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Abstract: Gait recognition is one of the important research directions of biometric authentication
technology. However, in practical applications, the original gait data is often short, and a long and
complete gait video is required for successful recognition. Also, the gait images from different views
have a great influence on the recognition effect. To address the above problems, we designed a gait
data generation network for expanding the cross-view image data required for gait recognition, which
provides sufficient data input for feature extraction branching with gait silhouette as the criterion. In
addition, we propose a gait motion feature extraction network based on regional time-series coding.
By independently time-series coding the joint motion data within different regions of the body, and
then combining the time-series data features of each region with secondary coding, we obtain the
unique motion relationships between regions of the body. Finally, bilinear matrix decomposition
pooling is used to fuse spatial silhouette features and motion time-series features to obtain complete
gait recognition under shorter time-length video input. We use the OUMVLP-Pose and CASIA-B
datasets to validate the silhouette image branching and motion time-series branching, respectively,
and employ evaluation metrics such as IS entropy value and Rank-1 accuracy to demonstrate the
effectiveness of our design network. Finally, we also collect gait-motion data in the real world and test
them in a complete two-branch fusion network. The experimental results show that the network we
designed can effectively extract the time-series features of human motion and achieve the expansion
of multi-view gait data. The real-world tests also prove that our designed method has good results
and feasibility in the problem of gait recognition with short-time video as input data.

Keywords: short-time gait recognition; feature fusion; time-series feature extraction; image
generation networks

1. Introduction

Gait recognition refers to the technology that identifies a person by analyzing his or
her gait information. In the past decades, gait recognition technology has been widely used
in various fields, including human identification, motion analysis, disease diagnosis, and
human-computer interaction [1–3]. As a new biometric feature recognition technology with
potential, gait recognition has the advantages of being recognizable from a distance, easy to
acquire, requiring low image quality, and not easy to hide. With the rapid development of
computer vision technology, public security systems and intelligent video analysis systems
combined with gait recognition have a wide technical demand in safeguarding public safety
and improving the scientific management of smart cities [4–6].

Currently, there are two main approaches to gait recognition technology: sensor-based
approaches and video-based approaches. With the development of sensor technology, gait
recognition technology has also made significant progress. Sensor-based approaches [7–9]
use multiple sensors, such as accelerometers, gyroscopes, and pressure sensors, to capture
a variety of information about the human body, such as body posture, acceleration, angular
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velocity, and pressure distribution, which can provide rich recognition features for gait
recognition. The method using sensor detection has better robustness and can be used both
indoors and outdoors. However, the sensor-based approach requires high accuracy of the
sensor and is susceptible to external interference. At the same time, wearing the sensors
can easily subjectively affect a human subject’s movement habits, which leads to a larger
error in recognition. In the security field, gait features can often only be obtained from
short video information, so the method of wearing sensors also has strong limitations.

Video-based methods, on the other hand, obtain gait features from video data. Early
methods used background subtraction to extract the main human silhouettes [10,11] and
model the structure and transition process of gait silhouettes, including the gait energy
image (GEI), frame difference entropy image, etc. The GEI and frame difference entropy
images are used to represent the spatio-temporal series motion process of walking by
combining the walking process of the detected object in the form of silhouette extraction
into a new image. GEI is widely used in model-free gait recognition work. The advantage
of this type of method is that the processing is relatively simple, using only traditional
image processing methods to remove information such as background and human texture
and focus on gait information. However, the recognition effect of this method depends
on the completeness and continuity of the image, and it can easily lead to the loss of time-
series information or misalignment during the modeling process, making the recognition
accuracy much lower.

