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Abstract: Understanding the dynamics of complex systems defined in the sense of Caputo, such
as fractional differences, is crucial for predicting their behavior and improving their functionality.
In this paper, the emergence of chaos in complex dynamical networks with indirect coupling and
discrete systems, both utilizing fractional order, is presented. The study employs indirect coupling to
produce complex dynamics in the network, where the connection between the nodes occurs through
intermediate fractional order nodes. The temporal series, phase planes, bifurcation diagrams, and
Lyapunov exponent are considered to analyze the inherent dynamics of the network. Analyzing the
spectral entropy of the chaotic series generated, the complexity of the network is quantified. As a
final step, we demonstrate the feasibility of implementing the complex network. It is implemented
on a field-programmable gate array (FPGA), which confirms its hardware realizability.

Keywords: complex systems; Caputo-like difference operator; fractional calculus; indirect coupling;
chaos; spectral entropy; FPGA

1. Introduction

The exchange of information has been a fundamental aspect of communication, and
there has always been a tendency to find more efficient ways of exchanging information.
This goal has led to the development of various technologies and systems that enable
communication among individuals, as well as between animals, objects, and other entities.

In graph theory, the components of a system that exchange information are called
nodes, and the medium of exchange is known as link or coupling. These concepts apply
to any network with two or more nodes, such as social networks [1,2], transportation
networks [3,4], biological networks [5,6], and neural networks [7]. In a complex network,
nodes can be directly coupled with each other, or they can be linked through intermediary
systems [8]. These intermediary systems are dynamic systems that decouple the direct
interaction between two or more nodes, and they can be chosen based on the specific
application to be implemented. Examples of intermediary systems include routers in
computer networks and servers in wireless communication networks. Couplings with
intermediary systems have been shown to perform better than direct couplings in some
cases, as demonstrated in studies such as [9,10]. One important measure of network
performance is synchronization, which refers to the tendency of nodes in a network to
behave in a coordinated manner. Improving synchronization is particularly important
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in networks where nodes are chaotic, as it can help stabilize the system and improve its
overall performance [11–13]. Chaotic systems are characterized by their sensitivity to
initial conditions, meaning that a small change in the initial conditions of the system can
result in a significantly different output [14]. The study in [15] deals with the coupling
of hyperchaotic systems through an intermediary dynamic system, in [8] the coupling of
small-world networks through intermediary dynamic systems is presented, and in [16] the
enhancing of hyperchaotic dynamics generated by coupling two discrete periodic systems
is addressed.

Fractional calculus has become an increasingly important field of study due to its ap-
plication in various fields, such as mathematics, physics, engineering, and biology [17–19].
It is a generalization of traditional calculus that extends the concept of derivatives and
integrals to non-integer orders. It has been demonstrated to be a powerful tool in analyzing
complex systems, particularly when they exhibit memory and long-range dependence [20].
For instance, the fractional order in an N-type blood vessel model in [21] reveals rich dynam-
ics and faster adaptive synchronization than its integer-order model. The synchronization
in multiplex neuronal networks integrated with fractional order Hindmarsh–Rose neurons
synchronizes better than integer-order models [22]. In [23], dynamic coupling for fractional
order systems is presented. Although chaos and synchronization have been analyzed in
complex continuous-time networks, their existence and features in discrete-time systems
have also been a subject of interest. Discrete chaotic systems are particularly interesting
due to their ability to generate complex behavior from simple rules, making them ideal
candidates for use as nodes in complex networks [24,25]. By constructing networks com-
posed of such systems, it is possible to investigate the collective behavior of the network
and explore the emergence of complex phenomena [26].

Since the seminal paper of Miller and Ross [27], the idea of discrete fractional calcu-
lus and the theory of fractional differences equations has caught the attention of schol-
ars. Similar to fractional order integration and differentiation operators in continuous
time, there are different definitions related to discrete fractional calculus, such as the
Riemann–Liouville-like difference [28], the Grünwald–Letnikov-like difference [29], and
the q-difference operator [30]. The Caputo-like delta difference operator is a specific type of
discrete fractional calculus that considers the function’s initial values and its delta deriva-
tives. Several studies have shown that the Caputo-like delta difference operator has better
numerical stability and accuracy than other fractional difference operators, making it a
useful tool for solving fractional difference equations in various applications. A fractional
predator–prey discrete system of the Leslie type considering the Caputo-like delta differ-
ence operator is proposed in [31]. Ref. [32] introduces a COVID-19 model that incorporates
the number of immunized individuals as an additional state variable describing the sys-
tem dynamics. In [33], the outer synchronization problem of discrete fractional complex
networks with and without unknown topology is established based on linear matrix in-
equalities. Considering the Caputo-like delta difference definition, a fractional difference
order map with chaotic dynamics and with no equilibria is proposed in [34].

