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Abstract: An important challenge in the study of complex systems is to identify appropriate effective
variables at different times. In this paper, we explain why structures that are persistent with respect
to changes in length and time scales are proper effective variables, and illustrate how persistent
structures can be identified from the spectra and Fiedler vector of the graph Laplacian at different
stages of the topological data analysis (TDA) filtration process for twelve toy models. We then
investigated four market crashes, three of which were related to the COVID-19 pandemic. In all four
crashes, a persistent gap opens up in the Laplacian spectra when we go from a normal phase to a crash
phase. In the crash phase, the persistent structure associated with the gap remains distinguishable up
to a characteristic length scale ε∗ where the first non-zero Laplacian eigenvalue changes most rapidly.
Before ε∗, the distribution of components in the Fiedler vector is predominantly bi-modal, and this
distribution becomes uni-modal after ε∗. Our findings hint at the possibility of understanding market
crashs in terms of both continuous and discontinuous changes. Beyond the graph Laplacian, we can
also employ Hodge Laplacians of higher order for future research.
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1. Introduction

Unlike simple systems, where we can easily identify the few relevant variables and
deduce the mathematical equations that they must obey (conservation laws, equations of
state, equations of motion), or for thermodynamic systems, where we identify extensive and
intensive variables that are statistical sums and averages of the microscopic variables, for
complex systems it is difficult to identify a set of simplified (coarse-grained) variables [1,2].
This is especially challenging, since we know that self-organization and emergence is a
hallmark of complex systems, implying that the effective variables might change from time
to time [3]. One of the directions explored by complex systems scientists is to embed the
N variables onto a low-dimensional manifold, using information contained in their time
series Xi=1,...,N(t) [4,5]. Recently, D’Addese et al. [6] and Villani et al. [7] used information-
theoretic methods to identify the relevant sets of variables in random Boolean networks,
gene-regulatory networks, MAPK signaling pathways in eukaryotes, and other systems,
and the manifold they evolve on. Others have turned instead to topological data analysis
(TDA) and persistent homology to achieve the same goal [8,9]. Still others have combined
information-theoretic methods and simplicial complexes arising from TDA to identify
effective variables, and their interactions in the form of higher-order networks [10].

To be useful for describing a complex system, effective variables must change slowly
with time, so that we do not need to switch between different sets of effective variables
frequently. Of the N � 1 microscopic variables, we find some combinations that change
dramatically over short time scales, as well as other combinations that evolve slowly.
We call the former fast variables, and the latter slow variables [11,12]. Frequently, the slow
variables do not evolve independently, but form groups that co-evolve. These are then
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persistent structures that are consistent with self-organization (in that their equations of
motion are not built into the microscopic dynamics) and emergence (the groups themselves
can vary over long times) in the complex system. The first step towards understanding
how we should write down the effective variables would be to identify the persistent
structures. We attempted to do this in our two previous papers on TDA and Ricci curvature
analysis (RCA). In our first paper [8], we applied TDA to identify persistent structures in
financial correlation networks during market crashes. This attempt is an extension of our
exploration into financial market dynamics using more traditional econophysics methods
such as the minimal spanning tree (MST) [13–19], and the planar maximally filtered graph
(PMFG) [20–24]. We were attracted to TDA because it can give us more information than
graph filtering methods, as illustrated by how the Betti numbers change in toy models
where two shells merge through the formation of a bottleneck, or when a shell changes
into a torus through intermediate spindle torus and horn torus stages. However, the
computation of persistent Betti numbers is tedious and time-consuming, and generally not
feasible at large length scales. At smaller length scales, the number of persistent structures
is large, making it impossible to identify all of them automatically.

More importantly, in TDA two persistent structures are assumed to have become one,
the moment they become connected by a neck. As illustrated in Figure 1, we believe that
persistent structures remain distinguishable beyond this first connection, so long as we can
tell them apart from the neck region connecting them. Therefore, in our second paper [9],
we introduced tools from Ricci curvature to help identify persistent structures with positive
Ricci curvatures nearly everywhere, and neck regions with negative Ricci curvatures. By
following the evolution of a particular neck over a market crash, we visualized how it was
formed (down to the exact component stocks) and destroyed. Nevertheless, challenges
remain. First, RCA is not easy to implement and automate. Second, small curvature
changes are hard to detect because they involve collective movements of many nodes. To
this end, new perspectives and approaches are necessary for the elucidation of the overall
dynamical picture.

Drawing upon our experience in studying undergraduate physics, we can solve prob-
lems more easily by changing our approach or rephrasing our questions from a different
perspective. In solid state physics, we find concepts such as the Brillouin zone, band
structure, Fermi level, and band gap emerging naturally when we choose to work in
momentum space. Additionally, owing to the band theory of solids so obtained we can
predict such emergent phases as conductors, semi-conductors, half-metals, and insulators.
In our two TDA papers, we investigated financial correlations in real space by examin-
ing simplicial complexes obtained through the filtration process. Here, we make a first
attempt at characterizing such correlations in “momentum space”. Before we dive into the
spectral analysis of financial correlations, we first explain what persistent structures are
and how to think of their continuous and discontinuous changes in Section 2, by using
a raindrop analogy. Thereafter, in Section 3, we briefly review the filtration procedure in
TDA, before arguing for the theoretical connection between symmetries and block-diagonal
matrices. In particular, in solid state physics, the symmetries are in real space while the
block-diagonal matrices appear in momentum space, whereas for networks or simplicial
complexes, diagonal blocks associated with community structure appears in real space,
and thus we expect the symmetries to be in momentum space. Communities in networks
or simplicial complexes are normally discovered from adjacency matrices Aij, but they
can also be discovered from the graph Laplacians Lij, which has interpretations closer
to the Hamiltonian matrix Hij in quantum mechanics, and their spectral properties are
better understood. In the remainder of Section 3, we illustrate using various toy models of
community structures that the existence of persistent clusters separated in space show up
as a persistent gap in the spectra of Lij. From the Fiedler eigenvector, associated with the
first non-zero eigenvalue λ1 of Lij, we can identify the neck, in addition to the persistent
clusters. We also realize from these studies that the persistent clusters remain distinct even
after they become linked, up till the point where λ1 changes most rapidly with change in
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length scale. In Section 4, we apply these insights to analyze the correlations in real-world
stock markets, by sliding six-month time windows across four market crashes on three
stock exchanges, to see how the topology and geometry of such correlations change with
time. We found the existence of two distinct phases in stock markets. In the normal phase,
the spectrum of Laplacian eigenvalues has no gaps (consistent with the market being a
single giant cluster), whereas in the crash phase, we find a gap emerging at large length
scales (consistent with the market breaking into two or more clusters). Finally, we conclude
in Section 5.
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clusters become connected), and an extended barcode shown in orange where the original clusters 
remain distinguishable. In (a), the two small clusters remain distinguishable over a large range of 
filtration parameters. This is to be contrasted against (b), where the two clusters are the same sizes 
as those in (a), but are closer to each other. They are therefore distinguishable only over a small 

Figure 1. Three pairs of clusters at three increasing filtration parameters ε1 (no necks, communities
shown in blue), ε2 (necks shown in orange), and ε3 (necks shown in yellow). For each pair of clusters,
we also show the standard TDA barcode (blue bars, from ε = 0 to the value of ε when the clusters
become connected), and an extended barcode shown in orange where the original clusters remain
distinguishable. In (a), the two small clusters remain distinguishable over a large range of filtration
parameters. This is to be contrasted against (b), where the two clusters are the same sizes as those in
(a), but are closer to each other. They are therefore distinguishable only over a small range of filtration
parameters. Finally, in (c), we have two large clusters whose separation is the same as that in (b).
However, because of their sizes, the two large clusters are distinguishable over a much larger range
of filtration parameters.

2. Intuition on Persistent Structures

Before we formally define persistent structures in Section 3, let us first develop an
intuition on these based on a familiar physical phenomenon. In an atmosphere saturated
with water vapor, water droplets can nucleate around impurities. When a water droplet
first forms, it is small and light, and can be suspended by warm air rising from the earth’s
surface. The water droplet can then lose mass through evaporation, or it can absorb more
water vapor from the atmosphere to become larger and heavier. Eventually, it becomes
too heavy to be suspended by the rising warm air and begins to fall toward the earth’s
surface as a raindrop. As the raindrop falls, it rubs against the air and deforms into the
characteristic teardrop shape (Figure 2a). Even though the raindrop now consists of a
large number of water molecules (Figure 2b), it continues to lose water molecules through
evaporation (Figure 2c), or gain water molecules through absorption (Figure 2d). More
importantly, as the raindrop gains speed falling through air, its surface becomes unstable.
The trailing end of the raindrop may then breakup into smaller droplets (Figure 2e).
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Figure 2. (a) A macroscopic raindrop with its characteristic teardrop shape falling through air. (b)
The raindrop consists of a large number of microscopic water molecules whose relative positions
are always changing. (c) Every now and then, a water molecule will escape from the surface of the
raindrop (shown as dashed line). (d) Sometimes, the raindrop (whose surface is shown as a dashed
line) can also absorb a water molecule from the air around it. (e) If the raindrop falls too fast, its
surface will become unstable, and the trailing end of the raindrop may breakup into smaller droplets.