In recent years, with the development of hardware computing power and neural
network research, the problems that can be solved using deep learning have become more
extensive and numerous. These include the use of deep learning for more accurate image
classification [12], biometric techniques in more scenarios [13,14], sequence data process-
ing [15], etc. Similarly, research related to gait recognition using deep learning methods
has become the mainstream approach in the field of gait recognition today. One of these
methods is GaitSet, a depth set based gait recognition method proposed by Chao et al. [16].
Firstly, spatial features are extracted from the original gait silhouette using a convolu-
tional neural network, and then the spatial features are compressed and integrated in the
timeseries dimension. The GaitSet algorithm proposes a new view of treating gait as a
collection containing independent frames, without requiring the order of the frames or
even integrating video frames from different scenes. Most of the previous research works
have used the whole gait data of the human body as network input for feature extraction.
In contrast, GaitPart, proposed by Fan et al. [17], represents each part of the human body
as an independent spatio-temporal series relationship. The highlight of GaitPart is that
it focuses on the connections and differences in the shape of different parts of the human
body while walking. This method of identifying gait through local modeling is easier to
verify quantitatively. Some researchers have achieved gait recognition by studying the
distribution patterns of position changes of body skeletal points [18–20]. For example,
using Microsoft’s Kinect, a video stream with the distribution of human skeletal points is
output directly from the original video stream. Each joint of the body in the video stream is
represented as a point in 3D space. Later, static data such as limb length and dynamic data
such as limb movement patterns are analyzed. However, gait recognition is susceptible to
various interference factors such as dress, the carrying of objects or backpacks, and multi-
ple views, among which changes in views have the most obvious impact on recognition
performance. In practical applications, it is quite difficult to capture long-time continuous
and complete gait data under multiple views. Therefore, cross-view gait recognition is an
important challenge. In addition to the approach of using convolutional neural networks
for uniform feature extraction of data from all views, some researchers have also adopted
the approach of introducing a generative adversarial network (GAN) [21,22] to model
the distribution of multi-view data. A gait generative adversarial network (GaitGAN)
proposed by Yu et al. [23] normalizes the gait data from different views into gait data from
lateral views. The method of converting multiple views into standard views by means
of neural network learning before recognition has been proven to be effective. However,
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the details of the image cannot be expressed completely due to the lack of modeling the
global relationship during the view conversion process. Moreover, as the span of the views
increases, the error of the standard views obtained from the conversion becomes larger.

The above analysis suggests that to achieve more accurate and reliable gait recognition,
it is most important to obtain gait data with complete time-series information and a
sufficient amount of data. In order to achieve gait recognition under shorter input duration,
a two-branch fusion gait recognition algorithm combining time-series data and silhouette
information is proposed in this paper. The time-series information is modeled using a
region coding network based on Transformer [24]. The expansion and integration of the
silhouette data is implemented using a generative adversarial network with an added
attention mechanism. In order to make full use of the feature information of the two-branch
network, a feature fusion module is designed in this paper for the two dimensions of time
series and contour, which differ significantly.

In summary, the contributions of this paper can be summarized as the following
four points:

• A Transformer-based regional time-series coding network is designed. The joint
position change information within and between each human region delineated in
this paper is modeled, and effective time series features are extracted.

• A GAN-based gait data expansion network is designed. Only short-duration gait
video data are input, and the gait silhouette data under multiple views are obtained by
continuous training of the generator and discriminator to further expand the existing
gait dataset.

• A feature fusion module based on bilinear matrix decomposition pooling is designed.
The discrepancy between gait time-series features and contour features is effectively
solved, and the data of both features are efficiently fused.

• The time-series coding network and data expansion network are tested on the OUMVLP-
Pose and CASIA-B datasets, respectively, to verify the effectiveness of the algorithm.
Meanwhile, the algorithm is validated in this paper using gait data collected in real
scenes. The results show the effectiveness of the algorithm in this paper.