However, there are not enough studies describing the relationship between the frac-
tional order and the dynamics of the complex network with discrete nodes. As a result, the
emergence of chaos in complex dynamic networks with fractional-order discrete systems,
where the connection between the nodes is not direct but occurs through an intermediate
node, has been considered. Then we provide the fractional order version of the complex
network with indirect coupling based on the Caputo-like delta difference operator. The
dynamics behaviors associated with the fractional order difference system are analyzed
by employing the temporal series, phase portraits, bifurcation diagrams, and the largest
Lyapunov exponent, where the numerical simulations illustrate the results of our analysis.
Moreover, we analyze the spectral entropy of the network, which quantifies the amount
of information generated by the system over time to confirm the rich dynamics of both
complex network and indirect coupling in the fractional sense. Finally, we implement the
system on a field-programmable gate array (FPGA), which provides a hardware-based sys-
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tem implementation. This allows us to study the behavior of the network to experimentally
reproduce their dynamics, exploiting their chaotic properties in real phenomena and pro-
viding a platform for further optimization and control. The rest of the paper is organized as
follows. Section 2 provides a brief review of the Caputo derivative in discrete-time systems.
Section 3 presents the methodology to generalize the complex network. Section 4 gives the
dynamic analysis of the fractional order network with indirect coupling. Section 5 provides
the complexity analysis via spectral entropy. In Section 6, we implement the system on a
field-programmable gate array. Finally, Section 7 provides concluding remarks and future
research directions.

2. Preliminaries

This section presents definitions, theorems, and remarks for use in the paper. Sub-
sequently, we will consider the general n-th order difference, which can be expressed as

∆n f (t) = ∆n−1 f (t + 1)− ∆n−1 f (t),

=
n

∑
k=0

Ck
n(−1)k f (t + n− k),

(1)

where Ck
n is the binomial coefficient, Ck

n = k!
n!(n−k)! . Expanding the concept to fractional

order difference, the fractional sum of order v is described as follows.

Definition 1 ([35]). If f (t) is a real-valued function defined on the discrete set Nφ = {φ, φ + 1, φ +
2, . . . } with φ ∈ R and v > 0, then, the v-fractional order sum of f (t) denoted as ∆−v

φ is defined as

∆−v
φ f (t) =

1
Γ(v)

t−v

∑
s=φ

(t− σ(s))v−1 f (s), t ∈ Nφ+v, (2)

where φ is the starting point, the forward operator φ : Nφ → Nφ given as σ(s) = s + 1,

t(v) = Γ(t+1)
Γ(t+1−v) , with t 6= −1,−2,−3, . . . , is the falling function, and Γ(·) is the gamma function,

denoted as Γ(z) =
∫ ∞

0 e−ttz−1dt. Below, we will consider the Caputo derivative in vector form as
the fractional difference.

Definition 2 ([36]). Let v > 0 with v ∈ N. The v-order Caputo-like discrete fractional difference
of a function f (t) defined on Nφ is denoted by

C∆v
φ f (t) = ∆−(m−v)

φ ∆m f (t),

=
1

Γ(m− v)

(t−(m−v))

∑
s=φ

(t− σ(s))(m−v−1)∆m f (s),
(3)

where t ∈ Nφ+m−v, with m = dve+ 1, v the fractional order, and φ the lower bound.

