
Citation: Wichert, A. Quantum

Lernmatrix. Entropy 2023, 25, 871.

https://doi.org/10.3390/e25060871

Academic Editor: Cyril Branciard

Received: 28 March 2023

Revised: 25 May 2023

Accepted: 26 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantum Lernmatrix
Andreas Wichert

Department of Computer Science and Engineering, INESC-ID & Instituto Superior Técnico, University of Lisbon,
2740-122 Porto Salvo, Portugal; andreas.wichert@tecnico.ulisboa.pt

Abstract: We introduce a quantum Lernmatrix based on the Monte Carlo Lernmatrix in which n
units are stored in the quantum superposition of log2(n) units representing O

(
n2

log(n)2

)
binary sparse

coded patterns. During the retrieval phase, quantum counting of ones based on Euler’s formula is
used for the pattern recovery as proposed by Trugenberger. We demonstrate the quantum Lernmatrix
by experiments using qiskit. We indicate why the assumption proposed by Trugenberger, the lower
the parameter temperature t; the better the identification of the correct answers; is not correct. Instead,
we introduce a tree-like structure that increases the measured value of correct answers. We show
that the cost of loading L sparse patterns into quantum states of a quantum Lernmatrix are much
lower than storing individually the patterns in superposition. During the active phase, the quantum
Lernmatrices are queried and the results are estimated efficiently. The required time is much lower
compared with the conventional approach or the of Grover’s algorithm.

Keywords: Lernmatrix; associative memory; quantum counting; quantum search algorithms; qiskit

1. Introduction

There are two popular models of quantum associative memories, the quantum asso-
ciative memory as proposed by Venture and Martinez [1–3] and the quantum associative
memory as proposed by Trugenberger [4,5]. Both models store binary patterns represented
by linear independent vectors by basis encoding. They prepare the linear independent
states by a procedure that is based on dividing present superposition into processing and
memory terms flagged by an ancilla bit. New input patterns are successively loaded into
the processing branch that is divided by a parametrized controlled-U operation on an
ancilla and then the pattern is merged, resulting in a superposition of linear independent
states. The method is linear in the number of stored patterns and their dimension [6].

In the quantum associative memory as proposed by Venture and Martinez, a modified
version of Grover’s search algorithm [7–10], ref. [7] is applied to determine the answer
vector to a query vector [1–3]. In Trugenberger’s model, the retrieval mechanism is based on
Euler’s formula to determine if the input pattern is similar to the set of stored patterns. In an
additional step, the most similar pattern can be estimated by the introduced temperature
parameter or alternatively by the Grover’s search algorithm. Both models suffer from the
problem of input destruction (ID problem) [11–13]:

• The input (reading) problem: The amplitude distribution of a quantum state is ini-
tialized by reading n data points. Although the existing quantum algorithm requires
only O(

√
n) steps or less and is faster than the classical algorithms, n data points

must be read. Hence, the complexity of the algorithm does not improve and is
O(n) = O(n) + O(

√
n).

• The destruction problem: A quantum associative memory [1–5] for n data points for
dimension m requires only m · log(n) or fewer units (quantum bits). An operator,
which acts as an oracle [3], indicates the solution. However, this memory can be
queried only once because of the collapse during measurement (destruction); hence,
quantum associative memory does not have any advantages over classical memory.

Entropy 2023, 25, 871. https://doi.org/10.3390/e25060871 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25060871
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2179-4378
https://doi.org/10.3390/e25060871
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25060871?type=check_update&version=2

Entropy 2023, 25, 871 2 of 27

Most quantum machine learning algorithms suffer from the input destruction prob-
lem [13]. Trugenberger tries to overcome the destruction problem by the probabilistic
cloning of the quantum associative memory [4,14]. This approach was criticized in [15].
The efficient preparation of data is possible in part for spare data [16]. However, the input
destruction problem is not solved till today, and usually theoretical speed ups are ana-
lyzed [17] by ignoring the input problem, which is the main bottleneck for data encoding.

In our approach, the preparation costs in which data points must be read and the query
time are represented by two phases that are analyzed independently. As in the Harrow [16]
approach, our data are sparse. The sparse data are stored in the best possible distributed
compression methods [18,19] by a Lernmatrix [20,21] also called Willshaw’s associative
memory [22]. Our quantum Lernmatrix model is based on the Lernmatrix.

We prepare a set of quantum Lernmatrices in superposition. This preparation requires
a great deal of time and we name it the sleep phase. On the other hand, in the active phase,
the query operation is extremely fast. The cost of the sleep phase and the active phase are
the same as one of a conventional Lernmatrix. We assume that in the sleep phase we have
enough time to prepare several quantum Lernmatrices in superposition.

The quantum Lernmatrices are kept in superposition until they are queried in the active
phase. Each of the copies of the quantum Lernmatrix can be queried only one time due to the
destruction problem. We argue that the advantage to conventional associative memories
is present in the active phase where the fast determination of information is essential. The
naming of the phases is in analogy to a living organism that prepares itself during the sleep
for an active day.

The quantum Lernmatrix does not store independent vectors, but units that represent
the compressed binary patterns. The units are described by binary weight vectors that
can be correlated, so we cannot use the approach as proposed by Venture, Martinez and
Trugenberger. Instead, we prepare the superposition of the weight vectors of the units by
the entanglement of index qubits in superposition with the weight vectors. The retrieval
phase is based on Euler’s formula as suggested by Trugenberger [4,14]. However, we do
not determine the Hamming distance to the query vector, but the number of ones of the
query vector that are present in the weight vector. We indicate the quantum Lernmatrix
qiskit implementation step by step. Qiskit is an open-source software development kit (SDK)
for working with quantum computers at the level of circuits and algorithms from IBM [23].
The paper is organized as follows:

• We introduce the Lernmatrix model described by units that model neurons.
• We indicate that Lernmatrix has a tremendous storage capacity, much higher than

most other associative memories. This is valid for sparse equally distributed ones in
vectors representing the information.

• Quantum counting of ones based on Euler’s formula is described.
• Based on the Lernmatrix model, a quantum Lernmatrix is introduced in which units are

represented in superposition and the query operation is based on quantum counting
of ones. The measured result is a position of a one or zero in the answer vector.

• We analyze the Trugenberger amplification.
• Since a one in the answer vector represents information, we assume in that we can

reconstruct the answer vector by measuring several ones, taking for granted that the
rest of the vector is zero. In a sparse code with k ones, k measurements of different ones
reconstruct the binary answer vector. We can increase the probability of measuring a
one by the introduced tree-like structure.

• The Lernmatrix can store much more patterns then the number of units. Because of
this, the cost of loading L patterns into quantum states is much lower than storing the
patterns individually.

2. Lernmatrix

Associative memory models human memory [24–28]. The associative memory and
distributed representation incorporate the following abilities in a natural way [18,28–30]:

Entropy 2023, 25, 871 3 of 27

• The ability to correct faults if false information is given.
• The ability to complete information if some parts are missing.
• The ability to interpolate information. In other words, if a sub-symbol is not currently

stored, the most similar stored sub-symbol is determined.