Instead of microscopic water molecules, we prefer to describe the phenomenon in
terms of raindrops. This is because many raindrops retain their identities as they descend
to the earth’s surface. Indeed, if we perform instantaneous hierarchical clustering on the
collection of water molecules coming down as rain, each raindrop is a robust cluster at a
convenient length scale. However, unlike robust clusters with constant compositions, the
compositions of raindrops change across length scale and time. It is thus better to think of
a raindrop as a persistent homological structure, from the TDA point of view. Persistent
homological structures need not have fixed compositions with respect to changes in length
scale and time. They just need to have the same set of defining topological characteristics.
For example, when a “sphere” comprising 20 particles grows over time to become one
having 1000 particles, we can continue to refer to the structure as a “sphere” (β0 = 1),
provided it has no holes (β1 = 0) and no voids (β2 = 0).

Indeed, in this analogy, the raindrop 10 km above ground has a composition different
from the raindrop that reaches the ground. Nevertheless, we think of the two as the same
raindrop at different times, because it can be tracked continuously from an altitude of
10 km down to the ground. On the other hand, if an old raindrop completely evaporates
at a height h1, and thereafter a new raindrop suddenly forms at height h2 < h1, we do
not consider the new raindrop to be the same persistent structure as the old raindrop.
Therefore, a change in composition is admissible for a persistent structure, provided this
change is always slow.

Treating the raindrop as a persistent structure and ignoring its compositional changes,

we can then describe the time evolution of the raindrop in terms of the position
→
R(t) of its

centre of mass, and its volume V(t). The former is the mean

→
R(t) =

1
N

N

∑
i=1

→
r i(t) (1)

of the N � 1 water molecules making up the raindrop, while the latter is related to the
covariances
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where (X, Y, Z) =
→
R. Of course, the shape of the raindrop can also change with time. This

is determined by the higher-order statistical moments of {(xi(t), yi(t), zi(t))}N
i=1. However,

we can only adopt this hierarchical description in terms of position, size, shape, . . . provided
the topological characteristics of the raindrop remains unchanged. If the raindrop breaks
up into two raindrops, or if an air bubble forms within the raindrop, our description of the
first raindrop would have to change discontinuously.

Through this analogy, we hope to convince our readers that persistent structures are
the most convenient variables to develop physical theories around. A persistent structure
is a collection of microscopic variables that is long-lived (temporal persistence), insensitive
to changes in length scales (spatial persistence), and whose statistical moments change
continuously with time. The last requirement is guaranteed by topological persistence, i.e.,
the Betti numbers β0, β1, . . . remaining constant.

3. Formal Spectral Definition of Persistent Structures
3.1. TDA Definition of Persistence

In Section 2, we saw that a raindrop remains well-defined as a persistent structure
over the time it takes to fall to the ground. Therefore, within this time, we can write down
equations that govern the continuous changes in its position, velocity, size, and shape. This
description is useful because the raindrops are well separated in space. In contrast, the
description of a swimming pool in terms of water droplets is not useful, first because there
is no natural size to use for such water “droplets”, and second because slight “movements”
of these “droplets” would make them overlap with each other (and lose their distinctive
identities). A discontinuous change occurs when two “droplets” merge, and therefore the
structures before and after merging cannot be treated as the same. The structure before
does not persist past the merger, while the structure after does not exist until the merger.

It is this spatial persistence that the filtration procedure in TDA identifies. As shown in
Figure 3, we draw a link between two data points at filtration parameter ε, if their pairwise
distance is less than or equal to ε. We then write the network obtained in terms of a simpli-
cial complex, which is a set consisting of 0-simplices (nodes), along with 1-simplices (links),
2-simplices (triangles), along with higher-order k-simplices, which are complete graphs
with (k + 1) nodes. We can also define a face of a k-simplex to be a (k− 1)-simplex making
up the k-simplex, and the set of all faces of a k-simplex its boundary. In terms of these
constructs, a simplicial complex Σ can be precisely defined as a set of simplices satisfying
two conditions: (1) any face of a simplex in Σ is also in Σ; and (2) the intersection of any
two simplices σ1 and σ2 in Σ is either the empty set ∅, or a face of both σ1 and σ2. As ε is
increased, we find more connected components in Σ. For example, at t1 and ε1 in Figure 3,
the simplicial complex obtained is Σ1 = {〈1, 9〉, 〈5, 8〉, 〈1〉, . . . , 〈9〉}, which has only two
1-simplices (〈1, 9〉 and 〈5, 8〉) and no 2-simplices, whereas at t1 and ε2 > ε1, the simplicial
complex Σ2 = {〈1, 7, 4〉, 〈1, 6, 7〉, . . . , 〈2, 10, 5〉, 〈1, 4〉, 〈1, 6〉, . . . , 〈5, 8〉, 〈1〉, . . . , 〈9〉} obtained
has six 2-simplices (〈1, 7, 4〉, 〈1, 6, 7〉, . . . , 〈2, 10, 5〉) and 14 1-simplices. At t1 and ε3, the simpli-
cial complex obtained is Σ3 = {〈1, 3, 6, 7〉, 〈2, 3, 5, 10〉, 〈2, 5, 8, 10〉, 〈1, 7, 4〉 . . . , 〈5, 10, 8〉, 〈1, 4〉, . . . ,
〈5, 8〉, 〈1〉, . . . , 〈9〉}. In this example, 〈i〉 is a 0-simplex, 〈i, j〉 a 1-simplex, 〈i, j, k〉 a 2-simplex,
and 〈i, j, k, l〉 a 3-simplex.
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at three different scales ε1 < ε2 < ε3 (the sizes of the green disks), at three different times t1 < t2 < t3.

In this figure, two data points
→
r i and

→
r j are connected, if

∣∣∣→r i −
→
r j

∣∣∣ ≤ ε.

To follow the dynamics, we start at the smallest scale ε1, to find 6 isolated nodes
(0-simplices) and 2 links each connecting 2 nodes (1-simplices) at t1. At this same scale, we
have 7 isolated 0-simplices, 1 1-simplex consisting of 2 links connecting 3 nodes at t2, as well
as 3 0-simplices and 3 1-simplices (2 of them consisting of 1 link connecting 2 nodes, and
1 of them consisting of 2 links connecting 3 nodes) and t3. In contrast, at the intermediate
scale ε2, we find a connected simplicial complex with 10 0-simplices, 14 1-simplices, and
6 2-simplices at time t1. At the scale ε2, and time t2, the simplicial complex has two
connected components. The first consists of 5 0-simplices and 4 1-simplices. The second
consists of 5 0-simplices, 7 1-simplices, and 3 2-simplices. Finally, at t3, the connected
simplicial complex at scale ε2 has 10 0-simplices, 14 1-simplices, and 5 2-simplices.

Not all connected components identified through the filtration process are persistent,
because they remain topologically distinct over very small ranges of ε. When TDA was first
invented, it was applied onto data sets obtained at one point in time or averaged over time.
Therefore, the range (εb, εd) between the scale εb a topologically distinct component first
appears (also called the birth of the component) and the scale εd it disappears (also called
the death of the component) is referred to as its lifetime. In TDA, the lifetimes of components
are typically shown in the form of a barcode or a persistence diagram. In a barcode (see
Figure 4a), each bar shows the birth (component first appears) and the death (component
disappears) of a component in the simplicial complex as ε is varied. In a persistence
diagram (see Figure 4b), a component is represented as a point whose x coordinate is the
birth time, and whose y coordinate is the death time. Persistent components must have
long lifetimes, and we can identify these by looking in the barcode in Figure 4a for bars
that are significantly longer than the previous ones (the last two bars), or large deviations
from the diagonal in the persistence diagram. In the example shown in Figure 4b, there
are two 0-dimensional components with lifetimes greater than ε = 1.0. These two merged
into one at εd = 1.58, compared to the most recent death at ε . 0.5, and can therefore be
thought of as persistent components. In contrast, none of the 1-dimensional components
shown in Figure 4b are persistent.
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Figure 4. (a) The barcodes of the 0-dimensional homology group H0 and 1-dimensional homol-
ogy group H1 for an artificial data set with 50 data points (the same one as in the 1st Figure in
Section 3.3.2) undergoing the filtration process. (b) The persistence diagrams of the 0-dimensional
and 1-dimensional components emerging from the filtration process.

In the example shown in Figure 4, the data set contains two persistent clusters by con-
struction. When there are more persistent structures at different length scales, identifying
them from barcodes and persistence diagrams will become challenging. In the rest of this
section, we will show that it is easier, and more systematic, to identify persistent structures
in spectral space. In fact, this was first demonstrated by Donath and Hoffmann [25], as
well as Fiedler [26], who identified communities based on the eigenvectors of the adjacency
matrix and the Laplacian matrix respectively. We refer readers to the survey Spielman and
Teng [27], and the tutorial on spectral clustering by von Luxburg [28]. To understand why
spectral clustering works so well, let us start with what we know about block-diagonal
matrices in quantum mechanics.

