady state by an aux-
iliary excitation before making a diagnostic decision and therefore helps to achieve fast
fault isolation.

(ii) A novel concept of a set separation indicator is proposed, and the associated design
conditions are given. The set separation indicator is used to discriminate whether the
investigated residual transient-state reachable sets are separated at any given test moment.
Based on the results delivered by the set separation indicator, it is then feasible to determine
the specific moment at which the online isolation decision is to be given. In addition,
the fault isolation effects of the tested auxiliary input excitation can be evaluated based on
the separation degree of system configurations measured by the set separation indicator,
which helps to determine the appropriate auxiliary input signal with a smaller amplitude.

Notation 1. For two sets p ∈ P and q ∈ Q, P⊕Q = {p + q|p ∈ P, q ∈ Q} is the Minkowski
sum. The operation A← A	 a means to remove the element a from the set A, and the symbol A\a
denotes the remaining elements of set A other than the element a. sign[x] is a sign function which
returns 1 for all x > 0 and −1 for all x < 0. The symbol Ùab represents the convex arc between the
points a and b on a circle. The dot product for two vectors~a,~b is defined by~a ·~b = |~a||~b| cos θ,
where θ is the angle between the vectors and |.| is the two-norm.

2. Problem Formulation

Consider the following uncertain multimode fault systems with n f potential fault
models [16,21,29–33]:

xk+1 = Al xk + BluFI,k + Eldk, yk = Cl xk + Dlωk (1)

where xk ∈ Rn is the n-dimensional state vector and n is assumed to be relatively large,
e.g., n ≥ 10; uFI,k ∈ U ⊂ Rnu is the auxiliary input vector for fault isolation; dk ∈ D ⊂ Rnd

is the unknown process disturbance vector; ωk ∈ W ⊂ Rnω is the unknown measure-
ment disturbance vector; yk ∈ Rny is the measurement output vector. The matrices
(Al , Bl , El , Cl , Dl) have appropriate dimensions. The index l is associated with the fault
mode or configuration in which the system is actually operating, i.e., (Al , Bl , El , Cl , Dl) ∈
{(A0, B0, E0, C0, D0), (A1, B1, E1, C1, D1), · · · , (An f , Bn f , En f , Cn f , Dn f )}, l ∈ [0, n f ]. With-
out loss of generality, it is assumed that l = 0 corresponds to the healthy system config-
uration, while any other l ≥ 1 corresponds to a faulty system configuration. In addition,
U ,D,W are defined as the following bounded constraint sets [29]: U = {u ∈ Rnu : Huu ≤
bu},D = {d ∈ Rnd :‖ d ‖∞≤ 1},W = {ω ∈ Rnω :‖ ω ‖∞≤ 1}, where Hu and bu
are predetermined.

Remark 1. The multimode fault systems (1) can represent some common fault types
in [1,7,34–37], such as additive or multiplicative component/parameter fault, multiplicative actuator
fault, etc.
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Without loss of generality, the synthesized dynamics of the lth system configuration
can be rewritten as

xl
k+1 = Al xl

k + Blul
FI,k + Eldk, yl

k = Cl xl
k + Dlωk

s.t. uFI,k ∈ U , dk ∈ D, vk ∈ W
(2)

Assumption 1. The systems (2) are observable; the matched state estimator for each l system
configuration has been designed in advance; the systems (2) are simultaneously Schur stable by the
robust estimator-based H∞ control method in advance.

Assumption 2. The estimator-based fault detection method has been determined and it is able to
detect the onset of faults.

Remark 2. Assumption 1 ensures the existence of an observer and a controller, which provides
the necessary conditions for an observer-based active fault diagnosis [24,29,38]. Assumption 2 is a
classical assumption in fault isolation studies [7,29–31]. Assumptions 1 and 2 are given so that one
can focus only on addressing the fault isolation problem.

From Assumption 2, the following observer-based residual generator is employed

x̂l
k+1 = (Al + LlCl)x̂l

k + Blul
FI,k − Llyl

k

ŷl
k = Cl x̂l

k, rl
k = yl

k − ŷl
k

(3)

where x̂l
k ∈ Rn denotes the estimated state vector; ŷl

k ∈ Rny is the estimated output vector;
rl

k ∈ Rny is the generated residual signal that is used to provide key information on any
abnormal working condition for achieving AFI. By Assumption 2, the observer gain Ll is
known and Al + LlCl is Schur stable.

The objective of this paper is to design an efficient AFI scheme to isolate the faulty
system configuration in a timely manner. Such AFI scheme is composed of a constant
auxiliary input excitation, separating hyperplane, and isolation logic. Generally, this
problem can be further formulated as follows:

Problem 1. A fault has been detected at time instant k = kd, and the prior system configuration
correctly isolated before time instant kd is l = i. At k = kd, the corresponding predesigned constant
auxiliary input is applied to the system and the ith observer simultaneously. Then, the current
system configuration is determined by comparing the residual output for a given time delay in
relation to the position of the associated separating hyperplane.

The crucial issues when solving the above problem are how to design the auxiliary
excitation and corresponding transient-state separating hyperplanes offline and how to
determine the delay moment to perform online the isolation decision so as to achieve a fast
or early fault diagnosis.