Different associative memory models have been proposed over the years [19,28,31–33].
The Hopfield model represents a recurrent model of the associative memory [29,31,34], it
is a dynamical system that evolves until it has converged to a stable state. The Lernmatrix,
or Willshaw’s associative memory, also simply called “associative memory” (if no confusion
with other models is possible [32,33]), it was developed by Steinbuch in 1958 as a biologically
inspired model from the effort to explain the psychological phenomena of conditioning [20,21].
The goal was to produce a network that could use a binary version of Hebbian learning
to form associations between pairs of binary vectors. Later, this model was studied under
biological and mathematical aspects mainly by Willshaw [22] and Palm [18,24] and it was
shown that this simple model has a tremendous storage capacity.

Lernmatrix is composed of a cluster of units. Each unit represents a simple model of a
real biological neuron. Each unit is composed of binary weights, which correspond to the
synapses and dendrites in a real neuron (see Figure 1).

dendrites

synapse

soma

axon
unitneuron

Figure 1. A unit is an abstract model of a biological neuron [24,29,35–37].

They are described by wij ∈ {0, 1} in Figure 2. T is the threshold of the unit.

y y y y

x

x

x

T T T T

w

w

w w w w

w w

ww

w

1

2

n

1 2 3 m

11 21 31
w
m1

m2

mn

12 22 23

1n 2n 3n

Figure 2. The Lernmatrix is composed of a set of units that represent a simple model of a real
biological neuron. The unit is composed of weights, which correspond to the synapses and dendrites
in the real neuron. In this Figure, they are described by wij ∈ {0, 1} where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
T is the threshold of the unit.

Entropy 2023, 25, 871 4 of 27

The presence of a feature is indicated by a “one” component of the vector, its absence
through a “zero” component of the vector. A pair of these vectors is associated and this
process of association is called learning. The first of the two vectors is called the query
vector and the second, the answer vector. After learning, the query vector is presented to the
associative memory and the answer vector is determined by the retrieval rule.

2.1. Learning and Retrieval

Initially, no information is stored in the associative memory. Because the information
is represented in weights, all unit weights are initially set to zero. In the learning phase,
pairs of binary vector are associated. Let x be the query vector and y the answer vector,
the learning rule is:

wnew
ij =

{
1 i f yi · xj = 1
wold

ij otherwise. (1)

This rule is called the binary Hebbian rule [18]. Every time a pair of binary vectors is stored,
this rule is used.

In the one-step retrieval phase of the associative memory, a fault tolerant answering
mechanism recalls the appropriate answer vector for a query vector x.

The retrieval rule for the determination of the answer vector y is:

neti =
n

∑
j=1

wijxj, (2)

yi =

{
1 if net ≥ T
0 otherwise.

where T is the threshold of the unit. The threshold T is set to the number of “one” com-
ponents in the query vector x, T := |x|. If the output of the unit is 1, we say that the units
fires, and for the output 0 the unit does not fire. The cost of the one-step retrieval is O(n ·m).
The retrieval is called:

• Hetero-association if both vectors are different x 6= y,
• Association, if x = y, the answer vector represents the reconstruction of the disturbed

query vector.

For simplicity, we assume that the dimension of the query vector and the answer
vector are the same, n = m.

Example

In Figure 3 the vector pair x1 = (1, 0, 0, 0, 1) and y1 = (0, 1, 1, 1, 0) is learned. The corre-
sponding binary weights of the associated pair are indicated by a black square. In the next
step, the vector pair x2 = (0, 1, 1, 0, 1) and y2 = (1, 1, 0, 0, 1) is learned. The corresponding
binary weights of the associated pair are indicated by a black circle. In the third step, the
retrieval phase is preformed (see Figure 4). The query vector xq = (0, 1, 0, 0, 1) differs by
one bit to the learned query vector x2 = (0, 1, 1, 0, 1). The threshold T is set to the number
of “one” components in the query vector xq, T = 2. The retrieved vector is the vector
y2 = (1, 1, 0, 0, 1) that was stored.

Entropy 2023, 25, 871 5 of 27

Figure 3. The vector pair x1 = (1, 0, 0, 0, 1) and y1 = (0, 1, 1, 1, 0) is learned. The corresponding
binary weights of the associated pair are indicated by a black square. In the next step, the vector
pair x2 = (0, 1, 1, 0, 1) and y2 = (1, 1, 0, 0, 1) is learned. The corresponding binary weights of the
associated pair are indicated by a black circle.

Figure 4. The query vector xq = (0, 1, 0, 0, 1) differs by one bit to the learned query vector
x2 = (0, 1, 1, 0, 1). The threshold T is set to the number of “one” components in the query vector xq,
T = 2. The retrieved vector is the vector y2 = (1, 1, 0, 0, 1) that was stored.

2.2. Storage Capacity

We analyze the optimal storage costs of the Lernmatrix. For an estimation of the
asymptotic number L of vector pairs (x, y) that can be stored in an associative memory
before it begins to make mistakes in the retrieval phase, it is assumed that both vectors have
the same dimension n. It is also assumed that both vectors are composed of k ones, which
are equally likely to be in any coordinate of the vector. In this case, it was shown [18,19,38]
that the optimum value for k is approximately

k .
= log2(n/4). (3)

For example, for a vector of the dimension n = 1,000,000, only k = 18 ones should be used
to code a pattern according to the Equation (3). For an optimal value for k according to
the Equation (3) with ones equally distributed over the coordinates of the vectors, approxi-
mately L vector pairs can be stored in the associative memory [18,19]. L is approximately

L .
= (ln 2)(n2/k2). (4)

This value is much greater than n. The estimate of L is very rough because Equation (3) is
only valid for very large networks; however, the capacity increase is still considerable. The
upper bound for large n is

I = n2 log 2 = n2 · 0.693 (5)

the asymptotic capacity is 69.311% percent per bit, which is much higher than most as-
sociative memories. This capacity is only valid for sparse equally distributed ones [18].
The promise of Willshaw’s associative memory that it can store much more patterns then
the number of units. The cost of loading L = (ln 2)(n2/k2) patterns in n units with

Entropy 2023, 25, 871 6 of 27

k = log2(n/4) is O(n2). It is much lower than storing the L patterns in a list of L units
O(n · L) This is because L > n, or

O
(

n2

log(n)2

)
> O(n)

since √
n > log(n).

The Lernmatrix has a tremendous storage capacity [18,19], it can store much more patterns
then the number of units.

The description of how to generated efficiently binary sparse codes of visual patterns
or other data structure is described in [39–41]. For example, real vector patterns have to be
binarized.

The asymptotic capacity is 69.311% per bit, which is much higher than most associative
memories. This capacity is only valid for sparse equally distributed ones [18]. The de-
scription of how to generate efficiently binary sparse codes of visual patterns or other data
structures is described in [39–41]. For example, real vector patterns have to be binarized.

2.3. Large Matrices

The diagram of the weight matrix illustrates the weight distribution, which results
from the distribution of the stored patterns [42,43]. Useful associative properties result from
equally distributed weights over the whole weight matrix and are only present in large
matrices. A high percentage indicates an overload and the loss of its associative properties.
Figure 5 represents a diagram of a high loaded matrix with equally distributed weights.