3.2. Block-Diagonal Matrices in Quantum Mechanics

The barcodes and persistence diagrams described in Section 3.1 are visualizations in
real space. It turns out that we can also identify persistent structures in spectral space.
To do this, we start from the adjacency matrix representation of the simplicial complex.
As we show in Section 3.3.1, there are no persistent structures for a single cluster of data
points. Thus, the simplest example that can help us understand how persistent structures
are identified would be two well-separated clusters of data points in Section 3.3.2. The
adjacency matrix thus has a well-defined community structure, with one diagonal block for
the first cluster, and a second diagonal block for the second cluster.

In quantum mechanics, we were first introduced to block-diagonal matrices when we
explore the implications of symmetries. For example, we know that the angular momen-
tum operator L2 and Lz (the z-component of the angular momentum) have the same
eigenvectors |l m〉, with eigenvalues L2

∣∣ l m〉 = l(l + 1)}2
∣∣l m

〉
and Lz| l m〉 = m}|l m〉.

Since m = −l,−l + 1, . . . , 0, . . . , l − 1, l, the matrix representation of L2 is organized into
(2l + 1)× (2l + 1) diagonal blocks (see Figure 5a). We were taught that this is the conse-
quence of a symmetry, embodied by the commutation relation

[
L2, Lz

]
= 0, with the diago-

nal blocks being irreducible representations of this symmetry. In this angular momentum ex-
ample, the diagonal blocks do not have the same sizes. In contrast, in solid state physics, the
diagonal blocks have the same sizes. To see this, consider a crystal made up of N = N1N2N3
repeating unit cells. At the boundary of this crystal, we apply the Born-von Karman bound-
ary conditions, to write the wave function as ψ

(→
r
)

= ψ
(→

r + N1
→
a 1 + N2

→
a 2 + N3

→
a 3

)
,

where
→
a 1,

→
a 2,

→
a 3 are the primitive lattice vectors. Furthermore, the periodic crystal has

translational symmetry, and thus ψ(
→
r +

→
R) = ei

→
k ·
→
R ψ
(→

r
)

. Therefore, when we Fourier
transform the Hamiltonian matrix in real space, we obtain a Hamiltonian matrix in momen-
tum space that is block-diagonal (see Figure 5b). Each N × N diagonal block is associated

with a distinct wave vector
→
k . Diagonalizing the block for

→
k , we would obtain widely

separated energy eigenvalues E1(
→
k ), E2(

→
k ), . . . , En(

→
k ), . . .. Similarly, from the diagonal
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blocks of
→
k
′

and
→
k
′′

, we obtain the energy eigenvalues
{

En
(→

k
′)}

and
{

En
(→

k
′′ )}

. As

shown in Figure 5c, En
(→

k
)
, En

(→
k
′)

, and En
(→

k
′′ )

have comparable values, and thus when

we combine En(
→
k ) for all values of

→
k , we obtain the nth energy band of the crystal. Be-

tween the nth energy band and the (n + 1)th energy band of the crystal, we find the nth
band gap for the band structure of the crystal.
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Figure 5. (a) The matrix representation of the angular momentum operator L2 is block-diagonal when
it is written in the basis of eigenstates of Lz. Within a diagonal block, all states |l m〉 have eigenvalue
l(l + 1)}2 for L2, and eigenvalue m}, m = −l, . . . , 0, . . . , l for Lz. (b) For the Hamiltonian matrix

of a crystal in momentum space, we find one diagonal block associated with each wave vector
→
k .

(c) When we diagonalize the block-diagonal matrix shown in (b), we find the eigenvalues organized

into bands En(
→
k ) separated by band gaps (gray). (d) For a network with community structure, the

adjacency matrix A or the Laplacian matrix L is also block diagonal, with each block associated with
a different community with community index c.

For a network with adjacency matrix A, we have Aij = 1 if node i is linked to node j,
or Aij = 0 otherwise. In general, nodes in the network need not have the same degree k, i.e.,
ki 6= k j for nodes i 6= j. These node degrees can be computed from A, as ki = ∑N

j=1 Aij, and
thereafter organized into a degree matrix K = diag(k1, . . . , kN). In terms of A and K, the
graph Laplacian can be defined as L = K− A. In Figure 5d, we show the adjacency matrix A
(or equivalently the Laplacian matrix L) of a network with well-defined communities (no
overlaps between communities). For such a network, A or L would also be block diagonal.
The diagonal block associated with community c would be N(c)× N(c), where N(c) is
the number of nodes in community c. Treating the Laplacian L as the Hamiltonian of the
network, this block-diagonal structure tells us that there is an observable C that commutes
with L, i.e., [L, C] = 0, and thus the community structure represents some sort of symmetry.
More importantly, given the block-diagonal structure of L, its eigenvalues would also be
organized into bands separated by band gaps. One of the first to observe these bands of
Laplacian eigenvalues separated by a gap was Arenas [29].

3.3. Analysis of Spectral Sequence, Overlapping Communities, Persistent Structures

In the filtration process of a given data set, we vary ε to obtain networks with different
link densities. When ε is small, we expect isolated data points and small clusters of data
points. The network is largely unconnected, and therefore we obtain a distribution of eigen-
values for small clusters. As ε increases, larger clusters start to form, looking initially like
star networks, but eventually becoming complete networks. From spectral graph theory,
which is the study of the properties of a network in terms of its characteristic polynomial,
eigenvalues {λi}, and eigenvectors

{→
u i
}

of L [30,31], we know that any connected compo-
nent will have one eigenvector with λ = 0. If a network of N nodes consists of M connected
components, then each of the components would contribute one zero eigenvector, i.e.,
λ = 0 would be M-fold degenerate. Over and above the zero eigenvalue, special networks
such as a star network with N nodes has N − 2 unit eigenvalues λ = 1, and one eigenvalue
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λ = N, whereas a complete network with N nodes has instead N − 1 eigenvalues λ = N.
For real networks with intermediate link densities, we then expect the unit eigenvalues
λ = 1 to shift progressively to λ = N as the link density increases. This tells us that as
link density increases, the distribution of eigenvalues becomes more concentrated at larger
eigenvalues. This is illustrated in Figure 6.
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6d, three nodes attain the maximum degree of 𝑘 = 7. This is why the maximum eigen-
value 𝜆 = 8 is three-fold degenerate. We call the spectral space visualization {𝜆 (𝜖)} 
shown in Figure 6 as 𝜖 is varied in the filtration process a spectral sequence. In the follow-
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how these features change with separation between clusters, during a fusion process, and 
in the presence of noise of different strengths. 

3.3.1. One Cluster 
As a benchmark, let us examine the spectral sequence of a single cluster of data points 

sampled from a two-dimensional Gaussian distribution. As we can see from Figure 7, 
there is no prominent band gap in the spectral sequence. We use spectral graph theory to 
explain this in two limits. First, in the limit of small 𝜖, the simplicial complex consists of 
multiple connected components of different sizes 𝑛  . Furthermore, if these connected 
components are networks intermediate between star and complete networks, their eigen-
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spectra, we find a “continuous” distribution of eigenvalues between 𝜆 = 0  and 𝜆 =

Figure 6. A set of eight data points going through the filtration process, and the resulting Laplacian
spectra (blue horizontal lines) for filtration parameters (a) ε = 40, (b) ε = 65, (c) λ = 90, and
(d) λ = 115. Thin blue lines tell us that the eigenvalues are nondegenerate, whereas thick blue lines
indicate that the eigenvalue is degenerate. We use red lines to connect λn(ε) to λn(ε′), for successive
filtration parameters ε′ > ε.

When ε = 40 in Figure 6a, only the two data points closest to each other are linked,
whereas the rest of the data points remain isolated. Here, we find the Laplacian eigenvalue
λ = 0 being seven-fold degenerate, and the eigenvalue λ = 2 for the cluster with two nodes.
When the filtration parameter is increased to ε = 65 in Figure 6b, the eight data points
become a fully connected network. However, the connectivity is not uniform across the
network, and part of it looks like a less-densely linked star, while the other more-densely
linked part consists of connected 2-simplices. For this oddly shaped network, and also the
one shown in Figure 6c when ε = 90, the nonzero eigenvalues are distributed between λmin
and λmax. Finally, when the filtration parameter reaches λ = 115 in Figure 6d, three nodes
attain the maximum degree of kmax = 7. This is why the maximum eigenvalue λmax = 8 is
three-fold degenerate. We call the spectral space visualization {λn(ε)} shown in Figure 6
as ε is varied in the filtration process a spectral sequence. In the following subsections, we
show the spectral sequences of different simple configurations of data points, to identify
the relevant features characterizing these configurations. We also show how these features
change with separation between clusters, during a fusion process, and in the presence of
noise of different strengths.

3.3.1. One Cluster

As a benchmark, let us examine the spectral sequence of a single cluster of data points
sampled from a two-dimensional Gaussian distribution. As we can see from Figure 7, there
is no prominent band gap in the spectral sequence. We use spectral graph theory to explain
this in two limits. First, in the limit of small ε, the simplicial complex consists of multiple
connected components of different sizes ni. Furthermore, if these connected components
are networks intermediate between star and complete networks, their eigenvalues would
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be distributed between λ = 0 and λ = ni. When we superimpose these spectra, we find a
“continuous” distribution of eigenvalues between λ = 0 and λ = max

i
ni. Second, in the

limit of large ε, the simplicial complex consists of a single connected component interme-
diate between star and complete networks of size N. Therefore, the nonzero Laplacian
eigenvalues of such a simplicial complex would also be “continuously” distributed between
λmin > 1 and λmax < N.
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Figure 7. (left) A cluster of 50 data points sampled from a two-dimensional normal distribution

p(x1, x2) =
1

2π|Σ| exp
[
− 1

2

(→
x −→µ

)T
Σ−1

(→
x −→µ

)]
, where

→
µ = (µ1, µ2) = (0, 0) and Σ is a diagonal

covariance matrix with diagonal matrix elements σ2
11 = 1 and σ2

22 = 1. (right) The spectral sequence
(i.e., the distribution of eigenvalues {λn(ε)} of the Laplacian matrix L at different filtration parameter
ε) of this cluster. In this figure, the numbers of zero eigenvalues for different ε are indicated below
λ = 0.