2. Methods
2.1. Overall Structure

The overall structure of the algorithm in this paper is shown in Figure 1. The input
data is the frame sequence of the original RGB video, the keypoint location sequence data is
obtained by the keypoint recognition algorithm, and the human silhouette image sequence
is obtained by the background segmentation algorithm. This paper adopts a two-branch
network structure. The timeseries data branch is a Transformer-based regional time series
coding network. In this branch, the human body is divided into multiple regions according
to the joint connection relationship. The relationships within and between regions are
modeled by the timeseries coding network to characterize the unique positional relation-
ships between limbs when a person walks. The silhouette data branch is expanded with a
generative adversarial network incorporating an attention mechanism for gait silhouette
data, followed by feature extraction using multilayer convolution. The feature vectors
output from the timeseries data branch and the contour data branch are computationally
fused by the feature fusion module to obtain the final gait feature data. In the following
sections, the above method and network structure are described in detail.
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2.2. Transformer-Based Regional Time Series Coding Network

In the process of extracting timeseries features for human joint position changes,
a Transformer-based regional timeseries coding network is designed in this paper. For
time-series data, Transformer is able to model global dependencies well. The basic Trans-
former consists of an encoder and a decoder. The encoder includes multiple Multi-Head
Self-Attention modules and a position feedforward network (FFN), and the decoder is a
cross-attention model inserted between the Multi-Head Self-Attention modules and the
position feedforward network. As opposed to recurrent neural networks such as LSTM [25],
Transformer models sequence information by embedding position encoding to model
the sequence information. Since Transformer possesses an outstanding ability to capture
long-range dependencies, it has achieved very good results in natural language processing
problems. Therefore, in this paper, Transformer is used for the modeling and feature
extraction of human regional data.

2.2.1. Data Pre-Processing

The obtained timeseries data usually contain noisy elements, so the original series data
need to be denoised. The more commonly used method is the sliding average method [26].
In this paper, the coordinate (x, y) data of every three adjacent frames of the same joint are
used as a set. If the complete data of each joint has m frames, the averaging process divides
the set into {f 1, f 2, f 3}, {f 2, f 3, f 4}, . . . , {fk−1, fk, fk+1}, . . . , {fm−2, fm−1, fm}. The set of each
joint after denoising is {F1, F2, . . . , Fm−2}, where i = 1, . . . , m−2:

Fi =
fk−1 + fk + fk+1

3
(1)

The set of outputs of all joints is {J1, J2, . . . , J17}.

2.2.2. Regional Division

In order to improve the processing efficiency, this paper divides the joint data into
small regions by parallel segmentation of the regions represented by the human body
according to the relationship between the left and right limbs. As shown in Figure 2, this
paper selects 14 joints that best represent the human gait and posture characteristics as the
research objects.
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As shown in Table 1, every three adjacent joints were divided into one region. 14 topo-
logically connected joints were divided into a total of 18 regions.

Table 1. Regional division method of human body representation.

Region Joints Region Joints

1 Head + Spine + Left Shoulder 10 Left Shoulder + Spine + Right Shoulder

2 Head + Spine + Right Shoulder 11 Left Shoulder + Spine + Left Hip

3 Head + Spine + Left Hip 12 Left Shoulder + Spine + Right Hip

4 Head + Spine + Right Hip 13 Right Shoulder + Right Elbow + Right Wrist

5 Spine + Left Shoulder + Left Elbow 14 Right Shoulder + Spine + Left Hip

6 Spine + Right Shoulder + Right Elbow 15 Right Shoulder + Spine + Right Hip

7 Spine + Left Hip + Left Knee 16 Left Hip + Spine + Right Hip

8 Spine + Right Hip + Right Knee 17 Left Hip + Left Knee + Left Ankle

9 Left Shoulder + Left Elbow + Left Wrist 18 Right Hip + Right Knee + Right Ankle

We focus on three human characteristics in one area, namely joint vector, limb length
and joint angle. During walking, the joint vector v, limb length l, and joint angle θ calculated
by Equations (2)–(4) will also change as the position of each joint changes. Although the
vectors, angles, and lengths are calculated from the coordinate data of the joint points, we
still hope that we can find the patterns of gait motion from the sequence data of different
aspects. Where (x, y) are the pixel coordinates of the joint points,

→
v = (xk+1 − xk, yk+1 − yk) (2)

l =
√
(xk+1 − xk)

2 + (yk+1 − yk)
2 (3)

{
θ = arctan yk+1−yk

xk+1−xk
, xk+1 6= xk

θ = π
2 , xk+1 = xk

(4)

The above three kinds of data can be extracted from each image frame. In order to
feed the time-series feature extraction network uniformly, we combine the three kinds of
data by vector concatenation as shown in Figure 3.
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2.2.3. Regional Time-Series Coding Model

In this paper, a regional timeseries coding model is designed based on Transformer for
extracting regional timeseries features. The structure of the Transformer-based regional
time-series coding model is shown in Figure 4.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 3. Frame-level feature stitching. 