Figure 5. The weight matrix after learning of 20,000 test patterns, in which ten ones were randomly
set in a 2000 dimensional vector represents a high loaded matrix with equally distributed weights.
This example shows that the weight matrix diagram often contains nearly no information. Infor-
mation about the weight matrix can be extracted by the structure of weight matrix. (White color
represents wights.)

Entropy 2023, 25, 871 7 of 27

3. Monte Carlo Lernmatrix

The suggested probabilistic retrieval rule for the determination of the answer vector y
for the query vector x is

p(yi = 1|x) = 1
n
·
(

neti

∑n
v=1 netv

)
(6)

and

p(yi = 0|x) = 1
n
·
(

1− neti

∑n
v=1 netv

)
(7)

describing the probability of firing or not firing of one unit with

1 =
n

∑
i=1

(p(yi = 1|x) + p(yi = 0|x)). (8)

During the query operation one unit is randomly sampled and either it fires or not according
to the probability distribution. To determine the answer vector, we have to sample the
Monte Carlo Lernmatrix several times. For the reconstructed vector three states will be
present: 1 for fired units, 0 for not fired units and unknown for silent units. The Monte Carlo
Lernmatrix is a close description of the quantum Lernmatrix. In the quantum Lernmatrix,
units are represented by quantum states, with sampling correspond to the measurement.

4. Qiskit Experiments

Qiskit is an open-source software development kit (SDK) for working with quantum
computers at the level of circuits and algorithms [23], IBM Quantum, https://quantum-
computing.ibm.com/ (accessed on 25 May 2023), 2023, Qiskit (Version 0.43.0). Qiskit
provides tools for creating and manipulating quantum programs and running them on
prototype quantum devices on the IBM Quantum Experience or on simulators on a local
computer. It follows the quantum circuit model for universal quantum computation
and can be used for any quantum hardware that follows this model. Qiskt provides
different backend simulator functions.

In our experiments, we use the statevector simulator. It performs an ideal execution
of qiskit circuits and returns the final state vector off the simulator after application (all
qubits). The state vector of the circuit can represent the probability values that correspond
to the multiplication of the state vector by the unitary matrix that represents the circuit. We
use the statevector simulator to check the value of all qubits.

If we want to simulate an actual device of today, which is prone to noise resulting
from decoherence, we can use the qasm simulator. It returns counts, which are a sampling
of the measured qubits that have to be defined in the circuit. One can easily port the
simulation using

simulator = Aer.get_backend(‘statevector_simulator’)

and the command qc.measure(qubits, c) indicates that we measure the qubits (the counting
begins with zero and not one) and store the result of the measurement in the conventional
bits c.

Our description involve simple quantum circuits using basic quantum gates that can
be easily ported to other quantum software development kits.

5. Quantum Counting Ones

In a binary string of the length N, we can represent the fraction of k ones by the
simple formula k/N and of the zeros as (N − k)/N resulting in a linear relation. We can
interpret these numbers as probability values. We can map these linear relations into the
sigmoid-like probability functions for the presence of ones using Euler’s formula [4] in
relation to trigonometry

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/

Entropy 2023, 25, 871 8 of 27

(
sin
(

π · k
2 · N

))2
=

∣∣∣∣∣ ei· π·k
2·N − e−i· π·k

2·N

2

∣∣∣∣∣
2

∈ [0, 1] (9)

and of zeros with (
cos
(

π · k
2 · N

))2
=

∣∣∣∣∣ ei· π·k
2·N + e−i· π·k

2·N

2

∣∣∣∣∣
2

∈ [0, 1] (10)

together with (
sin
(

π · k
2 · N

))2
+

(
cos
(

π · k
2 · N

))2
= 1

in the Figure 6, the sigmoid-like probability functions for N = 8 are indicated.

Figure 6. Sigmoid-like probability functions for N = 8 is indicated by continuous line, the linear
relation by the dashed lines. The x-axis indicates the k values, and the y-axis the probabilities.

This operation can be implemented by quantum counting of ones. In our example, the
state |101〉 is represented by N = 3 qubits, of which two (k = 2) are one.

To count the number of ones, we introduced the control qubit in superposition 1/
√

2 ·
(|0〉+ |1〉). For the superposition part represented by the control qubit 0, the phase ei· π

2·3

is applied for each one. For the superposition part represented by the control qubit 1, the
phase e−i· π

2·3 is applied for each one.

1√
2
· |0〉 ⊗

(
ei· π

2·3 · |1〉 ⊗ |0〉 ⊗ ei· π
2·3 · |1〉

)
+

1√
2
· |1〉 ⊗

(
e−i· π

2·3 · |1〉 ⊗ |0〉 ⊗ e−i· π
2·3 · |1〉

)
= (11)

ei· π·22·3
√

2
|0101〉+ e−i· π·22·3

√
2
|1101〉

If we apply a Hadamard gate to the control qubit [4], we obtain

(H ⊗ I ⊗ I ⊗ I) ·
(

ei· π·22·3
√

2
|0101〉+ e−i· π·22·3

√
2
|1101〉

)
=

ei· π·22·3 + e−i· π·22·3

2
|0101〉+ ei· π·22·3 − e−i· π·22·3

2
|1101〉 =

cos
(

π · 2
2 · 3

)
· |0101〉+ i · sin

(
π · 2
2 · 3

)
· |1101〉 =

(
cos
(

π · 2
2 · 3

)
· |0〉+ i · sin

(
π · 2
2 · 3

)
· |1〉

)
⊗ |101〉 (12)

Entropy 2023, 25, 871 9 of 27

The probability of measuring the control qubit |0〉 is

p(|0〉) = p(|0101〉) =
(

cos
(

π · 2
2 · 3

))2
= 0.25

and the probability of measuring the control qubit |1〉 is

p(|1〉) = p(|1101〉) =
(

sin
(

π · 2
2 · 3

))2
= 0.75

indicating the presence of two ones. The representation of the circuit in qiskit is given by

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
from math import~pi

qc = QuantumCircuit(4)
#Input is |101>
qc.x(0)
qc.x(2)
qc.barrier()
qc.h(3)
qc.cp(-pi/6,0,3)
qc.cp(-pi/6,1,3)
qc.cp(-pi/6,2,3)
qc.x(3)
qc.cp(pi/6,0,3)
qc.cp(pi/6,1,3)
qc.cp(pi/6,2,3)
qc.x(3)
qc.h(3)

simulator = Aer.get_backend(’statevector_simulator’)
Run and get counts
result=execute(qc,simulator).result()
counts = result.get_counts()
plot_histogram(counts)

the resulting quantum circuit is represented in Figure 7 and the resulting histogram of the
measured qubits is represented in Figure 8.

Figure 7. Quantum counting circuit with N = 3 and k = 2.

Entropy 2023, 25, 871 10 of 27

Figure 8. p(|0101〉) = 0.25 and p(|1101〉) = 0.75.

6. Quantum Lernmatrix

Useful associative properties result from equally distributed weights over the whole
weight matrix and are only present in large matrices, in our examples we examine toys
examples as a proof of concept for future quantum associative memories.