3.3.2. Two Clusters

The simplest example of a data set with community structure would be one with two
clusters, as shown in Figure 8. The barcode of this data set was shown in Figure 4, where
we saw that this two-cluster structure is persistent with respect to changes in length scale.
From Figure 8, we see that there are two zero eigenvalues from ε ≈ 0.7 to ε ≈ 1.8. This
range of filtration parameter is comparable to the one found from the barcode in Figure 4.
However, the spectral signature (∆λ = max

i
{λi+1 − λi}, shaded yellow in Figure 8) for

this persistent structure is far more prominent, suggesting that the two clusters remain
distinguishable even after links start to form between them (overlapping communities). In
particular, when ε = 2.8653 and λ1 = 12.9498, there are 261 links between the two clusters,
but ∆λ remains larger than level spacings elsewhere in the spectrum.

Starting at ε = 1.9254, the two clusters become linked, and there is only one zero
eigenvalue λ0 = 0. At this filtration parameter, the first nonzero eigenvalue is λ1 = 0.6055.
For a smooth manifold M, Jeff Cheeger first proved that λ1 ≥ h2(M)/4, where λ1 is the
first nonzero eigenvalue of the Laplace–Beltrami differential operator on M, while the
Cheeger constant h(M) is the smallest area of a hypersurface that cuts M into two [32].
This result carries over to discrete networks. Suppose λ1 is the first nonzero eigenvalue of
the Laplacian of network G, which can be split into two networks A (with NA nodes) and
B (with NB nodes) by cutting the smallest number of links nAB, then λ1 ≥ h2(G)/4, where
h(G) = nAB/max(NA, NB) [33–35]. This tells us that λ1 increases with the size of the neck
linking networks A and B.
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Figure 8. (top right) The spectral sequence for two clusters, one with 30 red data points, the other
with 20 blue data points. In this figure, the persistent spectral gap that corresponds to this spatially
persistent two-cluster structure is shaded yellow. (top left) The simplicial complex of the two clusters
at ε = 0.9855, which consists of the two nearly complete networks that are not connected. (bottom
left) The simplicial complex of the two clusters at ε = 1.9254, showing how the red cluster is
connected to the blue cluster by 9 links, between 5 red nodes and 5 blue nodes. (bottom right)
The simplicial complex of the two clusters at ε = 2.8653. At this length scale, the two clusters are
connected by 261 links. In these figures, intra-cluster links are black, while inter-cluster links are red.

3.4. Analysis of Eigenvectors, and Identification of the Neck from the Fiedler Vector

The Fiedler vector
→
u 1 associated with λ1 also allows us to identify nodes that are part

of the neck [26,36]. In this subsection, we show how this can be done, by first showing
the results from toy networks before we analyze the Fiedler vector and other low-lying
eigenvectors in the spectral sequence examples shown in Section 3.3 and Supplementary
Information Section B.

3.4.1. Toy Networks

In Table 1, we show a sequence of toy networks in which two distinguishable subnet-
works are connected by necks of various natures. In the first two networks, the clusters
share an edge or a corner, and thus the neck consists of the nodes making up the edge or
the corner. In the next two networks, the clusters are bridged by a single node or an edge,
and thus the neck consists of the bridging node(s). Nodes in the neck can be identified as
zero components in the Fiedler vector. We can also distinguish the two clusters, because
the components in one of them is positive, while the other is negative. In the last network,
the two clusters are not balanced, with one consisting of four nodes, and the other three
nodes. In its Fiedler vector, the weight of the neck (node 5) is not zero, but still significantly
smaller than the weights of the other nodes. Through these examples, we realized that the
neck consists of nodes with weights close to zero, or significantly smaller than the clustered
nodes in the Fiedler vector.
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Table 1. The neck (nodes colored in red) between clusters in simple networks, and how they can
be identified from the Fiedler vector, which is the eigenvector

→
u 1 associated with the first non-zero

eigenvalue λ1 of the graph Laplacian L.
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3.4.2. Filtration Sequence for Two Clusters

In Section 3.3 and Supplementary Information Section A, we analyzed spectral se-
quences resulting from the filtration of different data sets, to identify tell-tale signatures
for different numbers of clusters. For the spectral sequence shown in Figure 3 for two
clusters of data points, let us focus on the Fiedler vectors for ε = 1.9254 (λ1 = 0.6055) and
ε = 3.3353 (λ1 = 29.704). At ε = 1.9254, the two clusters are connected by 9 links, between
5 nodes from cluster 1, and 5 nodes from cluster 2. These 10 nodes, identified from their
smaller absolute weights, form the neck between clusters 1 and 2. For ε = 3.3353, there are
21 nodes with zero weights. All 21 nodes have the maximum degree ki = 49 in a network
of 50 nodes and are members of a bloated neck.

Just to be careful, we also look at the node in cluster 2 with the minimum degree
ki = 33. This node has the largest absolute weight in

→
u 1, and is linked to all cluster-2 nodes,

but only to 14 cluster-1 nodes. Out of these 14 cluster-1 nodes, 13 of them belong to the
neck. In addition, we find that set of 10 neck nodes when ε = 1.9254 is a subset of the set of
21 neck nodes when ε = 3.3353. This tells us that in the filtration process, instead of a simple
fusion A + B→ C, TDA suggests the process A + B→ A + n + B→ a + N + b→ N = C.
In other words, the fusion between clusters A and B begin with the creation of a small neck
n. This neck continues to absorb members of A and B to become the bigger neck N (at the
expenses of clusters A→ a and B→ b shrinking), until all original members of clusters A
and B become absorbed into N , which we can now call cluster C.

In this example, we examine the filtration process involving two clusters. However,
we expect the picture to hold even for the filtration processes at different times for two
clusters merging into one, since the neck should be present until the two clusters completely
fuse together. However, the smaller neck at an earlier time may not be embedded within
the larger neck later. This is because even necks can lose or gain nodes, and all processes
described in the raindrop analogy apply.

3.4.3. Quasi-Degeneracies and Multiple Necks

Finally, we consider the situation where the data points are connected by more than
one neck at some stage in the filtration process. The simplest situation where this occurs is
when we have three clusters along a straight line, as shown in Figure 9a. In Figure 9b, we see
that when ε = 0.668, the three clusters are not linked, and we find three zero eigenvalues.
When the filtration parameter is increased to ε = 1.328, the three clusters forms a single
cluster, with one neck connecting the green cluster to the blue, and another neck connecting
the blue cluster to the red. When this occurs, λ1 = 1.067 and λ2 = 2.776 become non-zero,
but remain close to each other. In Figure 9c,d, we show that the eigenvectors associated
with λ1 and λ2 are the antisymmetric and symmetric combinations of the green and red
clusters respectively.

In the symmetric combination
→
u 2, components of the green and red clusters have the

same sign, thus forcing components of the middle blue cluster to have the opposite sign.
Components of these three clusters can only have the same sign in

→
u 0, the eigenvector

associated with λ0 = 0. In the antisymmetric combination
→
u 1, components of the green

and red clusters have opposite signs, and thus components of the middle blue cluster must
be close to zero. In this sense, although a cluster in its own right, in the antisymmetric
combination

→
u 1 the blue cluster plays the role of a neck. Because of this dual role, we call

the blue cluster a bridging cluster. Because of these differences in signs and magnitudes,
if we divide the component u1,i by u2,i, this ratio would be close to zero if i is a member
of the blue cluster (the bridging cluster, 0 ≤ i < 40), or has an absolute value close to
one if i is a member of the green cluster (40 ≤ i < 70) or the red cluster (70 ≤ i < 100).
Indeed, this is what we see in Figure 9e. In Figure 9e, we also see four absolute ratios that
are exceptionally large. This can only happen if u2,i is close to zero, but u1,i is not. From
Figure 9d, we see that these four are true members of the two necks connecting the three
clusters. Indeed, when we go to ε = 1.987 in Figure 9f, where λ1 = 10.645 and λ2 = 23.791
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are very different, ri ≈ 0 continues to help us identify the bridging cluster, while |ri| � 1
helps us identify the neck, which is thicker at this filtration parameter.
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Figure 9. (a) Three clusters of data points arranged in a straight line. The blue cluster contains 40 data
points, while the red and green clusters each contain 30 data points. (b) The spectral sequence of the
three clusters of data points. Note the sudden change from a three-cluster description at ε = 0.668
to a one-cluster description at ε = 1.328. Note also the pair of small, closely spaced eigenvalues
λ1 = 1.067 and λ2 = 2.776 at ε = 1.328. (c) The data points are colored according to their components
in
→
u 1, the eigenvector associated with λ1. A similar example was shown by Servedio et al. in