2.2.3. Regional Time-Series Coding Model 
In this paper, a regional timeseries coding model is designed based on Transformer 

for extracting regional timeseries features. The structure of the Transformer-based re-
gional time-series coding model is shown in Figure 4. 

  
Figure 4. Transformer-based regional time-series coding model. 

Since both the encoder and decoder are networks based on the self-attention mecha-
nism, the Transformer has a large spatial complexity in the computation. Meanwhile, the 
original Transformer is not sensitive enough to local information, making the model not 
very good at handling outliers. In order to solve the above problems, we used a method 
from the literature [27] and modified it in the self-attention module. This was done by first 
processing the input data using a convolution of size greater than 1 in the computation of 
Query and Key, so that attention could focus more fully on local contextual information. 
The convolution self-attention layer is shown in Figure 5. 

 
Figure 5. Convolutional self-attention. 

First, the computed and concatenated data are fed into separate Conv-Transformer 
models according to the divided regions. For each region, the stitched data is 4 × m and 
expanded as a 4 × m × 1 one-dimensional vector. In Conv-Transformer, the data processed 

Figure 4. Transformer-based regional time-series coding model.

Since both the encoder and decoder are networks based on the self-attention mecha-
nism, the Transformer has a large spatial complexity in the computation. Meanwhile, the
original Transformer is not sensitive enough to local information, making the model not
very good at handling outliers. In order to solve the above problems, we used a method
from the literature [27] and modified it in the self-attention module. This was done by first
processing the input data using a convolution of size greater than 1 in the computation of
Query and Key, so that attention could focus more fully on local contextual information.
The convolution self-attention layer is shown in Figure 5.
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First, the computed and concatenated data are fed into separate Conv-Transformer
models according to the divided regions. For each region, the stitched data is 4 × m and
expanded as a 4 × m × 1 one-dimensional vector. In Conv-Transformer, the data processed
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by a convolution kernel of size (3, 1) and step size 1 are used as a Query-Key for the
matching calculation:

Attention(Q, K, V) = softmax
(

Q·KT
√

dk

)
V (5)

where Q is Query, K is Key, and V is Value, the arithmetic square root of the length of the
sequence data vector.

The time-series feature vectors output by the self-attention module are concatenated
into one region of time-series data features. The time-series features of multiple regions are
finally concatenated and expanded again.

2.3. GAN-Based Network for Cross-View Gait Image Data Generation

In real life, acquiring multiple views and continuous and complete videos of human
gait is very difficult. Existing gait datasets are often acquired in a laboratory setting. The
subject is in a simple, empty environment with a simple background, and the subject’s
walking state is captured by setting up cameras with multiple views. We wanted to be
able to recognize human gait in the presence of partially missing or shorter-duration video
input. To expand the gait data with algorithms, based on ideas from the literature [28], we
use generative adversarial networks for gait data generation to expand the gait data set.
However, while gait motion is continuous, gait images are acquired in a discrete manner.
Therefore, it is difficult to achieve completely correct matching of image sequences of the
same gait motion process under different views. In order to avoid large deviations, an
unsupervised generative adversarial learning method is used in this paper. Meanwhile, for
the generation of multiple views, only a single generator and discriminator are trained to
complete the mapping of multiple views in order to avoid the overfitting problem caused
by using a large number of convolutional neural networks. The overall structure is shown
in Figure 6.
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The fake images are generated through a generator and discriminator confrontation
consisting of a convolutional neural network. The generator is used to process the input
image data x and view information v, learn the distribution of the original data at a specific
view, and generate the fake image y. To improve the quality of image generation, this paper
adds a self-attention computation module to the generator network. The discriminator
is used to estimate the probability that the corresponding input is real or fake. In the
adversarial process, the goal of the generator is to map, as much as possible, the same
distribution of real image data to send to the image discriminator for estimation. It is very
important to keep the identity information during the cross view gait image generation
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process. Therefore, we propose an identity discriminator based on GaitGAN to distinguish
the generated image identity information by training on identity loss. In order to make
the images reconstructed by the generative adversarial network match the real images as
closely as possible, a smooth L1 loss function [29] is introduced in this paper for main-
taining the usability of the generated images. During the overall training of the network,
the minimization and maximization of the adversarial loss functions are relied upon to
constrain the generators and discriminators to