The superposition of the weight vectors of the units is based on the entanglement
of the index qubits that are in the superposition with the weight vectors. The count is
represented by a unary string of qubits that controls the phase operation. It represents the
net value of the Lernmatrix. The phase information is the basis of the quantum counting
of ones that increases the probability of measuring the correct units representing ones in
the answer vector. We will represent n units in superposition by entanglement with the
index qubits.

To represent four 4 units, we need two index qubits in superposition. Each index
state of the qubit is entangled with a pattern by the Toffoli gate also called the ccX gate
(CCNOT gate, controlled controlled not gate), by setting a corresponding qubit to one. In
our example, we store three patterns x1 = (1, 0, 0, 1); y1 = (1, 0, 0, 1), x2 = (1, 0, 0, 0); y2 =
(0, 1, 0, 0) and x3 = (0, 0, 1, 0); y3 = (0, 0, 1, 0) resulting in the weight matrix represented by
four units (see Figure 9).

Figure 9. Wight matrix represented by four units after learning the correlation of the three patterns
x1 = (1, 0, 0, 1); y1 = (1, 0, 0, 1), x2 = (1, 0, 0, 0); y2 = (0, 1, 0, 0) and x3 = (0, 0, 1, 0); y3 = (0, 0, 1, 0).
The learning is identical with the learning phase of the Lernmatrix.

After the entanglement of index qubits |indexj〉 in superposition

|index1〉 = |11〉 |index2〉 = |10〉

|index3〉 = |01〉 |index4〉 = |00〉

with the weight vectors the following state is present, the state countj and unitj are repre-
sented by four qubits each for the four binary weights, with

|unitj〉 = |(w1w2w3w4)j〉

(see Figure 10)

Entropy 2023, 25, 871 11 of 27

Figure 10. The quantum circuit that produces the sleep phase. The qubits 0 to 3 represent the query
vector, the qubits 4 to 7 the associative memory, the qubits 8 to 11 represent the count and the qubits
12 and 13 are the index qubits, while the qubit 14 is the control qubit.

With
1
2
·
(

4

∑
j=1
|countj〉|unitj〉|indexj〉

)
. (13)

The value |countj〉 is the unary representation of the Lernmatrix value netj. We include the
query vector as xq = (1, 0, 0, 1),

1
2
·
(

4

∑
j=1
|countj〉|unitj〉|indexj〉

)
⊗ |query〉 =

1
2
·
(

4

∑
j=1
|(c1c2c3c4)j〉|(w1w2w3w4)j〉|(i1i2)j〉

)
⊗ |1001〉 (14)

the resulting histogram of the measured qubits is represented in Figure 11.

Figure 11. Four superposition states corresponding to the four units of the associative memory.
The qubits 0 to 3 represent the query vector xq = (1, 0, 0, 1), the qubits 4 to 7 the associative memory,
the qubits 8 to 11 represent the count, the qubits 12 and 13 are the index qubits, and the control qubit
14 is zero. Note that the units are counted in the reverse order by the index qubits: 11 for the first
unit, 10 for the third unit, 01 for second unit and 00 for the fourth unit.

Entropy 2023, 25, 871 12 of 27

In the next step, we describe the active phase (see Figure 12).

Figure 12. The quantum circuit that produces the active phase. The query and the amplification
operations on the count qubits, the qubits 8 to 11. The control qubit 14.

For simplicity, we will ignore the index qubits, since they are not important in the
active phase. We perform quantum counting using the control bit that is set in superposition
resulting in

1√
2
· (|0〉+ |1〉)⊗ 1

2
·
(

4

∑
j=1
|(c1c2c3c4)j〉|(w1w2w3w4)j〉

)
⊗ |1001〉 =

1
2 ·
√

2
· |0〉

(
4

∑
j=1
|(c1c2c3c4)j〉|(w1w2w3w4)j〉

)
⊗ |1001〉+

1
2 ·
√

2
· |1〉

(
4

∑
j=1
|(c1c2c3c4)j〉|(w1w2w3w4)j〉

)
⊗ |1001〉 (15)

Applying controlled phase operation with N = 2 since two ones are present in the query
vector and countj ≤ 2

1
2 ·
√

2
· |0〉

(
4

∑
j=1

ei·
π·countj

2·2 · |(c1c2c3c4)j〉|(w1w2w3w4)j〉
)
⊗ |1001〉+

1
2 ·
√

2
· |1〉

(
4

∑
j=1

e−i·
π·countj

2·2 · |(c1c2c3c4)j〉|(w1w2w3w4)j〉
)
⊗ |1001〉 (16)

and applying the Hadamard gate to the control qubit, we obtain(
4

∑
j=1

1
2
·
(

cos
(

π · countj

2 · 2

))
· |0〉|(c1c2c3c4)j〉|(w1w2w3w4)j〉

)
⊗ |1001〉+

(
4

∑
j=1

1
2
·
(

i · sin
(

π · countj

2 · 2

))
· |1〉|(c1c2c3c4)j〉|(w1w2w3w4)j〉

)
⊗ |1001〉. (17)

The architecture is described by fifteen qubits, see Appendix A. With the query vector
xq = (1, 0, 0, 1) units represented by the states have following values:

• The first unit has the value count1 = 2 and the two corresponding states are: for the

control qubit = 1 the value is 1 = sin π
2 with the measured probability

∣∣∣sin π
2 ·

1
2

∣∣∣2 = 0.25
and for the control qubit = 0 the value is 0 = cos π

2 with the measured probability 0.
• The second unit has the value count2 = 1 and the two corresponding states are:

for the control qubit = 1 the value is 1√
2
= sin π

4 with the measured probability

Entropy 2023, 25, 871 13 of 27

∣∣∣sin π
4 ·

1
2

∣∣∣2 = 0.125 and for the control qubit = 0 the value is 1√
2
= cos π

4 with the

measured probability
∣∣∣cos π

4 ·
1
2

∣∣∣2 = 0.125.

• The third unit has the value count3 = 0 and the two corresponding states are: for the
control qubit = 1 the value is 0 = sin 0 with the measured probability = 0 and for the
control qubit = 0 the value is 1 = cos 0 with the measured probability = 0.

• The fourth unit has the (decimal) value count4 = 2 and the two corresponding states
are: for the control qubit = 1 the value is 1 = sin π

2 with the measured probability∣∣∣sin π
2 ·

1
2

∣∣∣2 = 0.25 and for the control qubit = 0 the value is 0 = cos π
2 with the

measured probability 0.

There are five states with probabilities not equal to zero, see Figure 13. The measured
probability (control qubit = 1) indicating a firing of the units is 0.625.

Figure 13. Five superposition states not equal to zero. The control qubit 14 equal to one indicates the
firing of the units. The measured value is 0.625. The two probabilities 0.25 express the perfect match
and the solution (1, 0, 0, 1), indicated by the index qubits 12 and 13, with the values (11) for the first
unit and (00) for the fourth unit. Note that the units are counted in the reverse order by the index
qubits: (11) first unit, (10) for the second unit, (01) for third unit and (00) for the fourth unit. The
control qubit 14 equal to zero indicates the units that do not fire. The measured value is 0.375. The
probability 0.25 with the index qubits 12 and 13, with the value (01) for the third unit indicates the
most dissimilar pattern (0, 0, 1, 0).