Refs. [37,38]. (d) The data points are colored according to their components in
→
u 2, the eigenvector

associated with λ2. (e) Ratio of components in
→
u 1 to components in

→
u 2 when ε = 1.328. (f) Ratio of

components in
→
u 1 to components in

→
u 2 when ε = 1.987.
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3.5. Spectral Definition of Persistent Structure

Summarizing our findings from Sections 3.3 and 3.4 and Supplementary Information
Section B, we realized that persistent structures are accompanied by persistent gaps
∆λ = max

i
(λi+1 − λi) in the spectral sequence. These persistent gaps should not be

confused with non-persistent ones that appear when the persistent structures have a dis-
crete spectrum of sizes. From Figure 8, we see that this persistent gap arises because λ2
increases more rapidly than λ1 (which can remain zero) when ε was first increased, before
λ1 increases rapidly after ε exceeded the characteristic gap between the most persistent
clusters. In particular, when λ1 starts rising, the persistent structures are already connected
by necks, but they remain distinguishable, i.e., we can talk about A + n + B (a thin neck n
connecting two large clusters A and B) or a + N + b (a thick neck N connecting two small
clusters a and b). We think of the persistent structures A and B as having vanished only
after they are completely absorbed by the neck N , at which time we can identify it as a
new persistent structure C where all nodes from A and B have become a complete network.
This picture is confirmed by our analysis of the Fiedler eigenvector

→
u 1 (corresponding to

λ1 > 0). From the eigenvector perspective, the persistent structures remain distinguishable
from the neck since nodes in the neck have zero or smaller absolute weights in the Fiedler
vector compared to nodes in the clusters.

Through Sections 3.3 and 3.4 and Supplementary Information Section B, we now
have a deeper appreciation of the raindrop analogy described in Section 2. Clearly, when
two persistent structures A and B are not connected, their individual descriptions are
continuous in time. Such descriptions would involve an equation for the rate of change of
the mass of A, another for the rate of change of the center of mass (CM) of A, one more for
the rate of change of the CM velocity of A, and a last one governing how the shape of A
changes. We also find a similar set of equations for B. Once they become connected, we
need a single description that is continuous in time, but we do not completely discard the
earlier descriptions of A and B. Instead, we think of the single description of A + n + B
as being obtained by introducing one more set of equations for the neck n (which will
eventually become the persistent structure C) and impose constraints on these equations.
For example, mA + mB + mn must now be approximately conserved, and similarly for
the momentum. In this merging stage, it is actually inconvenient to use only one set of
equations for C = A + B, because too many things are changing simultaneously. It is
convenient to use one set of equations for C only after A and B are completely absorbed by
the neck.

4. Results and Discussion
4.1. Data

The daily prices of 671 Taiwan Stock Exchange (TWSE) stocks from 1 April 2018 to
30 September 2020 (Figure 10b), 530 Singapore Exchange (SGX) stocks from 31 August
2019 to 30 April 2021 (Figure 10a), and 504 component stocks of the S&P 500 from 1 June
2019 to 31 December 2020 (Figure 10c) were downloaded from Yahoo! Finance using
Python’s pandas_datareader module. We then post-processed the financial time series
as follows. First, “NaNs” were replaced with “0s”. Moreover, if the time series contains
more than 50% “0s”, we remove this ticker symbol from the list. For the remaining stocks,
we applied standardization, and also computed their returns. For SGX, some delisted
stocks were downloaded manually from the investing.com website. Similarly, a few S&P
500 component stocks changed during the period of study, and so we downloaded both
new and old component stocks from the investing.com website.

investing.com
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Figure 10. Monthly values of (a) the Straits Times Index (STI) of the SGX, (b) the Taiwan Capitalization
Weighted Stock Index (TAIEX) of the TWSE, and (c) the Standard & Poor’s 500 (S&P 500) between
1 January 2019 to 31 August 2021, 1 January 2018 to 31 December 2020, and 1 June 2019 to 31 December
2020 respectively. We are specifically interested in two market crashes (Sep 2018 and March 2020) on
the TWSE, one market crash (Mar 2020) on the SGX, and one market crash (Mar 2020) for the S&P
500. In these figures, these are shown as red vertical lines.

4.2. Methods

First, we identified four periods, each with a market crash (on TWSE, SGX, or S&P
500) in the middle, as shown in Table 2. We then computed the Pearson cross correlations

Cij =
∑N

t=1(ri,t − ri)
(
rj,t − rj

)√
∑N

t=1(ri,t − ri)
2
√

∑N
t=1
(
rj,t − rj

)2
(3)

of the daily returns ri,t and rj,t within a six-month time window with N + 1 trading days,
which we advanced one week at a time. Here, ri and rj are the average returns of stocks i
and j within each six-month time window. For each time window, we further convert the

pairwise cross correlations Cij into pairwise ultrametric distances 0 ≤ dij =
√

2
(
1− Cij

)
≤ 2.



Entropy 2023, 25, 846 17 of 31

Table 2. The start and end dates of the four periods used to study the September 2018 mini-crash and
March 2020 crash on the TWSE, the March 2020 crash on the SGX, and the February 2020 crash of the
S&P 500.

Crash Start Date End Date

Sep 2018 TWSE mini-crash 1 April 2018 30 April 2019

Mar 2020 TWSE crash 1 August 2019 30 September 2020

Mar 2020 SGX crash 1 August 2019 30 April 2021

Mar 2020 S&P 500 crash 1 June 2019 31 December 2020

Next, for a given market crash and each of its distance matrices, we perform the TDA
filtration process by varying the filtration parameter ε. Two stocks, i and j, are linked if
dij ≤ ε. Therefore, for a given time window at filtration parameter ε, we constructed an
adjacency matrix Aij whose matrix elements are Aij = 1 if dij ≤ ε, and Aij = 0 otherwise.
Using the adjacency matrix, we then computed the degree matrix whose diagonal elements
are

Kii = ki = ∑
j 6=i

Aij, (4)

and whose off-diagonal elements are Kij = 0. Finally, we constructed the graph Laplacian
L(ε) = K − A to obtain its eigenvalues and eigenvectors. Over a judicious choice of
filtration parameters, ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, we then visualize the spectral
sequence {λi(ε)} for each time window, but analyzed the spectral sequences and Fiedler
vectors for the selected time windows.

4.3. March 2020 TWSE Crash

We start by analyzing the spectral sequences for the March 2020 TWSE crash, which
was said to be caused by the start of the COVID-19 pandemic [39,40]. The complete series
of spectral sequences can be found in Supplementary Figure C1 in the Supplementary
Information. Here, we show in Figure 11 the spectral sequences for only four time windows:
(1) 1 August 2019–31 January 2020, (2) 22 September 2019–22 March 2020, (3) 15 October
2019–15 April 2020, and (4) 1 April 2020–30 September 2020. The first time window is
before the March 2020 TWSE crash, while the fourth time window is after the March 2020
TWSE crash. The March 2020 TWSE crash occurred at the end of the second time window,
and in the middle of the third time window.

From Supplementary Figure C1 in the Supplementary Information, we see that the
spectral sequences changed very rapidly from the 15 September 2019–15 March 2020 time
window (that just missed the March 2020 TWSE crash) to the 22 September 2019–22 March
2020 time window (that first that included the March 2020 TWSE crash). For the first seven
time windows that do not include the March 2020 TWSE crash, their spectral sequences
resemble that of the 1 August 2019–31 January 2020 time window shown in Figure 11a,
which in turn resembles that of a single cluster of points shown in Figure 7 of Section 3.3.1.
For the 21 time windows overlapping the March 2020 TWSE crash, their spectral sequences
are similar to those of the 22 September 2019–22 March 2020 (Figure 11b) and 15 October
2019–15 April 2020 (Figure 11c) time windows. These spectral sequences bear similarities
to those shown in Figure 8 of Section 3.3.2, Supplementary Figures A1 and A2 and Sup-
plementary Information Sections A1 and A2, where we find prominent persistent gaps
near the ends of the spectral sequences. Finally, the last four time windows shown in
Supplementary Figure C1 have spectral sequences similar to the first seven time windows,
as well as Figure 11d, suggesting that the TWSE had recovered from the March 2020 crash.
These observations are consistent with the suspicion by econophysicists that a market crash
is a critical transition. They also suggest that the March 2020 TWSE crash was short, lasting
only for the first two weeks of March 2020 (indeed this is the time to go from the TAIEX
high of 11,321 on 1 March 2020 to the low of 9234 on 15 March 2020), and seen as the
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“V”-shape feature in Figure 10b. They also agree with the picture of a market crash being
the result of the fragmentation of a giant cluster.
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Figure 11. The spectral sequences of the TWSE for ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 over the
six-month time windows: (a) 1 August 2019–31 January 2020 (671 stocks), (b) 22 September 2019–22
March 2020 (671 stocks), (c) 15 October 2019–15 April 2020 (655 stocks), and (d) 1 April 2020–30
September 2020 (654 stocks). During the March 2020 TWSE crash, the TAIEX fell from a high of 11,321
on 1 March 2020 to a low of 9234 on 15 March 2020.