The v-th Caputo-like delta discrete fractional difference is defined specifically for the
case when m = 1, as follows:

C∆v
φ f (t) =

1
Γ(1− v)

(t−(1−v))

∑
s=φ

(t− σ(s))(−v)∆ f (s), (4)

with t ∈ Nφ+1−v.
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Theorem 1 ([37]). For the nonlinear fractional Caputo-like difference equation

C∆v
φ f (t) = f (t + v− 1, u(t + v− 1)),

∆ku(φ) = uk,
(5)

with m = dve+ 1, k = 0, . . . , m− 1. For t ∈ Nφ+m, the discrete integral equation equivalent can
be represented as

u(t) =
m−1

∑
k=0

(t− φ)(k)

k!
∆ku(φ)+

1
Γ(v)

t−v

∑
s=φ+m−v

(
(t− σ(s))(v−1)

)
f (s + v− 1, u(s + v− 1)),

(6)

where the element u0(t) = ∑m−1
k=0

(t−φ)(k)

k! ∆ku(φ) corresponds to initial iteration.

Remark 1. Assuming the initial point is φ = 0 and taking 0 < v ≤ 1, (6) is modified to

u(t) = u0(t) +
1

Γ(v)

t−v

∑
s=1−v

(
(t− σ(s))(v−1)

)
f (s + v− 1, u(s + v− 1)). (7)

By letting s + v = j for (s + v) ∈ N, and utilizing the expansion (t− σ(s))(v−1) = Γ(t−s)
Γ(t−s−v+1) ,

the numerical formula with a global memory effect can be explicitly expressed as

u(t) = u0(t) +
1

Γ(v)

t

∑
j=1

Γ(t− j + v)
Γ(t− j + 1)

f (j− 1, u(j− 1)). (8)

3. Fractional Order Network with Indirect Coupling

Using the Caputo-like delta difference operator presented in (4), we introduce the frac-
tionalized version of a network with two simple periodic discrete systems bidirectionally
coupled. In [16], the integer-order dynamical network consists of two nodes and indirect
coupling in discrete periodic oscillators. The outstanding feature of this complex network
is that the systems used in the nodes cannot produce chaotic or hyperchaotic dynamics on
their own; instead, such dynamics can only be achieved through indirect or direct coupling
between them.

The state equations for the integer-order dynamical network are presented below.
Specifically, the first node is denoted as N1, and its state equations are given by [16]

X(n + 1) = F(X(n)) + ĈU1(n). (9)

The second node N2 is described by

Y(n + 1) = F(Y(n)) + ĈU2(n), (10)

where X = (x1(n), . . . , xn(n))T ∈ Rn and Y = (y1(n), . . . , yn(n))T ∈ Rn are the state vec-
tors of the coupled systems (9) and (10), Ĉ ∈ Rn×n is a suitably chosen matrix indicating the
indirect coupling, and U1(n) ∈ Rn, U2(n) ∈ Rn are the input signals of the systems in the
nodes. The indirect coupling, introduced in [9], is reached by employing an intermediary
system between the nodes to send information among the involved systems in the network;
the indirect coupling is denoted as

ha(n + 1) = G(ha(n))− cΦ(ηXa(n) + Xb(n)),

hb(n + 1) = G(hb(n))− cΦ(ηXb(n) + Xa(n)),
(11)
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where ha(n) = [ha1(n), ha2(n)]T and hb(n) = [hb1(n), hb2(n)]T are the state vectors of the in-
termediate systems (11), and G = [−1, 1;−ζ1,−ζ2] with ζ1, ζ2 ∈ R+; meanwhile, Φ ∈ Rn×n

is an appropriately chosen matrix, which couples the variables of the systems (9) and (10)
within the intermediary systems (11), and c 6= 0 is the coupling strength, whereas η is a
decompensation (bifurcation) parameter that allows us to build the route to chaos and
hyperchaos for the coupled oscillators (9) and (10). To enable indirect coupling of the
systems, we introduce the following input signals:

U1(n) = ha(n),

U2(n) = hb(n).
(12)

Remark 2. The communication, or interaction, between the systems (9) and (10) is indirect and
promoted through (12).

In order to address the interesting problem of the emergence of hyperchaos through
the coupling of naturally non-chaotic systems (see refs. [16,26]), we use the state equations
of two simple autonomous discrete systems employed to generate complex dynamics
as follows:

X(n + 1) =
[

sin(x2(n))
bx2(n)

]
+ ĈU1(n), (13)

Y(n + 1) =
[

sin(y2(n))
by2(n)

]
+ ĈU2(n). (14)

Employing the integer-order difference Equation (1) and the Caputo difference opera-
tor of Definition 2 in the nodes (9) and (10) and in the intermediary system (11), respectively,
we obtain the fractional order dynamical network with two nodes and indirect coupling in
discrete periodic oscillators as follows:

C∆v
φX(t) = F(t + v− 1) + ĈU1(t + v− 1)− X(t + v− 1), (15)

C∆v
φY(t) = F(t + v− 1) + ĈU2(t + v− 1)−Y(t + v− 1), (16)

C∆v
φha(t) = G(ha(t + v− 1))− cΦ(ηXa(t + v− 1) + Xb(t + v− 1))− ha(t + v− 1),

C∆v
φhb(t) = G(hb(t + v− 1))− cΦ(ηXb(t + v− 1) + Xa(t + v− 1))− hb(t + v− 1),

(17)

where 0 < v ≤ 1 is the fractional order, t ∈ Nφ+1−v, with φ defining the starting point. In
Figure 1, the graphical representation of the network with indirect coupling is depicted.

Node NodeIndirect coupling

y1

y1

Figure 1. Representation of the proposed network with indirect coupling.
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Using the delta fractional difference presented in Theorem 1, we can represent the
equivalent discrete integrals for 0 < v ≤ 1 as

X(t) = X(φ) +
1

Γ(v)

t−v

∑
s=φ+1−v

(
(t− σ(s))(v−1)

)
(F(s + v− 1)+

ĈU1(s + v− 1)− X(s + v− 1)),

(18)

Y(t) = Y(φ) +
1

Γ(v)

t−v

∑
s=φ+1−v

(
(t− σ(s))(v−1)

)
(F(s + v− 1)+

ĈU2(s + v− 1)−Y(s + v− 1)),

(19)

and

ha(t) = ha(φ) +
1

Γ(v)

t−v

∑
s=φ+1−v

(
(t− σ(s))(v−1)

)
(G(ha(s + v− 1))−

cΦ(ηXa(s + v− 1) + Xb(s + v− 1))− ha(t + v− 1)),

(20)

hb(t) = hb(φ) +
1

Γ(v)

t−v

∑
s=φ+1−v

(
(t− σ(s))(v−1)

)
(G(ha(s + v− 1))−

cΦ(ηXb(s + v− 1) + Xa(s + v− 1))− hb(t + v− 1)),

(21)

where (s + v) ∈ N, letting s + v = j and considering the discrete kernel function as

1
Γ(v)

(
(t− σ(s))(v−1)

)
=

Γ(t− s)
Γ(v)Γ(t− s− v + 1)

. (22)

The numerical Equations (18)–(21) can be explicitly presented. From this point forward,
we assume that the starting point is φ = 0 and the fractional order is 0 < v ≤ 1. The
iterative process for the numerical Equations (18)–(21) can be expressed as follows

X(n) =X(0) +
1

Γ(v)

n

∑
j=1

Γ(n− j + v)
Γ(n− j + 1)

(F(j− 1) + ĈU1(j− 1)− X(j− 1)), (23)

Y(n) =Y(0) +
1

Γ(v)

n

∑
j=1

Γ(n− j + v)
Γ(n− j + 1)

(F(j− 1) + ĈU2(j− 1)−Y(j− 1)), (24)

ha(n) =ha(0) +
1

Γ(v)

n

∑
j=1

Γ(n− j + v)
Γ(n− j + 1)

(G(ha(j− 1))− cΦ(ηXa(j− 1)+

Xb(j− 1))− ha(j− 1)),

(25)

hb(n) =ha(0) +
1

Γ(v)

n

∑
j=1

Γ(n− j + v)
Γ(n− j + 1)

(G(hb(j− 1))− cΦ(ηXb(j− 1)+

Xa(j− 1))− hb(j− 1)).

(26)

When the order of Equations (23)–(26) is v = 1, it is reduced to the classical integer-
order difference network with indirect coupling given in (9)–(11), respectively.

Remark 3. The fractionalized Equations (18)–(21) and (23)–(26) differ from integer-order equations
in that they possess a discrete kernel function, resulting in the states being dependent on previous
information to determine the present state. This phenomenon is known as the memory effect.
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4. Dynamic Analysis of the Fractional Order Network with Indirect Coupling

To gain a deeper understanding of the behavior of the discrete fractional order network
with indirect coupling given in (15)–(17), we perform a dynamic analysis of the network
by studying the behavior of the network as a function of its parameters, focusing on
phase portraits, temporal series, and bifurcation diagrams. We then analyze the maximal
Lyapunov exponent of the network to gain insight into its underlying dynamics.