6.1. Generalization

We can generalize the description for n units. After the entanglement of index qubits
in superposition with the weight vectors, the following state is present, and the state countj
and unitj are represented by [4,5],

1√
n
·
(

n

∑
j=1
|countj〉|unitj〉|indexj〉

)
⊗ |query〉. (18)

with the cost O(n2). We apply the control qubit (ignoring the index qubits)

Entropy 2023, 25, 871 14 of 27

1√
2
· (|0〉+ |1〉)⊗ 1√

n
·
(

n

∑
j=1
|countj〉|unitj〉

)
⊗ |query〉 =

1√
2 · n

· |0〉
(

n

∑
j=1
|countj〉|unitj〉

)
⊗ |query〉+

1√
2 · n

· |1〉
(

n

∑
j=1
|countj〉|unitj〉

)
⊗ |query〉. (19)

Applying controlled phase operation with N for present ones in the query vector and
countj ≤ N

1√
2 · n

· |0〉
(

n

∑
j=1

ei·
π·countj

2·N · |countj〉|unitj〉
)
⊗ |query〉+

1√
2 · n

· |1〉
(

n

∑
j=1

e−i·
π·countj

2·N · |countj〉|unitj〉
)
⊗ |query〉 (20)

and applying the Hadamard gate to the control qubit, we obtain the final result with(
n

∑
j=1

1√
n
·
(

cos
(

π · countj

2 · N

))
· |0〉|countj〉|unitj〉

)
⊗ |query〉+

(
n

∑
j=1

1√
n
·
(

i · sin
(

π · countj

2 · N

))
· |1〉|countj〉|unitj〉

)
⊗ |query〉 (21)

The cost of one query is O(n) and for k = log2(n/4) queries O(log(n) · n).

6.2. Example

In this example, we store three patterns representing three associations: x1 = (1, 1, 0, 0,
0, 0, 1, 0); y1 = (1, 1, 0, 0, 0, 0, 1, 0), x2 = (0, 1, 0, 1, 1, 0, 0, 0); y2 = (0, 1, 0, 1, 1, 0, 0, 0) and
x3 = (0, 0, 1, 0, 0, 1, 0, 1); y3 = (0, 0, 1, 0, 0, 1, 0, 1). The weight matrix after the learning phase
is represented by eight units (see Figures 14 and 15).

Figure 14. Weight matrix represented by eight units after learning the correlation of the three patterns
x1 = (1, 1, 0, 0, 0, 0, 1, 0); y1 = (1, 1, 0, 0, 0, 0, 1, 0), x2 = (0, 1, 0, 1, 1, 0, 0, 0); y2 = (0, 1, 0, 1, 1, 0, 0, 0) and
x3 = (0, 0, 1, 0, 0, 1, 0, 1); y3 = (0, 0, 1, 0, 0, 1, 0, 1). The learning is identical with the learning phase of
the Lernmatrix.

Entropy 2023, 25, 871 15 of 27

Figure 15. The quantum circuit that produces the sleep phase. The qubits 0 to 7 represent the query
vector, the qubits 8 to 15 the associative memory, the qubits 16 to 23 represent the count and the
qubits 24, 25 and 26 are the index qubits (8 states), and the qubit 27 is the control qubit.

After the entanglement of index qubits in superposition

|index1〉 = |111〉 |index2〉 = |110〉

|index3〉 = |101〉 |index4〉 = |100〉

|index5〉 = |011〉 |index6〉 = |010〉

|index7〉 = |001〉 |index8〉 = |000〉

with the weight vectors, the following state is present, the state countj and unitj are repre-
sented by eight qubits [4,5],

1√
8
·
(

8

∑
j=1
|countj〉|unitj〉|indexj〉

)
.

With the query vector as xq = (1, 1, 0, 0, 0, 0, 0, 0), we obtain (see Figure 16)

1√
8
·
(

8

∑
j=1
|countj〉|unitj〉|indexj〉

)
⊗ |11000000〉.

and the answer vector (ignoring the index qubits) according to(
8

∑
j=1

1√
8
·
(

cos
(

π · countj

2 · N

))
· |0〉|countj〉|unitj〉

)
⊗ |11000000〉+

(
8

∑
j=1

1√
8
·
(

i · sin
(

π · countj

2 · N

))
· |1〉|countj〉|unitj〉

)
⊗ |11000000〉

is (1, 1, 0, 0, 0, 0, 1, 0) (see Figure 17).

Entropy 2023, 25, 871 16 of 27

Figure 16. The quantum circuit that produces the active phase. The query and the amplification
operations on the count qubits, the qubits 16 to 23 and the control qubit 27.

Figure 17. Teen superposition states not equal to zero. The qubits 24, 25 and 26 are the index qubits.
Note that the units are counted in the reverse order by the index qubits: 111 first unit, 110 for the
second unit, till 000 being the eight unit. The measured value for the control qubit 27 equal to one
indicates the firing of the units. The measured value is just 0.5. This happens since the weight matrix
is relatively small and not homogeneously filled. For the query vector xq = (1, 1, 0, 0, 0, 0, 0, 0), the
three values 0.125 indicate the answer vector (1, 1, 0, 0, 0, 0, 1, 0) by the index qubits 24, 25 and 26; for
the first unit with the value (111), the second unit (110) and seventh unit (001). The control qubit 27
equal to zero indicates the units that do not fire.

7. Applying Trugenberger Amplification Several Times

According to Trugenberger [5], applying the control qubit sequential b times results in

b

∑
v=0

(
n

∑
j=1

1√
n
·
(

cos
(

π · countj

2 · N

))b−v
·
(

i · sin
(

π · countj

2 · N

))v
·

·|v〉|countj〉|unitj〉|indexj〉
)
⊗ |query〉. (22)

Entropy 2023, 25, 871 17 of 27

with |v〉 being the binary representation of the decimal value v. The idea is then to measure
b control qubits b times, until the desired state is obtained. Trugenberger identifies the
inverse parameter b as temperature t = 1/b and concludes that the accuracy of pattern
recall can be tuned by adjusting a parameter playing the role of an effective temperature [5].
In Figure 18, the control qubit was applied two times for the quantum circuit of the Figure 10.
Figure 19 represents the resulting histogram of the measured qubits.

Figure 18. Circuit representing the application of the control qubit two times for the quantum circuit
of Figure 10.

Figure 19. Seven superposition states not equal to zero. This is because the states with the former
values 0.125 were divided into two values 0.125/2 = 0.0625 by the two control qubits. The first control
qubit 15 equal to one indicates the firing of the units. The measured value is 0.625. After measuring
the first control qubit equal to one, the measured value of the second control qubit 14 equal to one
is 0.9. Assuming independence, the value of measuring the two control qubits with the value one
is 0.5625 = 0.625 · 0.9. As before, the two values 0.25 indicate the perfect match and the solution
(1, 0, 0, 1) with the values of the index qubits 12 and 13: (11) for the first unit and (00) for the
fourth unit.