For the first seven time windows and the last four time windows, we find a narrow
band of eigenvalues (0 ≤ λ < 10) for the smallest filtration parameter ε = 0.5. This tells us
that at this scale, most of the clusters are small, and therefore the total number of clusters is
comparable to the total number of stocks on the TWSE. The narrow bandwidth at ε = 0.5 is
consistent with only localized random walks on small, disconnected components. On the
other hand, for the 21 time windows whose spectral sequences show prominent gaps, there
is a broad band of eigenvalues (0 ≤ λ < 300) for ε = 0.5. This suggests that at this scale,
there is a broad distribution of cluster sizes, including a few strongly correlated ones with
up to 300 stocks during the market crash. For these time windows, the broad bandwidth
at ε = 0.5 is consistent with the delocalization of random walkers on larger connected
components.

Moreover, before and after the March 2020 TWSE crash, λ1 rose rapidly at ε ≈ 1.3,
whereas during the market crash, λ1’s rapid rise only began at ε ≈ 1.7. This delay in the
rapid rise of λ1 suggests that during the market crash, the gap in correlations between
clusters is 30–40% larger than the standard deviation in the continuous distribution of
correlations within the giant cluster prior to its fragmentation. Indeed, the persistent gap
is most pronounced at ε = 1.6, although in some time windows, this persistent gap can
also be observed at ε = 1.4 or ε = 1.8. Finally, as we elucidate the picture of March 2020
TWSE crash as a strongly correlated giant cluster fragmenting into a few strongly correlated
clusters, let us clarify that this need not involve all stocks. Unaffected stocks then form a
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noisy background, whose effect is to obfuscate the persistent gap. Based on our analysis in
Supplementary Information Section A.5, the persistent gap can nevertheless be identified
from the late rise in λ1. This is indeed what we observed.

From Section 3.4, we understand that when two clusters become first connected by a
thin neck, components of the two clusters have opposite signs in

→
u 1, while components of

the neck have significantly smaller or zero weights. However, as the neck becomes thicker
with increasing ε, components become distributed about zero, and few members of the two
clusters remain distinguishable. With these in mind, let us start our eigenvector analyses
with the time window 1 August 2019–31 January 2020, which was before the March 2020
COVID-19 crash. From Supplementary Figure C2(a), we see that λ0 = 0 is non-degenerate
for 1.2 ≤ ε ≤ 2.0, and λ1 changes most sharply between ε = 1.4 and ε = 1.6. Let us
therefore examine the Fiedler vector

→
u 1 for 1.2 ≤ ε ≤ 1.8. For ε = 1.2, λ1 = 19.538, most of

the Fiedler components have an absolute value of around 10−3, except for one component
whose value is 0.991. To check for non-overlapping distributions that represent Fiedler
components from the two clusters, we therefore limit ourselves to bins between −0.005
and +0.005 to plot high-resolution histograms in Figure 12. The distributions of Fiedler
components at different filtration parameters for this time window are indeed consistent
with there being just one giant cluster in the market before the crash.
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Figure 12. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 1 August 2019–31 January 2020 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 22 September 2019–22 March 2020
time window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 15 October 2019–15
April 2020 time window, and (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for the
1 April 2020–30 September 2020 time window.
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While the picture for ε = 1.2 is not clear in Figure 12a, for ε = 1.4 it is clear from
Figure 12b that most of the stocks (with negative components) were organized into a giant
cluster, while most of the rest (with positive components) were organized into a minor
cluster (shown in Supplementary Table G1). As expected, when ε ≥ 1.6 (Figure 12c,d), the
distribution of Fiedler components become unimodal, and centered around zero. Neverthe-
less, in Figure 12d we see that remnants of the two clusters are still visible at ε = 1.8, with
76 components larger than 0.001, and 79 components less than −0.001. The cluster with
79 components is shown in Supplementary Table G1 in the Supplementary Information.

Moving on to the 22 September 2019–22 March 2020 time window (Supplementary
Figure B2(b), which includes the first week of the crash), λ0 = 0 is again non-degenerate
for 1.2 ≤ ε ≤ 2.0, and λ1 now changes most sharply between ε = 1.6 and ε = 1.8. At
ε = 1.2 and ε = 1.4, there is a noticeable gap in the distribution of Fiedler components,
between those that are negative, and those that are positive. The smaller of these groups
are shown in Supplementary Table G1. However, we must be careful interpreting all of
these components as part of the minor cluster, as we can see from Figure 12e,f that some
of these components are close to zero, and might be part of the neck instead. Since λ1
changes most rapidly between ε = 1.6 and ε = 1.8, we therefore expect the distribution of
Fiedler components at ε = 1.6 to be similar to those at ε = 1.4. Indeed, two clusters can be
identified, but there is now a larger neck with close-to-zero components. Based on the small
gap at around −0.001 (Figure 12g), we identified members of the minor cluster, as shown
in Supplementary Table G1. Finally, at ε = 1.8, most of the components have become zero,
suggesting that the neck (566 stocks) has grown to dominate the two clusters. Roughly
100 stocks of the major cluster and 5 stocks of the minor cluster remain distinguishable, as
we can see from Figure 12h. As we can see from Supplementary Table G1, a smaller minor
cluster identified at a given ε is almost perfectly embedded in the larger minor cluster
identified at the preceding or succeeding ε. This self-consistency at different length scales
helps us to reliably identify the two clusters within a given time window.

Moreover, from the spectral sequence of this time window, we see that there is a
pair of nearly degenerate eigenvalues λ1 = 38.693 and λ2 = 46.046 at ε = 1.4. This pair
of eigenvalues came from a larger group of nearly degenerate eigenvalues at ε = 1.2.
Unlike the situation shown in Figure 9, where two smaller clusters merge first before
merging later with a third cluster, having two small eigenvalues suggests the formation
of two thin necks, as shown in Figure 9. When we examine the ratio ri = u1,i/u2,i at
ε = 1.4 (Figure 13(left)), we find a group of 622 components that can be distinguished from
the remaining 49 components. These 622 components contain the major cluster, whose
components have ratios around ri = 1.4. Of the 49 components that do not belong to the
major cluster, 14 has −0.5 < ri < 0.5, and are the most likely candidate for the bridging
cluster shown in Section 3.4.3. From Section 3.4.3, we also understood that components
with very large absolute ratios ri = u1,i/u2,i are members of the necks. Specifically, those
with ri < −2 have been identified alongside the minor cluster at ε = 1.4 and ε = 1.6 in
Supplementary Table G1. The rest are likely members of the neck that link the major cluster
to the bridging cluster, as shown schematically in Figure 14.
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Figure 13. Bar plot of the ratio u1,i/u2,i of components of the eigenvectors
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u 1 and
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the smallest non-trivial eigenvalues λ1 and λ2 of the graph Laplacian obtained at filtration parameter
ε = 1.4, in (left) the 22 September 2019–22 March 2020 time window, and (right) the 15 October
2019–15 April 2020 time window. In this figure, components between the two red dashed lines are
likely to be members of a bridging cluster.
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Figure 14. Schematic figure showing the major cluster (blue, 622 components) being linked to
the minor cluster (red, 23 components) through a bridging cluster (green, 14 components) in the
22 September 2019–22 March 2020 time window. In the cyan neck between the blue and green clusters,
there are 25 components. In the yellow neck between the green and red clusters, there are three
components.

Next, let us move on to the 15 October 2019–15 April 2020 time window (Supplemen-
tary Figure B2(c)), which covers both weeks of the crash. In this time window, λ0 = 0 is
non-degenerate over 1.2 ≤ ε ≤ 2.0, while λ1 changes most rapidly between ε = 1.6 and
ε = 1.8. At ε = 1.2, λ1 = 2.979, 651 of the stocks are in the major cluster, while the minor
cluster contains the 4 stocks shown in Supplementary Table G1. At this filtration parameter,
there are no components close to zero. When we go to ε = 1.4, λ1 = 25.758, we find
three sub-distributions of components. The first sub-distribution, containing 625 compo-
nents, represents the major cluster. The second sub-distribution, containing 18 components
close to zero, represents either the neck, or a bridging cluster. The third sub-distribution,
containing the 12 components shown in Supplementary Table G1, represents the minor
cluster. At ε = 1.6, λ1 = 106.97, the sub-distribution centered about zero becomes well
defined. Nevertheless, there are 5 components remaining in the minor cluster, as shown
in Supplementary Table G1. Here, we see that the minor cluster for ε = 1.6 is completely
embedded in the minor cluster for ε = 1.4. Finally, when ε = 1.8, λ1 = 563, nearly all
components are close to zero, but remnants of the major cluster (136 components) and
minor cluster (6 components) can still be seen.
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Just like the 22 September 2019–22 March 2020 time window, in this time window
there is also a pair of nearly degenerate eigenvalues λ1 and λ2. Unlike for the 22 September
2019–22 March 2020 time window, where the near degeneracy occurs only at ε = 1.4, in the
15 October 2019–15 April 2020 time window this near degeneracy can be seen for 1.4 ≤ ε ≤ 1.8.
At ε = 1.4, λ1 = 25.758, λ2 = 34.013, we see from Figure 13(right) 621 narrowly distributed
components associated with the major cluster in ri = u1,i/u2,i. Of the remaining ratios,
11 have absolute values close to zero, and may be associated with the bridging cluster,
while if we set the threshold to ri > 1.0, we find 18 neck components. λ1 and λ2 are also
quasi-degenerate at ε = 1.6 and ε = 1.8, but the bridge and neck components identified
from these two filtration parameters are different from those identified at ε = 1.4.