3. Main Results
3.1. Parametric Characterization of the Residual Limit Set

In order to evaluate the effect of the auxiliary input on the response of residuals,
it is necessary to consider the evolution of the dynamics of both the system (2) and the
estimator (3). Since the fault isolation is triggered by the fault detection according to
Assumption 2, one can always assume that the real and unknown system configuration in-
dex is l and is not identical to the estimator index i currently being used. Then, the following
augmented model is firstly constructed:

χl,i
k+1 = Al,i

χ χl,i
k + Bl,i

χ ui
FI + El,i

χ σk

rl,i
k = Cl,i

χ χl,i
k + Dl

χσk
(4)
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where χl,i
k =

[
(xl

k)T (x̂i
k)T]T , σk ∈ E = {

[
dT

k ωT
k
]T : d ∈ D, ω ∈ W},

Al,i
χ =

ñ
Al 0
−LiCl Ai + LiCi

ô
, Bl,i

χ =

ñ
Bl

Bi

ô
, El,i

χ =

ñ
El 0
0 −LiDl

ô
, Cl,i

χ =
[
Cl −Ci],

Dl
χ =

[
0 Dl]. Note that, the auxiliary input in (4) is set to be a constant signal ui

FI,k = ui
FI .

The term El,i
χ σk lies in the set ∆l,i

χ = El,i
χ E . Then, given the auxiliary input ui

FI and based on
Assumption 1, an approximate maximal reachable set of χl,i

k denoted by Ωl,i
χ for each pair

(l, i), i 6= l, can be determined by finite set iterations along (4). Accordingly, the residual
limit set denoted byRl,i

FI that will be used to isolate the new system configuration can be
obtained byRl,i

FI = Cl,i
χ Ωl,i

χ ⊕ Dl
χE .

According to the set-theoretic analysis method in [39], Rl,i
FI can be explicitly calcu-

lated by
Rl,i

FI = {C
l,i
χ (I − Al,i

χ )−1Bl,i
χ ui

FI} ⊕ Cl,i
χ Ol,i

χ,∞ ⊕ Dl
χE (5)

where Ol,i
χ,∞ = {χ : ∑∞

j=0(Al,i
χ )jEl,i

χ σj, σj ∈ E} under the assumption of zero initial conditions.

Generally, the determination of Ol,i
χ,∞ is difficult for high-dimensional system models, let

alone for the augmented system models (4).
In [39], an external approximation method was also provided to enable Cl,i

χ Ol,i
χ,∞ ⊆

(1 + µl,i
T )Cl,i

χ Ol,i
χ,T , where µl,i

T can be calculated in a finite time for a given T and Ol,i
χ,T =

{χ : ∑T
j=0(Al,i

χ )jEl,i
χ σj, σj ∈ E}. Then, for a given constant auxiliary input ui

FI , any point

belonging to the residual limit setRl,i
FI can be parameterized as rl,i = Cl,i

χ (I− Al,i
χ )−1Bl,i

χ ui
FI +

(1 + µl,i
T ) ∑T

j=0 Cl,i
χ (Al,i

χ )jEl,i
χ σ1,j + Dl

χσ2, ∀σ1,j, σ2 ∈ E .

Remark 3. In contrast to the explicit set expressionRl,i
FI of the residual limit set, the parameteriza-

tion of the residual by rl,i belongs to an implicit set expression. For the sake of analysis, the explicit set
expression is used for the description of the relevant problems in the subsequent discussion. However,
the specific calculations involved are all performed in the form of an implicit set parametrization.
Since the implicit set expressions do not involve set iterative operations, the relevant optimization
problems are convenient to solve. On the contrary, the optimization problems constructed based on
the explicit set expressions are generally difficult to solve due to the computationally demanding
set iterations.

3.2. Existing AFI Method Based on Steady-State Separating Hyperplanes

Since the dimension of the augmented model (4) used to analyze the residuals is 2n
(e.g., 2n = 20 in the simulation), it is time-consuming or even difficult to compute the
explicit expression of the residual limit sets for such a high-dimensional multivariable
model, as explained in Remark 3. Instead, the implicit expression approximation method
of residual limit sets given in [29–31] can be applied to solve such problems. Generally,
their resulting AFI method is developed based on steady-state separating hyperplanes.
The constant auxiliary input is selected from a suitable vertex of the control input constraint
set, and the relevant separating hyperplane is designed according to the shortest distance of
the residual limit setRl,i

FI . Essentially, the residual limit set belongs to a class of uniformly
ultimately bounded residual steady-state sets. The overall design steps are summarized
as follows.

Firstly, a distance metric index of the residual steady-state limit sets used to distinguish
any two system configurations ζ and η (ζ 6= η, ζ 6= i, η 6= i) is defined as

disti
ζ,η = inf ‖ qζ − pη ‖2, s.t. qζ ∈ Rζ,i

FI , pη ∈ Rη,i
FI (6)

where qζ = rl,i|l=ζ and pη = rl,i|l=η . A crucial condition for the existence of ui
FI that

discriminates between system configurations ζ and η in finite time is Rζ,i
FI ∩ R

η,i
FI = ∅.
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Equivalently, their distance metric function of residual steady-state limit sets should satisfy
disti

ζ,η > 0. By [17], the distance metric (6) has the following properties.

Lemma 1. The distance metric function disti
ζ,η is convex and hence its maximum is reached on

certain vertices of the input constraint set.