Relation to b

Trugenberger [5] identifies t = 1/b as a temperature and concludes: the lower t; the
better one can identify the desired states. Assuming we have eight states indicated by the
index qubit 2, 3 and 4, one marked state 010 has the count two, and the other seven state the
count of one, see Figure 20. Figure 21 represents the resulting histogram of the measured
qubits (b = 1) and Figure 22 represents the resulting histogram after applying the control
qubit two times (b = 2).

Entropy 2023, 25, 871 18 of 27

Figure 20. Assuming we have eight states indicated by the index qubit 2, 3 and 4, one marked state
010 has the count two, and the other seven state the count of one.

Figure 21. The resulting histogram of the measured qubits of one marked state with the count two,
and the other seven state the count of one with applying the control qubit.

Figure 22. The resulting histogram of the measured qubits of one marked state with the count two,
and the other seven state the count of one with applying the control qubit two times.

Now we can take the idea further and generalize it. For n states, one state is marked
with the count of 2, and all other remaining states have the count of 1. Since there are n
states, the marked state has the probability value 1/n and the 2 · (n− 1) remaining states
have the probability value p(x). It follows

1
n
+ 2 · (n− 1) · p(x) = 1 (23)

and

p(x) =
1− 1

n
2 · (n− 1)

=
1

2 · n (24)

Entropy 2023, 25, 871 19 of 27

For the next control qubit, we would obtain

p(x2) =
1− 1

n
4 · (n− 1)

=
1

4 · n

with

p(xb) =
1− 1

n
2b · (n− 1)

=
1

2b · n
(25)

resulting in the sequence

p(x1) =
1

2 · n , p(x2) =
1

4 · n , p(x3) =
1

8 · n , p(x4) =
1

16 · n , · · · , p(xb) =
1

2b · n

After measuring the control qubit at step b, the probability of the marked state is (see
Figure 23)

p(markedb) =
1
n

1
n + (n− 1) · p(xb)

=
1
n

1
n + (n− 1) · 1

2b ·n
=

2b

2b − 1 + n
(26)

and with the probability of measuring the control qubit at step b

p(control1) =
1 + n
2 · n , p(controlb) =

2b + 1 + n
2b + 2 · n

f or b > 1. (27)

With the assumption of independence, measuring the control qubits in the sequence
b = 1, b = 2, b = 3, · · · , bB

p(control1, control2, · · · , controlB) =
B

∏
j=1

p(controlj) (28)

results in a low probability (see Figure 23). The assumption that “if t is lower (higher b;)
than the determination of the desired states is better” is not correct. As a consequence,
we can measure the sequential control qubits two times (b = 2) before the task becomes
not tractable.

(a)

Figure 23. Cont.

Entropy 2023, 25, 871 20 of 27

(b)

Figure 23. For n = 216, the y-axis indicates the resulting probability. (a) Circles indicate the growth
of the probability of the marked state related to the the number of steps of Grover’s amplification
indicated by the x-axis. The triangles indicate the growth of the probability of the marked state using
Trugenberger amplification with the x-axis indicating the number b of measurements assuming the
control qubits are 1. (b) With the assumption of independence, measuring the control qubits in the
sequence b = 1, b = 2, b = 3, · · · , bB results in a low probability indicated by the circles. The x-axis
indicates the number measurements b of the control qubits. As a consequence, we can measure the
sequential control qubits two times before the task becomes not tractable.

8. Tree-like Structures

We want to increase the probability of measuring the correct units representing the
ones in the answer vector and decrease the probability of measuring the zeros. For example,
in a sparse code with k ones, k measurements of different ones reconstruct the binary
answer vector and we cannot use the idea of applying Trugenberger amplification several
times as indicated before. Instead, we can increase the probability of measuring a one
by the introduced tree-like structure [44]. The tree-like hierarchical associative memory
approach is based on aggregation of the neighboring units [44]. The aggregation is a
Boolean OR-based transform for two or three neighboring weights of unit results resulting
in a more dense memory, see Figure 24.

Figure 24. (a) In our example, we store three patterns, x1 = (1, 0, 0, 1), y1 = (1, 0, 0, 1); x2 = (1, 0, 0, 0),
y2 = (0, 1, 0, 0) and x3 = (0, 0, 1, 0), y3 = 0, 0, 1, 0), and the query vector is xq = (1, 0, 0, 1). (b) The
aggregation is a Boolean OR-based transform for two neighboring weights of units results resulting
in a more dense memory with xq = (1, 0, 0, 1, 1, 0, 0, 1)

Entropy 2023, 25, 871 21 of 27

It was shown by computer experiments that the aggregation value between two and
three is an optimal one [45]. The more dense memory is copied on top or the original
memory. Depending on the number of units, we can repeat the process in which we
aggregate groups of two to three neighboring groups of equal units. We can continue the
process till we arrive in two different groups of different units, the number of possible
different aggregated memories is logarithmic, with log(n− 1). Since in our example only
four units are present, we aggregate two units resulting in a memory of four units described
by 2 identical units each.

The query vector is composed of log(n− 1) concatenated copies of the original query
vector, in our example xq = (1, 0, 0, 1, 1, 0, 0, 1). We apply controlled phase operation with
N = 4 with countj ≤ 4, see Figure 24 and Appendix B. The measured probability (control
qubit = 1) indicating a firing of the units is 0.838 and there are six states not equal to zero,
see Figure 25 and compare with Figure 11.

Figure 25. Five superposition states not equal to zero. The measured probability (control qubit equal
to one) indicates the firing of the units is 0.838, the measured probability values are 0.213, 0.125
and 0.25.

9. Costs

We cannot clone an arbitrary quantum state; however, it was proposed that a quan-
tum state can be probabilistic cloned up to a mirror modular transformation [14]. In an
alternative approach, we prepare a set of quantum Lernmatrices in superposition. This
preparation requires a great deal of time and we name it the sleep phase. The cost of storing
L = (ln 2)(n2/k2) patterns in n units with k = log2(n/4) in a Lernmatrix and consequently
the quantum Lernmatrix is O(n2) [18,19]. On the other hand, in the active phase, the query
operation is extremely fast.

Query Cost of Quantum Lernmatrix

During the active phase, the quantum Lernmatrices are sampled with minimal costs
in time. In Figure 26a, we compare the query cost of k queries of the quantum Lernmatrix
representing the weight matrix of the size n× n to the cost of a classical Lernmatrix of the
size n× n, which are

O(log(n) · n) < O(n2).

Entropy 2023, 25, 871 22 of 27

In Figure 26b, we compare the query cost of k queries of the quantum Lernmatrix repre-
senting the weight matrix of the size n× n to Grover’s amplification algorithm on a list of
L vectors of dimension n

O(n ·
√

L) = O
(

n2

log(n)

)
.

(a)

(b)

Figure 26. (a) We compare the cost of k = log2(n/4) queries to the quantum Lernmatrix (representing
the weight matrix of the size n× n), O(k · n) (dashed line) to the cost of a classical Lernmatrix of the
size n× n, O(n2). (b) We compare the cost of k queries to the quantum Lernmatrix (representing the
weight matrix of the size n× n), O(k · n) with cost O(k · n) (dashed line) to Grover’s amplification
algorithm on a list of L vectors of dimension n with cost O(n ·

√
L).