Finally, let us analyze Fiedler vectors in the 1 April 2020–30 September 2020 time
window, which has no overlap with the March 2020 TWSE crash. As we can see from
Figure 11d, λ0 = 0 is non-degenerate for 1.2 ≤ ε ≤ 2.0, while λ1 changes most rapidly
between ε = 1.4 and ε = 1.6. At ε = 1.2, λ1 = 4.882, we see in Figure 12m that there
is a single distribution of Fiedler components. When ε = 1.4, λ1 = 110.37, we see from
Figure 12n that there are now two sub-distributions of Fiedler components. The first
represents a major cluster, while the second (shown in Supplementary Table G1), extending
from zero to 0.005, probably includes both the neck and the minor cluster. When ε = 1.6,
the larger sub-distribution of Fiedler components is the one about zero (Figure 12o), even
though the remnant sub-distribution associated with the major cluster is still sizeable. The
sub-distribution of the minor cluster (shown in Supplementary Table G1) overlaps with
that of the neck, making it difficult to isolate. Finally, at ε = 1.8, we find a narrow sub-
distribution of Fiedler components about zero (Figure 12p), and two weak sub-distributions
away from zero. The latter represent remnants of the major and minor clusters.

4.4. September 2018 TWSE Mini-Crash

After the detailed analyses shown in Section 4.4, the natural question that comes to
mind is how much of what we have found there is universal, i.e., applies to all market
crashes, and how much of these are peculiar to the March 2020 TWSE crash. To answer
this question, we repeated our spectral sequence and Fiedler vector analyses for two other
market crashes. The first such crash is the September 2018 TWSE mini-crash in this section,
so that we can ascertain universal features of market crashes over at least two crashes on
the TWSE. The second such crash is the March 2020 SGX COVID-19 crash in Section 4.6,
and also Section 4.6 so that we can confirm universal features of the same market crash
(COVID-19 crash) at least across three different markets.

To do this, let us start with the gross features seen in the spectral sequences in Figure 15.
From Supplementary Figure D1 in the Supplementary Information, we see that the spectral
sequences of the first three time windows and the last four time windows resemble that
from a single cluster of data points, whose spectral sequence is characterized by the absence
of persistent gaps. These suggest that the TWSE was in a gapless normal phase prior to the
September 2018 mini-crash, and returned to the normal phase after the mini-crash. For
time windows overlapping the mini-crash, the spectral sequences are characterized by
persistent gaps at ε = 1.4 and/or ε = 1.6. The persistent gaps (appearing over a broad
range of ε) for this mini-crash appear to be weaker than the ones seen for the COVID-19
crash, but they are qualitatively similar. Therefore, a gapped spectral sequence appears
to be a universal feature associated with a gapped market crash phase, even though the
strength of the gap may vary from crash to crash. A closely related (dilation) universal
feature that we can identify from the spectral sequences of the two TWSE crashes is the
filtration parameter value ε at which λ1 changes most rapidly. For both crashes, λ1 rises
sharply between ε = 1.2 and ε = 1.4 in the normal phase, but is delayed till to between
ε = 1.6 and ε = 1.8 in the crash phase. Moreover, during the mini-crash, which lasted
about four months according to the number of spectral sequences with persistent gaps
(agreeing with the “U”-shaped feature seen in Figure 10b), the most pronounced change
occurred when we go from the 1 October 2018–28 February 2019 time window to the
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8 October 2018–8 March 2019 time window, where the clear gap at ε = 1.6 seen in the
former completely disappeared in the latter. Therefore, unlike the COVID-19 crash, where
the transition into the crash phase is sharp but not the transition out of the crash, the
September 2018 TWSE mini-crash shows the opposite behavior, whereby the transition into
the crash phase is not sharp, but the transition out of the crash is.
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Figure 15. The spectral sequences of the TWSE for ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 over the
six-month time windows: (a) 8 April 2018–8 October 2018, (b) 22 August 2018–22 February 2019,
(c) 1 October 2018–15 April 2019, and (d) 1 November 2018–30 April 2019. During the September
2018 TWSE mini-crash, the TAIEX fell from a high of 11,006 on 16 September 2018 to a low of 9489
on 21 October 2018. The TAIEX remained low, reaching 9382 on 30 December 2018, before it started
rising again.

We also analyzed the Fiedler components at different ε over the four selected time
windows associated with the September 2018 TWSE mini-crash. Their histograms are
shown in Figure 16. As in Figure 13, we find the same evolution from bi-modal to unimodal
distributions of Fiedler components as we increase ε. Just as for the March 2020 TWSE
COVID-19 crash, the Fiedler vector points to the existence of a major cluster, comprising
nearly all the stocks in the TWSE, and a minor cluster. The sub-distribution of Fiedler
components associated with this minor cluster is weak in the time windows before and
after the crash, and strong in the time windows overlapping the crash. However, unlike
in the March 2020 COVID-19 crash, where λ1 and λ2 are quasi-degenerate at ε = 1.4,
suggesting the presence of two necks and necessitating the use of the ratio ri = u1,i/u2,i
to identify a bridging cluster between the major and minor clusters, for the September
2018 mini-crash λ1 and λ2 are clearly different in the two time windows containing the
crash, at ε = 1.4. There is also a tri-modal feature in the distribution of Fiedler components
at ε = 1.6 (Figure 16o) in the time window right after the September 2018 mini-crash.
We do not understand the meaning behind this feature, which is also absent from other
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time windows of the September 2018 mini-crash, and all time windows of the March 2020
COVID-19 crash.
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Figure 16. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 8 April 2018–8 October 2018 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 22 August 2018–22 February 2019 time
window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 1 October 2018–1 March
2019 time window; and (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for the
1 November 2018–1 April 2019 time window.

4.5. March 2020 SGX Crash

For the SGX, we computed spectral sequences for 69 time windows in total, and show
these as Supplementary Figure E1 in the Supplementary Information. We included this
many time windows for the SGX, because the COVID-19 crash on this market has a long
“U”-shape (see Figure 10a), unlike the short “V”-shaped COVID-19 crash on the TWSE (see
Figure 10b). This difference is due to the different COVID-19 pandemic trajectories in the
two regions: where Taiwan managed to keep COVID-19 at bay over nearly the whole of
2020 (hence the “V”-shaped crash), Singapore succumbed to the pandemic and had to enact
strict population health measures starting April 2020 (hence the “U”-shaped crash). To
avoid missing the actual recovery from the crash, we made sure that our spectral sequences
cover the whole “U”-shaped period. Out of these time windows, the first six and the last
39 spectral sequences are reminiscent of the spectral sequence of a single cluster. This
finding on the SGX further supports our universality hypothesis that the gapless normal
phase of a stock market consists of a single undifferentiated cluster, based on our findings
on the TWSE in Section 4.4 and Section 4.5. The remaining 24 spectral sequences were
found to be gapped, suggesting that these 24 time windows overlapped with the March
2020 SGX COVID-19 crash. Based on the Straits Times Index (STI), the SGX reached a high
on 9 February 2020, but according to the spectral sequences the crash only started on or



Entropy 2023, 25, 846 25 of 31

after 8 March 2020, and surprisingly returned to normal on or after 15 March 2020. This
tells us that the spectral sequence method is sensitive to the difference between the normal
and crash phases of a stock market, and can therefore be used to time the start and end of
crashes, instead of using the index value.

The dilation feature seen during the September 2018 and March 2020 TWSE crashes is
even more pronounced during the March 2020 SGX crash. This supports our hypothesis
that this dilation feature, which is closely associated with the opening of the spectral gap,
is universal across markets. Just as for the TWSE, λ1 changes most sharply between ε = 1.4
and ε = 1.6 in the normal phase, but between ε = 1.6 and ε = 1.8 in the crash phase of the
SGX. In fact, in Figure 17c, λ1 changes most sharply between ε = 1.8 and ε = 2.0. During
the SGX COVID-19 crash, we found non-persistent gaps appearing at ε = 1.4, 1.6, and 1.8,
which suggest that the size distribution of large persistent clusters is discrete, just like it
was for TWSE. The main difference between the TWSE and the SGX, is the SGX having
between 3 and 6 zero eigenvalues at ε = 1.2.
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Figure 17. The spectral sequences of the TWSE for ε = 0.5, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 over the
six-month time windows: (a) 1 August 2019–31 December 2019, (b) 8 October 2019–8 March 2020,
(c) 8 November 2019–8 April 2020, and (d) 22 February 2020–22 August 2020, and (e) 8 March 2020–8
September 2020, and (f) 8 April 2020–8 October 2020. During the March 2020 STI crash, the STI fell
from a high of 3220 on 9 February 2020 to a low of 2410 on 15 March 2020.
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Moving on, we showed the histograms of Fiedler components over the March 2020
SGX COVID-19 crash in Figure 18. For the (first row) 1 August 2019–31 December 2019
and (last row) 8 April 2020–8 October 2020 time windows, the distributions of Fiedler
components are mostly unimodal, except for ε = 1.6. This agrees with our observation for
both crashes on the TWSE. For the (second row) 8 October 2019–8 March 2020, (third row)
8 November 2019–8 April 2020, (fourth) 22 February 2020–22 August 2020, and (fifth row)
8 March 2020–8 September 2020 time windows, the distributions of Fiedler components are
bimodal, even up to ε = 1.8. Again, this agrees with our observation for both crashes on
the TWSE.
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Figure 18. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 1 August 2019–1 January 2020 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 8 October 2019–8 April 2020 time
window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 8 November 2019–8
May 2020 time window; (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for the
22 February 2020–22 August 2020 time window; (fifth row) (q) ε = 1.2, (r) ε = 1.4, (s) ε = 1.6, and
(t) ε = 1.8 for the 8 March 2020–8 September 2020 time window; and (sixth row) (u) ε = 1.2,
(v) ε = 1.4, (w) ε = 1.6, and (y) ε = 1.8 for the 8 April 2020–8 October 2020 time window.
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4.6. March 2020 S&P500 Crash