The nodes are uncoupled when the matrix Ĉ = [0, 0; 0, 0]; as a consequence,
there exists no complex behavior, as shown in the temporal series depicted in Figure 2a,
considering the parameter value b = 0.5, initial conditions set as X(0) = [1, 2π]T and
Y(0) = [1.1, 2.2π]T , and v = 0.9 being the fractional order. Meanwhile, in Figure 2b,
the coupling interactions are enabled considering the first state variable to couple the
autonomous fractional discrete-order systems (15) and (16) using Ĉ = [0, 0; 0, 1],
Φ = [0, 0; 1, 0], c = 1, ζ1 = 0.1, ζ2 = 0.6, η = 0.5, v = 0.9, and X(0), Y(0) sets,
respectively, with the goal of having a more comprehensive understanding of the emerging
dynamics caused by the interaction of the fractional order systems.

0 10 20 30 40 50

0

0.5

1

0 10 20 30 40 50

0

2

4

6

8

0 10 20 30 40 50

-1

0

1

0 10 20 30 40 50
-10

0

10

(a) (b)

Figure 2. Temporal dynamics of the states x1(n), x2(n), y1(n), and y2(n), with initial condition
sets X(0), Y(0) and fractional order v = 0.9, (a) with coupling Ĉ = [0, 0; 0, 0], (b) with coupling
Ĉ = [0, 0; 0, 1] and Φ = [0, 0; 1, 0], respectively.

Figure 3 shows the phase portrait of fractionalized system (15), considering the numer-
ical formula expressed in (23)–(26) by choosing the initial conditions as X(0) and Y(0) for
three different scenarios. Figure 3a considers a fractional order v = 1, Figure 3b a fractional
order v = 0.99, and Figure 3c a fractional order v = 0.9. Considering n = 1000 iterations,
the phase plane was performed, discarding the first 100 values.

Bifurcation Diagrams and Maximal Lyapunov Exponent

A bifurcation diagram is a graphical representation of the qualitative behavior of a
dynamic system as one or more of its parameters are varied [38]. It is a valuable tool for
understanding the types of behavior exhibited by the system and the conditions under
which such behavior occurs. In the case of a discrete fractional order chaotic system, the
bifurcation diagram can reveal a wide range of complex dynamics, including periodic and
chaotic behavior. To generate the bifurcation diagram, we vary the bifurcation parameter
while keeping all other parameters constant and observing the resulting behavior of the
system. The range of the bifurcation parameter and the step size used in the analysis
can significantly affect the features observed in the diagram [39]. In the first instance, the
bifurcation parameter η is selected as a critical parameter, and a step size of ∆η = 0.001 is
used. The fractional order is set to v = 0.99, and the bifurcation parameter is varied over
the interval η ∈ [−2, 4]. The resulting bifurcation diagram, shown in Figure 4a, reveals
two regions where complex behavior arises, given by the intervals [−2,−0.37] ∪ [0.46, 4].
Within these regions, the system exhibits periodic and chaotic behavior. In the second
instance, a similar range is considered for the bifurcation parameter, and the fractional
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order is updated to v = 0.9. In Figure 4b, the resulting bifurcation diagram shows that
complex behavior always emerges for the interval selected. This indicates that the selection
of the fractional order can have a significant impact on the dynamics of the system and
should be carefully considered when analyzing such systems.

-1 -0.5 0 0.5 1
-4

-2

0

2

4

-1 -0.5 0 0.5 1
-4

-2

0

2

4

(a) (b)

-1 -0.5 0 0.5 1
-4

-2

0

2

4

(c)

Figure 3. Phase portraits of fractionalized system (15) with different fractional orders: (a) fractional
order v = 1, (b) fractional order v = 0.99, (c) fractional order v = 0.9.

(a) (b)

Figure 4. Bifurcation diagrams where η acts as a critical parameter with initial conditions sets X(0),
Y(0). (a) For v = 0.99, (b) for v = 0.9, respectively.