Based on Lemma 1, the minimum distance between residual steady-state limit sets
of two system configurations can thus be determined by solving the following optimiza-
tion problem:

min
σ

ζ
1,j ,σ

ζ
2 ,ση

1,j ,σ
η
2

‖ qζ − pη ‖2

s.t. qζ = Cζ,i
χ (I − Aζ,i

χ )−1Bζ,i
χ ui

vx+

+ (1 + µ
ζ,i
T )

T

∑
j=0

Cζ,i
χ (Aζ,i

χ )jEζ,i
χ σ

ζ
1,j + Dζ

χσ
ζ
2

pη = Cη,i
χ (I − Aη,i

χ )−1Bη,i
χ ui

vx+

+ (1 + µ
η,i
T )

T

∑
j=0

Cη,i
χ (Aη,i

χ )jEη,i
χ σ

η
1,j + Dζ

χσ
η
2

σ
ζ
1,j, σ

ζ
2 , σ

η
1,j, σ

η
2 ∈ E

(7)

where ui
vx denotes a vertex of the input constraint set. When the problem in (7) is solved,

the corresponding separating hyperplane (denoted by Πi
ζ,η) that is used to isolate the new

mode can be further calculated through

Πi
ζ,η = {r : (r− r̆η)T(r− r̆η) = (r− r̆ζ)T(r− r̆ζ)}

= {r : (r̆ζ − r̆η)Tr =
(r̆ζ − r̆η)T(r̆ζ + r̆η)

2
}

(8)

where r̆ζ ∈ Rζ,i
FI and r̆η ∈ Rη,i

FI are two points at the minimum distance from Πi
ζ,η , and they

can be determined when solving (7). Then, this offline-designed separating hyperplane is
used for the real-time isolation between configurations ζ and η. Generally, the isolation
function can be constructed as

Isoi
ζ,η = sign[(r̆ζ − r̆η)Trk −

(r̆ζ − r̆η)T(r̆ζ + r̆η)
2

] (9)

Then, for the residual signals generated in real time, the online FI logic can be de-
signed as {

Isoi
ζ,η > 0⇒ Configuration ζ is valid

Isoi
ζ,η < 0⇒ Configuration η is valid

(10)

Since the observer configuration i is known, the currently real system mode can thus be
discerned by making n f − 1 comparisons using (9) and (10).

Remark 4. In general, one can take a sequential comparison manner to isolate the practical system
configuration. That is, only the valid modal determined by (10) is used to compare with the one
remaining modal that has not yet been compared, and the invalid modal that has been determined
is not used for subsequent comparisons. Proceeding in this manner, the correct isolation can be
finally completed.
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3.3. Proposed AFI Method Based on a Set Separation Indicator and Transient-State
Separating Hyperplanes

The difficulty in achieving fast fault isolation using transient-state separating hyper-
planes is the design of a suitable evaluation index to determine whether the considered
residual transient-state sets intersect at an arbitrary given moment. To address this issue,
a novel concept defined as a set separation indicator is proposed and synthesized in this
paper. Firstly, following the implicit description of residuals rl,i in steady-state set Rl,i

FI ,
the approximated implicit representation of the residuals in the transient-state set can be
represented by

γl,i
k = Cl,i

χ (
k−1

∑
t=0

(Al,i
χ )t)Bl,i

χ ui
vx + (1 + µl,i

T )
T

∑
j=0

Cl,i
χ (Al,i

χ )j×

× El,i
χ σ1,j + Dl

χσ2, ∀σ1,j, σ2 ∈ E

(11)

Accordingly, the explicit representation of the residual transient-state set is denoted by
Rl,i

FI,k. Clearly, letting k be sufficiently large, the reachable set of γl,i
k approximates the limit

set of rl,i.
The definition of the distance metric function in (6) is extended to uniformly portray

the shortest distance from set to set, set to point, or point to point:

dmini
ζk ,ηk

= inf ‖ qζ
k − pη

k ‖2, s.t. qζ
k ∈ R

ζ,i
FI,k, pη

k ∈ R
η,i
FI,k (12)

Note that for a given k, the nearest points between sets Rζ,i
FI,k and Rη,i

FI,k in the sense of
minimizing (12) can be obtained by solving the following minimization problem as in (7)
(if the solution exists)

min
σ

ζ
1,j ,σ

ζ
2 ,ση

1,j ,σ
η
2

‖ qζ
k − pη

k ‖2

s.t. qζ
k = Cζ,i

χ (
k−1

∑
t=0

(Aζ,i
χ )t)Bζ,i

χ ui
vx+

+ (1 + µ
ζ,i
T )

T

∑
j=0

Cζ,i
χ (Aζ,i

χ )jEζ,i
χ σ

ζ
1,j + Dζ

χσ
ζ
2

pη
k = Cη,i

χ (
k−1

∑
t=0

(Aη,i
χ )t)Bη,i

χ ui
vx+

+ (1 + µ
η,i
T )

T

∑
j=0

Cη,i
χ (Aη,i

χ )jEη,i
χ σ

η
1,j + Dζ

χσ
η
2

σ
ζ
1,j, σ

ζ
2 , σ

η
1,j, σ

η
2 ∈ E

(13)

For the convenience of the analysis, the solution of (13) is used to define a pair of minimum
distance points of setsRζ,i

FI,k andRη,i
FI,k as (ζm

k , ηm
k ) = arg dmini

ζk ,ηk
.

Similarly, the maximum distance metric of the residual transient reachable setsRζ,i
FI,k

andRη,i
FI,k at an arbitrary moment is defined as

dMaxi
ζk ,ηk

= sup ‖ qζ
k − pη

k ‖2, s.t. qζ
k ∈ R

ζ,i
FI,k, pη

k ∈ R
η,i
FI,k (14)
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A pair of maximum distance points of sets Rζ,i
FI,k and Rη,i

FI,k is denoted by (ζM
k , ηM

k ) =

arg dMaxi
ζk ,ηk

and they can be obtained by solving the following optimization problem

max
σ

ζ
1,j ,σ

ζ
2 ,ση

1,j ,σ
η
2

‖ qζ
k − pη

k ‖2

s.t. qζ
k = Cζ,i

χ (
k−1

∑
t=0

(Aζ,i
χ )t)Bζ,i

χ ui
vx+

+ (1 + µ
ζ,i
T )