10. Conclusions

We introduced a quantum Lernmatrix based on the Monte Carlo Lernmatrix and
preformed experiments using qiskit as a proof of concept for future quantum associative
memories. We proposed a tree-like structure that increases the measured value for the
control qubit indicating a firing of the units. Our approach does not solve the input
destruction problem but gives a hint how to deal with it. We represent the preparation
costs and the query time by two phases.

The cost of the sleep phase and the active phase are the same as one of a conventional
associative memory O(n2). We assume that in the sleep phase we have enough time to
prepare several quantum Lernmatrices in superposition. The quantum Lernmatrices are
kept in superposition until they are queried in the active phase. Each of the copies of the
quantum Lernmatrix can be queried only once. We argue that the advantage to conventional
associative memories is present in the active phase were the fast determination of information
O(log(n) · n) is essential by the use of quantum Lernmatrices in superposition compared
to the cost of the classical Lernmatrix O(n2).

Entropy 2023, 25, 871 23 of 27

Funding: This work was supported by national funds through FCT, Fundação para a Ciê̂ncia e a
Tecnologia, under project UIDB/50021/2020. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript. The authors declare no conflicts
of interest. This article does not contain any studies with human participants or animals performed
by any of the authors.

Data Availability Statement: Not appliable.

Acknowledgments: The author acknowledges the use of IBM Quantum services for this work.
The views expressed are those of the author, and do not reflect the official policy or position of IBM
or the IBM Quantum team.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Quantum Lernmatrix
In our architecture the qubits 0 to 3 represent the query vector, the qubits 4 to 7 the

associative memory, the qubits 8 to 11 represent the count and the qubits 12 and 13 are the
index qubits, the qubit 14 is the control qubit. The count operation is done by the ccX gate
(see Figures 10 and 12)

qc = QuantumCircuit(15)
#0-3 query
#4-7 data
#8-11 count
#Index Pointer
#12-13
#Aux
#14

#Sleep Phase
#Index Pointer
qc.h(12)
qc.h(13)
qc.barrier()
#1st weights
qc.ccx(12,13,4)
qc.ccx(12,13,7)
qc.barrier()
#2th weights
qc.x(12)
qc.ccx(12,13,4)
qc.x(12)
qc.barrier()
#3th weights
qc.x(13)
qc.ccx(12,13,6)
qc.x(13)
qc.barrier()
#4th weights
qc.x(12)
qc.x(13)
qc.ccx(12,13,4)
qc.ccx(12,13,7)
qc.x(13)
qc.x(12)
qc.barrier()

#Active Phase
#query
qc.x(0)
qc.x(3)

Entropy 2023, 25, 871 24 of 27

qc.barrier()
qc.ccx(0,4,8)
qc.ccx(1,5,9)
qc.ccx(2,6,10)
qc.ccx(3,7,11)
#Dividing
qc.h(14)
qc.barrier()
#Marking
qc.cp(-pi/4,8,14)
qc.cp(-pi/4,9,14)
qc.cp(-pi/4,10,14)
qc.cp(-pi/4,11,14)
qc.barrier()
qc.x(14)
qc.cp(pi/4,8,14)
qc.cp(pi/4,9,14)
qc.cp(pi/4,10,14)
qc.cp(pi/4,11,14)
qc.h(14)
qc.draw(fold=110)

Appendix B. Quantum Tree-like Lernmatrix
qc = QuantumCircuit(23)
#0-3 query
#4-7 data aggregated
#8-11 data
#12-19 count
#Index Pointer
#20-21
#Aux
#22

#Sleep Phase
#Index Pointer
qc.h(20)
qc.h(21)
#1st weights
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.ccx(20,21,11)
#2th weights
qc.x(20)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.x(20)
#3th weights
qc.x(21)
#OR Aggregated

Entropy 2023, 25, 871 25 of 27

qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,6)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,10)
qc.x(21)
#4th weights
qc.x(20)
qc.x(21)
#OR Aggregated
qc.barrier()
qc.ccx(20,21,4)
qc.ccx(20,21,6)
qc.ccx(20,21,7)
#Original
qc.barrier()
qc.ccx(20,21,8)
qc.ccx(20,21,11)
qc.x(21)
qc.x(20)

#Active Phase
#query
qc.barrier()
qc.x(0)
qc.x(3)
qc.barrier()
#query, counting
#OR Aggregated
qc.ccx(0,4,12)
qc.ccx(1,5,13)
qc.ccx(2,6,14)
qc.ccx(3,7,15)
#Original
qc.ccx(0,8,16)
qc.ccx(1,9,17)
qc.ccx(2,10,18)
qc.ccx(3,11,19)
#Dividing
qc.barrier()
qc.h(22)
#Marking
qc.barrier()
qc.cp(-pi/8,12,22)
qc.cp(-pi/8,13,22)
qc.cp(-pi/8,14,22)
qc.cp(-pi/8,15,22)
qc.cp(-pi/8,16,22)
qc.cp(-pi/8,17,22)
qc.cp(-pi/8,18,22)
qc.cp(-pi/8,19,22)
qc.barrier()
qc.x(22)
qc.cp(pi/8,12,22)
qc.cp(pi/8,13,22)
qc.cp(pi/8,14,22)
qc.cp(pi/8,15,22)

Entropy 2023, 25, 871 26 of 27

qc.cp(pi/8,16,22)
qc.cp(pi/8,17,22)
qc.cp(pi/8,18,22)
qc.cp(pi/8,19,22)
qc.barrier()
qc.h(22)
qc.draw()

References
1. Ventura, D.; Martinez, T. Quantum associative memory with exponential capacity. In Proceedings of the 1998 IEEE International

Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA,
4–9 May 1988; Volume 1, pp. 509–513.

2. Ventura, D.; Martinez, T. Quantum associative memory. Inf. Sci. 2000, 124, 273–296. [CrossRef]
3. Tay, N.; Loo, C.; Perus, M. Face Recognition with Quantum Associative Networks Using Overcomplete Gabor Wavelet. Cogn.

Comput. 2010, 2, 297–302. [CrossRef]
4. Trugenberger, C.A. Probabilistic Quantum Memories. Phys. Rev. Lett. 2001, 87, 067901. [CrossRef] [PubMed]
5. Trugenberger, C.A. Quantum Pattern Recognition. Quantum Inf. Process. 2003, 1, 471–493. [CrossRef]
6. Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2018.
7. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the STOC’96: Proceedings of the

Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; ACM: New York,
NY, USA, 1996; pp. 212–219. [CrossRef]

8. Grover, L.K. Quantum Mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 1997, 79, 325. [CrossRef]
9. Grover, L.K. A framework for fast quantum mechanical algorithms. In Proceedings of the STOC’98: Proceedings of the Thirtieth

Annual ACM Symposium on Theory of Computing, Dallas, TX, USA, 24–26 May 1998; ACM: New York, NY, USA, 1998; pp. 53–62.
[CrossRef]

10. Grover, L.K. Quantum Computers Can Search Rapidly by Using Almost Any Transformation. Phys. Rev. Lett. 1998, 80, 4329–4332.
[CrossRef]

11. Aïmeur, E.; Brassard, B.; Gambs, S. Quantum speed-up for unsupervised learning. Mach. Learn. 2013, 90, 261–287. [CrossRef]
12. Wittek, P. Quantum Machine Learning, What Quantum Computing Means to Data Mining; Elsevier Insights; Academic Press:

Cambridge, MA, USA, 2014.
13. Aaronson, S. Quantum Machine Learning Algorithms: Read the Fine Print. Nat. Phys. 2015, 11, 291–293. [CrossRef]
14. Diamantini, M.C.; Trugenberger, C.A. Mirror modular cloning and fast quantum associative retrieval. arXiv 2022, arXiv:2206.01644.
15. Brun, T.; Klauck, H.; Nayak, A.; Rotteler, M.; Zalka, C. Comment on “Probabilistic Quantum Memories”. Phys. Rev. Lett. 2003,

91, 209801. [CrossRef] [PubMed]
16. Harrow, A.; Hassidim, A.; Lloyd, S. Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502.