Moreover, in the second stage, the bifurcation diagrams where the parameter b acts as
a critical parameter are shown in Figure 5. The parameter b is varied according to step size
∆d = 0.001. Figure 5a shows the bifurcation diagram when the fractional order v = 0.99
and varying the bifurcation parameter in an interval b ∈ [−1, 1]. It is observed that there are
two regions where complex behavior emerges, given as [−1,−0.09] ∪ [0.7, 1]. In Figure 5b,
a similar range is considered, and now the fractional order was updated to v = 0.9. It
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shows that complex behavior always emerges for the interval selected. The fractional order
determines the memory and non-locality in the system, which can significantly impact the
behavior of the system. In particular, modifying the fractional order can change the stability
of the system, the type of bifurcations that occur, and the range of complex dynamics that
are observed in the bifurcation diagram.

(a) (b)

Figure 5. Bifurcation diagrams where b acts as a critical parameter with initial condition sets X(0),
Y(0). (a) For v = 0.99, (b) for v = 0.9, respectively.

In addition, in order to explore the presence of chaos, we consider the bifurcation
diagram and maximum Lyapunov exponent of the state x1 by varying the parameter v in
the interval v ∈ [0.01, 1]. In Figure 6a, the bifurcation diagram is obtained by considering
the fractional order v as a critical parameter. It is varied according to step ∆v = 0.001
and using Ĉ = [0, 0; 0, 1], Φ = [0, 0; 1, 0], c = 1, ζ1 = 0.1, ζ2 = 0.6, η = 0.5, v = 0.9,
and X(0), Y(0) sets, respectively. It shows that complex behavior always emerges for
the interval selected. We also compute the maximal Lyapunov exponent of the system
using the Jacobian matrix algorithm [40–42] shown in Figure 6b, which is fundamental
in the analysis of dynamical systems as it provides a way to measure the rates at which
nearby trajectories either converge or diverge in phase space [43]. The maximal Lyapunov
exponent is a quantitative measure of the sensitivity in the system to initial conditions
and is a valuable indicator of chaos [44]. It also coincides with Floquet multipliers for
periodic orbits, which can help determine the significance of linearly unstable periodic
orbits within a chaotic attractor. In this way, the positive multipliers of such orbits can
serve as a measure of their relative importance to the overall chaotic dynamics [45]. As
can be observed in the bifurcation and the maximal Lyapunov exponent represented in
Figure 6 upon varying the parameter v, the systems (15)–(17) exhibits complex dynamics.
In particular, the systems (15)–(17) is chaotic when the parameter v ∈ [0.01, 1], where the
value of the maximal Lyapunov exponents is positive.

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) (b)

Figure 6. Bifurcation diagram and maximal Lyapunov exponent of the state x1 by varying the
parameter v in the interval v ∈ [0.01, 1] with initial condition sets X(0), Y(0). (a) Bifurcation diagrams,
(b) maximal Lyapunov exponent.
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5. Complexity Analysis via Spectral Entropy

Spectral entropy (SE) provides a quantitative characterization of the randomness and
diversity of dynamics of the system, which makes it a valuable tool for analyzing complex
behavior. It is based on the spectral properties of the time series of the system [46,47]. For
instance, in Ref. [48], SE can identify global topology variations better than traditional
probability distribution entropy, capturing the overall structure of the network rather than
just local features. It quantifies the disorder or randomness of the energy distribution across
the different frequencies in the time series being calculated through a Fourier transform.
Additionally, SE is based on information diffusion, which may make it more effective in
capturing dynamic changes in the network over time.

The spectral entropy of a signal is defined according to

H = − 1
log2 N ∑

k
P(k) log2 P(k), (27)

where P(k) is the normalized power spectrum at the frequency bin k ∈ [0, 1, . . . , N− 1] and
N is the number of frequency bins in the power spectrum. The spectral entropy ranges
between 0 and 1. A lower spectral entropy value indicates a more ordered and predictable
signal, while a higher value indicates a more complex and unpredictable signal.

In the context of this paper, spectral entropy is used to measure the emergence of
complex behavior when the indirect coupling between fractional order discrete nodes is
activated by analyzing the power spectrum of the chaotic series generated. Moreover,
spectral entropy is used to track changes in the complexity of the network over time and to
identify critical transitions or bifurcations in the dynamics of the nodes.