T

∑
j=0

Cζ,i
χ (Aζ,i

χ )jEζ,i
χ σ

ζ
1,j + Dζ

χσ
ζ
2

pη
k = Cη,i

χ (
k−1

∑
t=0

(Aη,i
χ )t)Bη,i

χ ui
vx+

+ (1 + µ
η,i
T )

T

∑
j=0

Cη,i
χ (Aη,i

χ )jEη,i
χ σ

η
1,j + Dζ

χσ
η
2

σ
ζ
1,j, σ

ζ
2 , σ

η
1,j, σ

η
2 ∈ E

(15)

Remark 5. It is always feasible to use (15) to solve for the maximum distance points of two sets.
When the sets intersect, it is not feasible to use (13) to solve for the minimum distance points of
two sets. However, if the sets intersect but are not completely contained, it is always possible to
use (13) to solve for a point that is the minimum distance from one set to some given point in the
nonintersecting part of another set.

The solutions of (12)–(15) are used in Theorem 1 to construct a set separation indicator
forRζ,i

FI,k andRη,i
FI,k.

Theorem 1. For two residual reachable sets Rζ,i
FI,k,Rη,i

FI,k at any given time, a set separation

indicator can be constructed as SEIi
k = sign[

−−−→
ζM

k ηM
k ·
−−−→
ζm

k ηm
k ], where

• The direction vector
−−−→
ζM

k ηM
k is composed of the maximum distance points (ζM

k , ηM
k ) of the two

sets, and the two points (ζM
k , ηM

k ) are determined by solving optimization problem (15);

• The direction vector
−−−→
ζm

k ηm
k is composed of two minimum distance points (ζm

k , ηm
k ), where ηm

k

is the minimum distance point of the setRη,i
FI,k to ζM

k and ζm
k is the minimum distance point of

the setRζ,i
FI,k to ηM

k . These two points are determined by solving the optimization problem (13)
for given ζM

k or ηM
k , respectively.

The set separation indicator designed above is then used to provide the following set decision for any
moment k {

SEIi
k > 0⇒ Rζ,i

FI,k ∩R
η,i
FI,k = ∅

SEIi
k < 0⇒ Rζ,i

FI,k ∩R
η,i
FI,k 6= ∅

(16)

Proof. To facilitate the explanation of the proof, the points and lines involved in Theorem 1
and their positional relationships have been depicted in Figure 1. According to Theorem 1,

the two direction vectors (
−−−→
ζM

k ηM
k ,
−−−→
ζm

k ηm
k ) are obtained and the points (ζM

k , ηM
k , ζm

k , ηm
k ) are

unique. Without loss of generality, one can calculate ζm
k and ηm

k from the nonempty

intersectionRζ,i
FI,k ∩R

η,i
FI,k. In addition, the region between the tangent hyperplanes of ζm

k

and ηm
k can be used as the separation space of the remaining sets ofRζ,i

FI,k andRη,i
FI,k after

the exclusion of their intersection. Then, based on these definitions, the first discriminant
condition in (16) is explained by proving its inverse negative proposition, i.e., Rζ,i

FI,k ∩
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Rη,i
FI,k 6= ∅ ⇒ SEIi

k < 0. Here, the situation SEIi
k = 0 is not involved since it is not

used later.

hk
M

zk
M

hk
m

zk
m

zk
m'

hk
Prog,m'





Figure 1. A schematic diagram of the points and vectors involved in the proof of Theorem 1 for the
caseRζ,i

FI,k ∩R
η,i
FI,k 6= ∅. (ζM

k , ηM
k , ζm

k , ηm
k ) are calculated by solving the optimization problems in (15)

and (13); ζm′
k satisfies |

−−−→
ζm

k ηM
k | = |

−−−→
ζm′

k ηM
k |; ηPro,m′

k is the projection point of ζm′
k on the extension line of

−−−→
ζM

k ηm
k .

First, in Figure 1, we draw a black dotted circle with ηM
k as the center and |

−−−→
ζm

k ηM
k |

as the radius, and we intersect it with
−−−→
ζM

k ηM
k at ζm′

k . Clearly, we have |
−−−→
ζm

k ηM
k | = |

−−−→
ζm′

k ηM
k |.

By the previous definition, it is known that ζm
k is the shortest distance point from ηM

k to

Rζ,i
FI,k ∩R

η,i
FI,k, which implies (Rζ,i

FI,k ∩R
η,i
FI,k)∩ ζ̇m

k ζm′
k = ∅ except for ζm

k . This relation also

means that there exists a separating hyperplane between Rζ,i
FI,k ∩R

η,i
FI,k and ζ̇m

k ζm′
k , and it

further implies that ζm′
k is on the side ofRη,i

FI,k, including the case ζm′
k ∈ R

η,i
FI,k or ζm′

k /∈ Rη,i
FI,k.

Then, according to common geometrical sense, one concludes that the projection of ζm′
k on

−−−→
ζM

k ηm
k (denoted as ηPro,m′

k ) must lie on the extension surface of
−−−→
ζM

k ηm
k . The reason is that if

such projection point belongs to
−−−→
ζM

k ηm
k (i.e., the left side of ηm

k ), it follows from the properties

of convex sets and separating hyperplanes ofRζ,i
FI,k andRζ,i

FI,k ∩R
η,i
FI,k at ηm

k that ζm′
k should

belong to the side ofRζ,i
FI,k and not to the side ofRη,i

FI,k. Obviously, this situation contradicts

the design features of ζm′
k . Therefore, based on the relationship between the three sides of

a right triangle (constructed by ζM
k , ζm′

k , and ηPro,m′
k ), one deduces that |

−−−→
ζM

k ζm′
k | > |

−−−→
ζM

k ηm
k |.