[CrossRef]
17. Schuld, M.; Killoran, N. Quantum Machine Learning in Feature Hilbert Spaces. Phys. Rev. Lett. 2019, 122, 040504. [CrossRef]
18. Palm, G. Neural Assemblies, an Alternative Approach to Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1982.
19. Hecht-Nielsen, R. Neurocomputing; Addison-Wesley: Reading, PA, USA, 1989.
20. Steinbuch, K. Die Lernmatrix. Kybernetik 1961, 1, 36–45. [CrossRef]
21. Steinbuch, K. Automat und Mensch, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1971.
22. Willshaw, D.; Buneman, O.; Longuet-Higgins, H. Nonholgraphic associative memory. Nature 1969, 222, 960–962. [CrossRef]

[PubMed]
23. Contributors, Q. Qiskit: An Open-source Framework for Quantum Computing. 2023. [CrossRef]
24. Palm, G. Assoziatives Gedächtnis und Gehirntheorie. In Gehirn und Kognition; Spektrum der Wissenschaft: Heidelberg, Germany,

1990; pp. 164–174.
25. Churchland, P.S.; Sejnowski, T.J. The Computational Brain; The MIT Press: Cambridge, MA, USA, 1994.
26. Fuster, J. Memory in the Cerebral Cortex; The MIT Press: Cambridge, MA, USA, 1995.
27. Squire, L.R.; Kandel, E.R. Memory: From Mind to Moleculus; Scientific American Library: New York, NY, USA, 1999.
28. Kohonen, T. Self-Organization and Associative Memory, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1989.
29. Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; Addison-Wesley: Reading, PA, USA, 1991.
30. Anderson, J.R. Cognitive Psychology and Its Implications, 4th ed.; W. H. Freeman and Company: New York, NY, USA, 1995.
31. Amari, S. Learning Patterns and Pattern Sequences by Self-Organizing Nets of Threshold Elements. IEEE Trans. Comput. 1972,

100, 1197–1206. [CrossRef]
32. Anderson, J.A. An Introduction to Neural Networks; The MIT Press: Cambridge, MA, USA, 1995.
33. Ballard, D.H. An Introduction to Natural Computation; The MIT Press: Cambridge, MA, USA, 1997.
34. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef] [PubMed]

http://doi.org/10.1016/S0020-0255(99)00101-2
http://dx.doi.org/10.1007/s12559-010-9047-2
http://dx.doi.org/10.1103/PhysRevLett.87.067901
http://www.ncbi.nlm.nih.gov/pubmed/11497863
http://dx.doi.org/10.1023/A:1024022632303
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1145/276698.276712
http://dx.doi.org/10.1103/PhysRevLett.80.4329
http://dx.doi.org/10.1007/s10994-012-5316-5
http://dx.doi.org/10.1038/nphys3272
http://dx.doi.org/10.1103/PhysRevLett.91.209801
http://www.ncbi.nlm.nih.gov/pubmed/14683411
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1103/PhysRevLett.122.040504
http://dx.doi.org/10.1007/BF00293853
http://dx.doi.org/10.1038/222960a0
http://www.ncbi.nlm.nih.gov/pubmed/5789326
http://dx.doi.org/10.5281/zenodo.2573505
http://dx.doi.org/10.1109/T-C.1972.223477
http://dx.doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413

Entropy 2023, 25, 871 27 of 27

35. McClelland, J.; Kawamoto, A. Mechanisms of Sentence Processing: Assigning Roles to Constituents of Sentences. In Parallel
Distributed Processing; McClelland, J., Rumelhart, D., Eds.; The MIT Press: Cambridge, MA, USA, 1986; pp. 272–325.

36. OFTA. Les Réseaux de Neurones; Masson: Paris, France, 1991.
37. Schwenker, F. Küntliche Neuronale Netze: Ein Überblick über die theoretischen Grundlagen. In Finanzmarktanalyse und-Prognose

mit Innovativen und Quantitativen Verfahren; Bol, G., Nakhaeizadeh, G., Vollmer, K., Eds.; Physica-Verlag: Heidelberg, Germany,
1996; pp. 1–14.

38. Sommer, F.T. Theorie Neuronaler Assoziativspeicher. Ph.D. Thesis, Heinrich-Heine-Universität Düsseldorf, Düsseldorf,
Germany, 1993.

39. Wickelgren, W.A. Context-Sensitive Coding, Associative Memory, and Serial Order in (Speech) Behavior. Psychol. Rev. 1969,
76, 1–15. [CrossRef]

40. Sa-Couto, L.; Wichert, A. “What-Where” sparse distributed invariant representations of visual patterns. Neural Comput. Appl.
2022, 34, 6207–6214. [CrossRef]

41. Sa-Couto, L.; Wichert, A. Competitive learning to generate sparse representations for associative memory. arXiv 2023,
arXiv:2301.02196.

42. Marcinowski, M. Codierungsprobleme beim Assoziativen Speichern. Master’s Thesis, Fakultät für Physik der Eberhard-Karls-
Universität Tübingen, Tübingen, Germany, 1987.

43. Freeman, J.A. Simulating Neural Networks with Mathematica; Addison-Wesley: Reading, PA, USA, 1994.
44. Sacramento, J.; Wichert, A. Tree-like hierarchical associative memory structures. Neural Netw. 2011, 24, 143–147. [CrossRef]

[PubMed]
45. Sacramento, J.; Burnay, F.; Wichert, A. Regarding the temporal requirements of a hierarchical Willshaw network. Neural Netw.

2012, 25, 84–93. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1037/h0026823
http://dx.doi.org/10.1007/s00521-021-06759-0
http://dx.doi.org/10.1016/j.neunet.2010.09.012
http://www.ncbi.nlm.nih.gov/pubmed/20970304
http://dx.doi.org/10.1016/j.neunet.2011.07.005
http://www.ncbi.nlm.nih.gov/pubmed/21820274

	Introduction
	Lernmatrix
	Learning and Retrieval
	Storage Capacity
	Large Matrices

	Monte Carlo Lernmatrix
	Qiskit Experiments
	Quantum Counting Ones
	Quantum Lernmatrix
	Generalization
	Example

	Applying Trugenberger Amplification Several Times
	Tree-like Structures
	Costs
	Conclusions
	Appendix A
	Appendix B
	References