Figure 7 shows the spectral entropy of the network (15) and (16) with indirect coupling (17),
when the fractional order v and the parameters η and c are varied. Specifically, Figure 7a
exhibits the SE plane of fractional order v versus the parameters η in the intervals
v ∈ [0.01, 1] and η ∈ [−2, 2], respectively. Here, we established the parameters as c = 0.5,
ζ1 = 0.1, ζ2 = 0.6, b = 0.5, and initial conditions sets X(0) and Y(0). Figure 7b shows the
SE plane of fractional order v versus c parameter (coupling strength). It is obtained by
defining the parameters as in the previous case, with the exception of η, defined as η = 0.5
and varying the fractional order in the interval v ∈ [0.01, 1] and the parameter c ∈ [−4, 4],
respectively.

(a) (b)

Figure 7. Spectral entropy b acts as a critical parameter with initial conditions sets X(0), Y(0). (a) for
v = 0.99 (b) for v = 0.9, respectively., respectively.

6. FPGA Implementation of Complex Network with Two Fractional Order Chaotic Nodes

Field-programmable gate arrays (FPGAs) provide a flexible and efficient platform for
implementing complex systems. This section proposes an FPGA implementation of the
complex network shown in Section 3. Figure 8 shows the experimental implementation.
We use the Xilinx Zynq−7000 XC7Z020 FPGA chip and the National Instruments LabVIEW
FPGA compiler. To implement the network on an FPGA, we use single-precision floating-
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point arithmetic to compute the fractional order derivatives, the nonlinear functions of the
nodes, and the indirect coupling terms. We consider the short-memory principle to reduce
computational complexity, using a memory length L = 10 samples.

To validate the proposed FPGA implementation, we compare the implementation
results achieved with those obtained from software simulations of the same system. We also
analyze the resource usage and performance of the FPGA implementation. The resources
used for the design are presented in Table 1. The clock frequency used was 40 MHz, and
the minimum execution time achieved for the implemented system was 30 microseconds.
The experimental results are shown in Figure 9. They were obtained from an oscilloscope
Tektronix TDS 210 with a bandwidth of 60 MHz. In Figure 9a we present the phase plane
x1 versus x2. Figure 9b shows the phase plane x1 versus y1. The phase plane x2 versus y2 is
depicted in Figure 9c.

Figure 8. Setup of the Xilinx Zynq−7000 XC7Z020 FPGA implementation.

(a) (b)

(c)

Figure 9. FPGA implementation results. (a) The phase plane x1 versus x2, (b) the phase plane x1

versus y1, (c) the phase plane x2 versus y2.
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Table 1. FPGA chip resource usage for the Xilinx Zynq-7000 XC7Z020 FPGA chip.

Device Resources Total Used Percent (%)

Total Slices 13,300 10,588 79.6
Slice Registers 106,400 26,778 25.2

Slices LUTs 53,200 34,283 64.4
Block RAMs 140 7 5

DSP48s 220 22 10

7. Conclusions

In this study, we investigated the emergence of chaos in complex dynamical networks
with indirect coupling and discrete systems, both utilizing fractional order. We utilized
indirect coupling to produce complex dynamics in the network. Moreover, the analysis
of the fractionalized version of the complex network and indirect coupling was carried
out by temporal series, phase planes, bifurcation diagrams, and Lyapunov exponent. The
selection of the fractional order in the studied system can profoundly impact its dynamics.
The fractional order implies a non-locality and memory effect within the system, which can
influence its behavior. In particular, changes to the fractional order can alter the stability of
the system, the nature of its temporal series, phase planes, bifurcation diagrams, Lyapunov
exponent, and the range of complex dynamics observed. We compute the spectral entropy
of the chaotic series to quantify the complexity of the network. Our results show that the
dynamic coupling of discrete fractional nodes can increase the complexity of the complex
network, leading to higher entropy values and chaos. As a final step, we demonstrate
the feasibility of implementing the complex network on a field-programmable gate array
(FPGA), confirming its hardware realizability where, for example, the perspectives for
generalizing this method for multi-node networks are high; although it is true that the
processing required for the experimental implementation using only one FPGA may be
demanding, solutions can be sought, such as using an FPGA network to implement each
systems (13) and (14) within each of the FPGAs in the network. We consider that there
are different directions for future research. For example, exploring the impact of different
types of coupling and investigating the behavior of networks with a different number
of nodes could lead to further insights and a deeper understanding of the behavior of
complex dynamical networks, the control of emerging behavior, and their applications in
secure communications.
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