Then, the following relation can be deduced

|
−−−→
ζM

k ηm
k |+ |

−−−→
ηM

k ζm
k |

=|
−−−→
ζM

k ηm
k |+ |

−−−→
ζM

k ηM
k | − |

−−−→
ζM

k ζm′
k | < |

−−−→
ζM

k ηM
k |.

(17)

Based on the above analysis, the inner product of
−−−→
ζM

k ηM
k and

−−−→
ζm

k ηm
k has the following

relaxations

−−−→
ζM

k ηM
k ·
−−−→
ζm

k ηm
k

=
−−−→
ζM

k ηM
k · (
−−−→
ζm

k ηM
k +

−−−→
ηM

k ζM
k +
−−−→
ζM

k ηm
k )

=
−−−→
ζM

k ηM
k ·
−−−→
ζm

k ηM
k +

−−−→
ζM

k ηM
k ·
−−−→
ζM

k ηm
k −
−−−→
ζM

k ηM
k ·
−−−→
ζM

k ηM
k

≤|
−−−→
ζM

k ηM
k ||
−−−→
ζm

k ηM
k |+ |

−−−→
ζM

k ηM
k ||
−−−→
ζM

k ηm
k | − |

−−−→
ζM

k ηM
k |

2

=|
−−−→
ζM

k ηM
k |(|
−−−→
ζm

k ηM
k |+ |

−−−→
ζM

k ηm
k | − |

−−−→
ζM

k ηM
k |)

(18)
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In (17), it has been shown that |
−−−→
ζM

k ηm
k |+ |

−−−→
ηM

k ζm
k | < |

−−−→
ζM

k ηM
k |. Clearly, there is

−−−→
ζM

k ηM
k ·
−−−→
ζm

k ηm
k <

0. Therefore, one can deduce that SEIi
k < 0 for the caseRζ,i

FI,k ∩R
η,i
FI,k 6= ∅.

Similarly, the second discriminant condition in (16) can also be proved by verifying
its inverse negative proposition. This explanation is omitted due to the page limit. At this
point, the proof of Theorem 1 is completed.

In general, increasing the auxiliary excitation helps to highlight the fault characteristics
and thus reduce the isolation decision delay but causes the system state to be driven away
from the operating point; decreasing the auxiliary excitation helps to reduce the disturbing
effects on the system states but can result in a larger isolation decision delay. In order
to balance the invasive effects of the auxiliary input and the isolation decision delay,
the following minimization problem is established to optimize the choices of auxiliary
input and isolation decision moments:

min
k,ε

ε + k/k̄i

s.t. SEIi
k > 0, 0 < k < k̄i, ui

FI = εui
vx, 0 < ε ≤ 1

(19)

where k̄i is the given upper bound of isolation decision delay, and it is much less than the
time required for steady-state AFI. ui

vx is a certain vertex of the input constraint set.
Next, let the solutions of (19) be (ki, εi), then the associated transient-state isolation

decision of system configurations ζ and η can be made based on the following principles.

Theorem 2. According to the designed auxiliary excitation εiui
vx and isolation moment k = ki,

there exists a deterministic separating hyperplane Πi
ζk ,ηk

such that Isoi
ζk ,ηk

> 0 for rk ∈ R
ζ,i
FI,k and

Isoi
ζk ,ηk

< 0 for rk ∈ R
η,i
FI,k, where Isoi

ζk ,ηk
= sign[(ζm∗

k − ηm∗
k )Tr − (ζm∗

k −ηm∗
k )T(ζm∗

k +ηm∗
k )

2 ] and

Πi
ζk ,ηk

= {r : (ζm∗
k − ηm∗

k )Tr = (ζm∗
k −ηm∗

k )T(ζm∗
k +ηm∗

k )
2 }.

Proof. According to (19), it is assumed that the two setsRζ,i
FI,k andRη,i

FI,k are separated at
k = ki under ui

FI = εui
vx. Hence, by solving problem (13) again under the above conditions,

the minimum distance points of the two sets (denoted by (ζm∗
k , ηm∗

k ) and different from
(ζm

k , ηm
k ) presented in Theorem 1) can be obtained. According to the design procedures

in (8)–(10), the above conclusion can be obtained. The proof is completed.

Finally, all the above developments allow us to write down the full offline design steps
of the proposed AFI method in Algorithm 1 and the full online application steps of the
proposed AFI method in Algorithm 2.
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Algorithm 1 Active fault isolation method based on a constant auxiliary excitation and
transient-state separating hyperplane

Off-line Design: Given the system (1), observer (3), and constraints U ,D,W , use (2) and
(3) to formulate the augmented system (4), and use the set-theoretic representation
method in [39] to calculate each µl,i

T , l, i ∈ [0, n f ], i 6= l. Assume that the observer
index for the current operation is i, then complete the following designs to obtain the
separating hyperplanes for each pair of system configurations (ζ, η):

1: Set a small upper bound of isolation decision delay k̄i;
2: Select a vertex ui

vx of U , ε ∈ (0, 1), and ε = 1;
3: ui

FI ← εui
vx, k← 1;

4: if k ≤ k̄i && ε > 0 then
5: γl,i

k ← (11), (ζM
k , ηM

k ) ← (15), (ζm
k , ηM

k ) ← (13) with calculated ηM
k , (ζM

k , ηm
k ) ← (13)

with calculated ζM
k , SEIi

k ← sign[
−−−→
ζM

k ηM
k ·
−−−→
ζm

k ηm
k ];