In addition to emerging markets such as TWSE and SGX, we also investigated the
component stocks of S&P 500 from 1 June 2019 to 31 December 2020. Our target is again the
COVID-19 crash, which occurred between 1 and 8 March 2020 in the S&P 500 according to
the spectral sequences shown in Supplementary Figure F1, compared to 1–15 March 2020
in TWSE and 8–15 March 2020 in SGX. Compared to the March 2020 TWSE crash (whose
beginning was sharp, but whose ending was not) and the March 2020 SGX crash (whose
beginning and ending were both sharp), the beginning and end of the March 2020 S&P
500 crash were both not sharp. In fact, according to conventional indicators, the S&P 500
attained a high of 3380 on 14 February 2020, and a low of 2304 on 20 March 2020.

As expected, the spectral sequence of the S&P 500 stocks is gapless in the normal phase,
and gapped in the crash phase. This suggests strongly that the existence of a persistent
spectral gap distinguishes the crash phase from the normal phase, whether or not the stock
market is emerging or mature. The difference between the S&P 500 (measuring the mature
US markets) and the TWSE/SGX is the extent of the persistent spectral gap (going into
smaller length scales) in the spectral sequences of the S&P 500, compared to those in TWSE
and SGX. For the S&P 500, there is also a persistent description in terms of two clusters. We
suspect this is because of the significant fraction of S&P 500 component stocks are traded
on National Association of Securities Dealers Automated Quotations (NASDAQ), while
the remainder are traded on the New York Stock Exchange (NYSE).

Next, we show the histograms of Fiedler components over the February 2020 S&P 500
COVID-19 crash in Figure 19. In agreement with what we found in the SGX and TWSE, the
distributions of Fiedler components go from bimodal to unimodal as we increase ε. This
transition coincides with λ1 changing most rapidly with ε.
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Figure 19. Distribution of Fiedler components at different filtration parameters: (first row) (a) 𝜖 =1.2, (b) 𝜖 = 1.4, (c) 𝜖 = 1.6, and (d) 𝜖 = 1.8 for the 1 June 2019–30 November 2019 time window; 
(second row) (e) 𝜖 = 1.2 , (f) 𝜖 = 1.4 , (g) 𝜖 = 1.6 , and (h) 𝜖 = 1.8  for the 08 September 2019–08 

Figure 19. Distribution of Fiedler components at different filtration parameters: (first row) (a) ε = 1.2,
(b) ε = 1.4, (c) ε = 1.6, and (d) ε = 1.8 for the 1 June 2019–30 November 2019 time window; (second
row) (e) ε = 1.2, (f) ε = 1.4, (g) ε = 1.6, and (h) ε = 1.8 for the 08 September 2019–08 March 2020 time
window; (third row) (i) ε = 1.2, (j) ε = 1.4, (k) ε = 1.6, and (l) ε = 1.8 for the 15 February 2020–15
August 2020 time window; and (fourth row) (m) ε = 1.2, (n) ε = 1.4, (o) ε = 1.6, and (p) ε = 1.8 for
the 22 June 2020–22 December 2020 time window.
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5. Conclusions

In summary, we explained using a simple raindrop analogy the concept of persistent
structures, and why they are useful as mesoscopic variables for describing the dynamics of
complex systems (for example, market crashes) in terms of continuous and discontinuous
changes. We then drew inspiration from the connection between (1) the symmetries
[A, H] = 0 of a quantum system, and (2) the block-diagonal structure of the Hamiltonian,
leading ultimately to (3) the organization of energy eigenvalues into bands separated by
band gaps, to approach the problem of overlapping communities obtained during the
filtration process in TDA. Instead of trying to identify such communities in real space, we
should therefore look for signatures of community structure in spectral space. For this
work, the graph Laplacian L = K − A (A being the adjacency matrix, and K being the
(diagonal) degree matrix) plays the role of the Hamiltonian.

To check its feasibility, we tested the spectral approach on a series of toy models,
from a single cluster of data points to two or more well-defined clusters of data points,
characterized by gaps of different length scales, in the absence or presence of a noisy
background. We then introduced the spectral sequence as a novel tool to visualize how the
Laplacian spectra of different ε change over increasing filtration parameter ε. For a single
cluster of data points, the spectral sequence is gapless, whereas for multiple well-defined
clusters the spectral sequence contain gaps that persist over a wide range of ε. Connecting
the real-space TDA and the analysis of Laplacian spectra, we proposed for these persistent
gaps to be used as signatures of persistent structures in the data. Spectral gaps that are
persistent with respect to changes in length scale tend to be persistent with respect to
changes in time, and are robust with respect to background noise. We also analyzed the
Fiedler vector

→
u 1 associated with the first non-zero Laplacian eigenvalue λ1 > 0, which

is well-known to contain information on community structure in the data. In the case of
two merging clusters, we confirmed earlier studies that their components have different
signs in

→
u 1, but within each cluster, components have roughly the same value. We also

developed a new understanding that components with significantly smaller (or even zero)
absolute magnitudes are members of the neck, a structure that must be considered as
distinct from the clusters it connects. We also understood for the first time how there can be
near degeneracy between λ1 > 0 and λ2 ≈ λ1, when three clusters are arranged in a linear
configuration, with two necks forming roughly around the same length scales. Members of
the bridging cluster can be distinguished from members of the two necks by examining the
ratios of their components in

→
u 1 and

→
u 2.

Finally, we tested this spectral approach to unravel persistent structures on the daily
prices of 671 stocks of the TWSE, 530 stocks of the SGX, and 504 component stocks of
the S&P 500. Based on the toy model studies, we realized that this approach is ideal
for analyzing topological and geometrical changes in stock markets when they crash
(fragmentation), and also when they recover (agglomeration). Therefore, we identified
two time windows (1 April 2018 to 30 April 2019, and 1 August 2019 to 30 September
2020) associated with two crashes on the TWSE, one time window (1 August 2019 to
30 April 2021) associated with the crash on the SGX, and one time window (1 June 2019 to
31 December 2020) associated with the crash on the S&P 500. We then computed the
Pearson cross correlations Cij between stocks in six-month windows, converted Cij into
pairwise distances Dij for the TDA filtration process, before sliding the time window one
week at a time. We found universally across market crashes and stock markets that (1)
the spectral sequence is gapless (absence of persistent or non-persistent gaps) when the
time window is entirely within the normal phase, (2) the spectral sequence is gapped
(presence of persistent gaps at large length scales) when the time window overlaps with the
market crash phase, (3) the most rapid change in λ1 is delayed in the crash phase relative
to the normal phase, (4) in the normal phase, the distribution of Fiedler components is
predominantly uni-modal, (5) in the crash phase, the distribution of Fiedler components
change from bi-modal to uni-modal at the filtration parameter where λ1 changes most
rapidly. These are all results not previously known.
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Together, our spectral analyses of toy models and real-world stock market data sug-
gests that two clusters A and B do not become a single cluster AB the moment they are
linked by a neck, but continue to retain their distinct identities until their members are
completely absorbed by the growing neck. This can be summarized by the fusion process
A + B→ A + n + B→ a + N + b→ N (= C). Within this new perspective, n→ N → N
represents the thickening of the neck, while A → a and B → b represent the absorption
of A and B by the neck. This ternary fusion picture is useful regardless of whether the
fusion is a result of increasing the length scale during the filtration process, or a result
of interactions that bring the two clusters closer to each other over time. In terms of this
ternary fusion process, we can explain many mysteries observed in real-world data that
cannot be explained using only binary fusion processes.

Finally, we explored only the graph Laplacian, its spectrum, and its eigenvectors in this
paper. However, we know that the graph Laplacian is the simplest member of a hierarchy
of Hodge Laplacians, which we plan to explore in our future works.
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Abbreviations

TWSE Taiwan Stock Exchange
SGX Singapore Stock Exchange
TDA topological data analysis
RCA Ricci curvature analysis
MST minimal spanning tree
PMFG planar maximally filtered graph
CM center of mass
STI Straits Times Index
TAIEX Taiwan Capitalization Weighted Stock Index
S&P 500 Standard & Poor’s 500
NYSE New York Stock Exchange
NASDAQ National Association of Securities Dealers Automated Quotations
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