6: if SEIi
k > 0 then

7: ki ← k, (ζm∗
k , ηm∗

k )← (13), Isoi
ζk ,ηk
← sign[(ζm∗

k − ηm∗
k )Trk −

(ζm∗
k −ηm∗

k )T(ζm∗
k +ηm∗

k )
2 ];

8: Store ε, ki, Isoi
ζki ,ηki

;
9: ε← ε− ε, and go to step 3;

10: else
11: k← k + 1, and go to step 4;
12: end if
13: end if
14: Determine the values of ε, ki that minimize the evaluation function ε + k/k̄i in (19);
15: Choose different vertices ui

vx of U , and repeat steps 2–14 to find ε, ki that can further
decrease ε + k/k̄i;

16: Output the final isolation decision delay ki, auxiliary excitation εui
vx, and associated

separating function Isoi
ζki ,ηki

.
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Algorithm 2 Active fault isolation method based on a constant auxiliary excitation and
transient-state separating hyperplane

On-line Implementation: Assume a fault occurrence, a fault recovery, or a fault transfer
is detected by the ith observer at k = kd, and the fault isolation task is immediately
activated. Then, perform the following actions:

1: Initialization: Comset← [0, n f ]	 i, (ζ, η)← select two different elements from Comset;

2: Load the isolation parameters stored in the offline designs and inject the auxiliary input
to the system and observer by uFI,k ← εui

vx;
3: At k = kd + ki, rk ← (3), num← 0;

4: Calculate›Iso
i
ζki ,• ← Isoi

ζk ,ηk
,›Iso

i
•,ηki
← Isoi

ζk ,ηk
;

5: Set Decsn← 4, and call RTDecsn(Decsn);
6: Output l and activate the lth observer.

7: function RTIso(rk,›Iso
i
ζki ,•,›Iso

i
•,ηki

)

8: if›Iso
i
ζki ,• > 0 then

9: l ← ζ;

10: else if›Iso
i
•,ηki

< 0 then
11: l ← η;
12: end if
13: return l
14: end function
15: function RTChk(l, ζ, η)
16: if l == ζ then
17: Comset← Comset	 η; η ← select an element from Comset/ζ;
18: else if l == η then
19: Comset← Comset	 ζ; ζ ← select an element from Comset/η;
20: end if
21: end function
22: function RTDecsn(Decsn)
23: Call RTiso(rk,›Iso

i
ζki ,•,›Iso

i
•,ηki

), num← num + 1;
24: if num == n f − 1 then
25: Go to step 6;
26: else
27: Call RTChk(l, ζ, η), and go back to step Decsn;
28: end if
29: end function

4. Simulation Analysis and Discussion

In this section, some numerical comparisons are given to verify that (1) the proposed
AFI method has a faster online isolation speed for the same auxiliary excitation, and (2) the
proposed AFI method can design the effective auxiliary excitation with a smaller amplitude.

4.1. System Description

A case study of an oscillating system with five degrees of freedom was considered
to validate the effectiveness of the proposed AFI method. A typical block diagram of the
AFI problem is shown in Figure 2, where the blue squares and lines indicate the links and
signal flow paths in the AFI implementation process, respectively. In addition, the squares
on the yellow background depict the key components of the oscillation system, where
the masses 2 and 5 are controlled by two control forces and the mass 3 is affected by
a persistent disturbance [30]. The positions of the masses 1 and 4 were selected as the
outputs. The mass of each block was 1 kg and the spring constant of each spring was
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taken as 1 N/m [40]. Then, according to the motion dynamics of a spring–mass system,
the following continuous-time state-space model was established

q̈ = −Aqq− 0.3I5×5q̇ + Bqu + Eqd

y =

ï
1 0 0 0 0
0 0 0 1 0

ò
q + ω

(20)

where q =
[
qT

1 qT
2 qT

3 qT
4 q5

]T , and qi denotes the position of the ith mass with respect
to its equilibrium position. The involved system matrices are

Aq =


2 + α −1 0 −α 0
−1 2 −1 0 0
0 −1 2 + β −β 0
−α 0 −β 1 + α + β −1
0 0 0 −1 2

 (21)

and Bq =

ï
0 1 0 0 0
0 0 0 0 1

òT

, Eq =
[
0 0 1 0 0

]T .

Oscillating system
Auxiliary input

 excitation

Residual 

generator
Procedure 2

Current system 

mode
Observer

1 2 3

54

uFI1

uFI2

d

y2

y1

e

fd w e f

y

uFI

r lx





Figure 2. Block diagram of active fault isolation for an oscillating system with 5 degrees of freedom.

Here, it was assumed that the springs e and f of the oscillating system may be broken
and in this case, their elastic constants would become zero. From the representation of
the model parameters, such a fault is equivalent to α or β in (21) becoming zero. Then,
the following three configurations of the system (20) were considered

α = 1, β = 1→ healthy mode (l = 0)

α = 0, β = 1→ faulty mode (l = 1)

α = 1, β = 0→ faulty mode (l = 2)

(22)

Next, let x =
[
q q̇

]T , the oscillating system (20) can be parametrized as

ẋ = Acx + Bcu + Ecd (23)

where Ac =

ï
05×5 I5×5
−Aq −0.3I5×5

ò
∈ R10×10, Bc =

ï
05×2
Bq

ò
, and Ec =

ï
05×1
Eq

ò
. Given a sampling

time Ts, the discrete-time state-space expression after exact discretization can be further
obtained. Due to the page limit, they are not listed.

4.2. Simulation Results and Comparisons

In the simulation, the following settings of disturbances were considered: ‖ ωk ‖∞≤ 1,
‖ dk ‖∞≤ 1. According to Assumption 2, the observer for each l was designed. They are
not given here due to page limitations. For comparison with the isolation results obtained
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by the steady-state separating method in [29–31], the different bounds of constant test input
(i.e., −ū ≤ u ≤ ū) were used.

To facilitate the explanation of the design process as well as the analysis of the results,
only the following fault scenario was considered:
Fault scenario: The oscillating system was previously in a healthy condition (l = 0); a fault
occurred and was detected at k = 0, and the system mode/configuration changed from
l = 0 to l = 1 or l = 2 afterwards.

The above fault scenario means that one should use the observer L0 to distinguish
between system configurations l = 1 and l = 2. Further, the simulation was performed
to compare the fault isolation performance of the proposed Algorithm 1 and the method
constructed in [29–31] under four different constant test inputs. Since the residuals are
significantly affected by the disturbances, a Monte Carlo simulation was adopted. The re-
sults of 100 simulations for u0

FI = [25 −25]T and u0
FI = [30 −30]T are summarized and

presented in Figures 3 and 4, respectively.

Remark 6. The parameters µl,i
T in solving Algorithm 1 offline should be determined after the

auxiliary excitation input is given. The optimization problems in (15) and (13) were solved using
the quadprog function in Matlab software. When applying Algorithm 2 online, the faulty mode
of the system can be determined by simply comparing the relative position of the residuals to the
separation hyperplane at a given moment of isolation.

In subfigure (a) of Figure 3, the set separation indicator obtained by Algorithm 1
satisfied SEI0

3 > 0, which implied that the fault isolation was achieved at a lag of three
steps after the fault occurred. However, subfigure (b) of Figure 3 shows that the steady-
state AFI method in [29–31] required a delay of at least 20 steps after the occurrence of
a fault to accurately discriminate the new system configuration. Since the simulation
results of both AFI methods were obtained with the same excitation u0

FI = [25 −25]T ,
the comparison of their isolation delays illustrated that Algorithm 1 could achieve faster
fault isolation. In addition, the minimum distance between the residuals of the two
modes when performing AFI was also used to determine the length of the separating line
segment. Comparing the red and magenta vertical line segments in the two subfigures of
Figure 3, it is clear that Algorithm 1 could also provide a better discrimination of different
system configurations.

Further increasing the amplitude of the auxiliary excitation to u0
FI = [30 −30]T ,

the simulation results in Figure 4 were obtained. It can be seen from subfigure (a) that
the output of the set separation indicator was also SEI0

3 > 0, which means that the fault
isolation under u0

FI = [30 −30]T was also achieved at a lag of three steps. This was the
same as the isolation delay when the excitation was u0

FI = [25 −25]T . Therefore, a smaller
auxiliary input u0

FI = [25 −25]T was appropriate in that case, since the larger the auxiliary
excitation the more severe the impact on the system performance. In addition, subfigure (b)
shows that the steady-state AFI method in [29–31] also required a delay of at least 20 steps
under u0

FI = [30 −30]T . Note that the resulted magenta vertical line segment in subfigure
(b) is obviously longer than the one obtained under u0

FI = [25 −25]T in subfigure (b) of
Figure 3. However, its length is still shorter than the red separation line segment obtained
when the auxiliary excitation is u0

FI = [25 −25]T in subfigure (a) of Figure 3.
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Figure 3. Simulation results of residual trajectories under u0
FI = [25 −25]T . Subfigure (a) depicts

the transient-state fault isolation results obtained by Algorithm 1, where SEI0
3 > 0 implies that the

isolation is achieved at a lag of 3 steps and the red separating line is Π0
13,23

. Subfigure (b) depicts the
steady-state fault isolation results obtained by using the AFI method in [29–31], where the correct
isolation needs to be achieved at a lag of 20 steps and the magenta separating line is Π0

1,2.
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Figure 4. Simulation results of residual trajectories under u0
FI = [30 −30]T . Subfigure (a) depicts

the transient-state fault isolation results obtained by Algorithm 1, where SEI0
3 > 0 implies that the

isolation is achieved at a lag of 3 steps and the red separating line is Π0
13,23

. Subfigure (b) depicts the
steady-state fault isolation results obtained by using the AFI method in [29–31], where the correct
isolation needs to be achieved at a lag of 20 steps and the magenta separating line is Π0

1,2.

Further, the constant auxiliary excitations with smaller amplitudes were used to
compare the AFI effectiveness of the transient-state isolation method in Algorithm 1 and the
steady-state isolation method in [29–31]. The results of 100 simulations for u0

FI = [10 −10]T

and u0
FI = [15 −15]T are summarized and presented in Figures 5 and 6, respectively.

By comparing subfigures (a) and (b) in Figure 5, it can be found that for the given auxiliary
excitation u0

FI = [10 −10]T , Algorithm 1 gave the set separation indicator results SEI0
4 > 0.

This means that Algorithm 1 was able to achieve fault isolation with a delay of four steps
after the occurrence of the fault. However, with the same auxiliary excitation, relying on the
residual steady-state limit set did not allow us to establish the separating line, because there
was some intersection of the residual limit sets of the two configurations l = 1, 2.

Next, we tried to increase the test signal to u0
FI = [15 −15]T to compare the isolation

effect of the two methods. Subfigure (a) in Figure 6 illustrates that Algorithm 1 could
achieve fault isolation with a three-step delay after the onset of the fault, and the separating
line had a suitable differentiation distance for the two potential system configurations.
However, in subfigure (b) of Figure 6, it can be still seen that the residual limit sets of the
two configurations are intersecting, and no separating line exists. Although it is possible
to isolate the fault by increasing the auxiliary excitation, e.g., to u0

FI = [25 −25]T and
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u0
FI = [30 −30]T , an isolation delay of 20 steps or more is not to be considered small

anymore. Especially in those systems where the sampling rate is lower than the system
rate of change, the slower the isolation delay, the less favorable the dynamic adjustment of
the faulty system. Finally, through the above comparative analysis and discussion for the
four auxiliary excitation scenarios, it can be concluded that the proposed AFI strategy in
Algorithm 1 has a faster isolation speed and a more significant isolation distinction than
the steady-state-based AFI method in [29–31].
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Figure 5. Simulation results of residual trajectories under u0
FI = [10 −10]T . Subfigure (a) depicts

the transient-state fault isolation results obtained by Algorithm 1, where SEI0
4 > 0 implies that the

isolation is achieved at a lag of 4 steps and the red separating line is Π0
14,24

. Subfigure (b) depicts
the steady-state fault isolation results obtained by [29–31], where no separating line exists in the
steady-state residual limit set.
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Figure 6. Simulation results of residual trajectories under u0
FI = [15 −15]T . Subfigure (a) depicts

the transient-state fault isolation results obtained by Algorithm 1, where SEI0
3 > 0 implies that the

isolation is achieved at a lag of 3 steps and the red separating line is Π0
13,23

. Subfigure (b) depicts
the steady-state fault isolation results obtained by [29–31], where no separating line exists in the
steady-state residual limit set.

5. Experimental Test and Discussion

In this section, the proposed set-separation-indicator-based active fault isolation
method was tested on a board. An experimental prototype was built and is shown in
Figure 7, which consisted of a Xilinx® Artix-7 XC7A35T-2FGGA484I FPGA development
board, a laptop with the Xilinx simulink blockset installed, and a monitor for displaying
the Vivado® interactive interface. In the experimental preparation phase, the discrete
state-space equations for the dynamics (23) of the oscillating system were first simulated
by building a simulink model with the blockset package. Second, the active fault isola-
tion method was compiled and programmed to the FPGA to deal with the output data
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generated from the system (23). The system parameters used in the experiments and the
parameters of the isolation method were consistent with those in the simulation. Here, only
the constant test input was considered as u0

FI = [25 −25]T and the fault scenario was set as
l = 0, ∀k < 511; l = 2, ∀k ≥ 511.

Based on the above settings, the effectiveness of the active fault isolation methods
in Algorithm 2 and [30] were tested online, respectively. The data of the residuals were
sampled by the integrated logic analyzer IP core of Vivado® and stored as a signed decimal
csv file. This csv file was further handled in Matlab® and the associated real data of the
residuals are shown in Figure 8. Table 1 further gives the performance comparison of the
two types of fault isolation methods.

Figure 7. Experimental setup for method validation.
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Figure 8. Experimental results of residual trajectories under u0
FI = [25 −25]T [30].

Table 1. Fault isolation performance comparison.

Method

Performance Fault Detected
(kth Sample)

Fault Isolated
(kth Sample)

Isolation Latency
(Samples)

Length of the
Separation

Line Segment
Algorithm 2 512 515 3 9.816
[30] 512 532 20 0.931

As can be seen in Figure 8 and Table 1, since both types of methods used the same
observer (3) and the same auxiliary test input signal according to Assumption 2, both
methods detected the presence of the fault at the 512th sample. However, the time at
which the fault was isolated varied considerably. As shown in columns 3 and 4 of Table 1,
Algorithm 2 based on transient reachable sets and a separation line was able to correctly
identify the mode of the faulty system at the third sampling after the occurrence of the
fault. However, the steady-state-based active isolation method in [29–31] required the 20th
sampling after the occurrence of the fault to determine the correct mode of the fault. Thus,
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it can be seen that the active fault isolation method proposed in this paper could identify
the fault mode much faster. In addition, column 5 of Table 1 gives a comparison of the
lengths of the separation line segments when the two types of methods achieved fault
isolation. Obviously, Algorithm 2 proposed in this paper had a more obvious discrimination
when identifying fault modes. This further verifies that the transient-based active isolation
method has the potential to provide a more reliable fault isolation decision.

Finally, the analysis of the above experimental results shows that the active fault
isolation method based on the set separation indicator proposed in this paper can provide
faster and more obvious isolation results, which will help to initiate subsequent fault-
tolerant measures in time to reduce the impact of faults.

Remark 7. It is worth noting that the offline design of the set-separation-indicator-based active fault
isolation method proposed in this paper is more complex than the design of the steady-state-based
active fault isolation method in [29–31]. However, there is not much difference in the computational
effort when applying the two types of methods online, since both methods simply need to determine
the position of the residuals in relation to the respective separation line segments at their specific
isolation moments.

6. Conclusions

In this paper, a novel set separation indicator for determining the location relationships
of residual reachable sets was designed and used to construct an efficient AFI method.
The main benefits of the proposed method are twofold. First, the introduction of residual
transient-state reachable sets and transient-state separating hyperplanes provides a practi-
cal solution to achieve fast fault isolation for multivariable systems and even large-scale
systems. Second, the construction of the set separation indicator further provides a validity
guarantee for efficient real-time fault isolation and decision making. Numerical and ex-
perimental comparisons have been given to illustrate the correctness of these conclusions.
In future research, the integration of the proposed method into fault-tolerant reconfigu-
ration control will be an important direction. In addition, how to improve the isolation
speed of the newly proposed method needs further study. The following aspects are sug-
gested: the design of partial deterministic separating domains for intersecting residual
transient reachable sets, the construction of large auxiliary excitation signals, the form of
the data-driven implementation, the embedding of frequency-response characteristics, etc.
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