min
G

max
D
Lga = Ey∼pdata(y)[log D(y)] +Ex∼Pdata(x),v∼P(v)[log(1− D(G(x, v)))] (6)

In Equation (6), G(x,v) is a function of the generative network and D(y) is a function of
the discriminant network; Lga is a value function characterizing the degree of difference
between the real image data and the generated image data; the role of max is to hold the
generative network G so that the discriminative network D maximizes the discrimination
of the given data as true or false; and the role of min is to hold the discriminative network
D so that the generative network minimizes the difference between the true samples and
the generated samples.

The training process is divided into two stages. Firstly, the discriminator used to
determine whether it is a true sample or a false sample is trained. When training the
discriminator, the function of D is separated from Equation (6) and optimized using the
gradient descent method. The loss function is

LD = −Ey∼pdata(y)[log D(y)]−Ex∼Pdata(x),v∼P(v)[log(1− D(G(x, v)))] (7)

Secondly, when training the generator, the function of G is separated from Equation (6)
and optimized using the same gradient descent method. The loss function is

LG = Ex∼Pdata(x),v∼P(v)[log(1− D(G(x, v))] (8)

2.3.1. Generator Networks and Cyclic Reconstruction Loss

The generator network is based on the generator structure in GaitGAN, with the
introduction of a self-attention module. First, the generator accepts a vector of gait images
as input, which is processed by an encoder consisting of multiple convolutional kernels
of size 4 × 4 and a pooling layer of step size 1. This is followed by a decoder consisting
of multiple deconvolution layers and an attention module to generate the gait data. The
final generated fake data are used to deceive the discriminator model and will be gradually
improved during the training process, guided by the view indicator to generate more
realistic data. Among them, attention is computed in the same way as introduced in the
previous section.

During the generation of image data, it is necessary to retain other information in
addition to views and identities, which is information that needs to be retained. For
example, the walking status (wearing a coat, carrying a bag, etc.) of the same subject in the
same view may be different. In order to keep the style of the generated image consistent
with the original image as much as possible and to make the reconstructed generated image
more stable, a pixel-level Smooth L1 loss is used in this paper. The pixel error between
the generated image x and the real image y is minimized by training the Smooth L1 loss
as follows:

Lre(G(x), y) = ExvPdata(x),vvP(v)

[
1

H ×W

H×W

∑
i=1

{
0.5 ∗ |yi − G(xi)|2, i f |yi − G(xi)| < 1
|yi − G(xi)| − 0.5 , otherwise

]
(9)

2.3.2. View Classification Loss and Identification Loss

For a given gait silhouette input x, the generative adversarial network can generate a
gait silhouette image of a specific view guided by a view indicator v. When the discriminator
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receives the image data, the discriminator will determine whether the input data is from
the real sample or the data generated by the generator and classify the views of that image
data. To optimize the discriminator, this is achieved by minimizing the objective function

Lview = Ex∼Pdata(x),v∼P(v)[log Dview(G(x, v))] (10)

Meanwhile, in order to avoid the traditional problem of generative adversarial net-
works ignoring the continuity between frames in the image reconstruction process, which
leads to the identity loss problem in the generated multi-view gait images, we use an
identity discriminator to increase the model stability. The image data in the real sample
and the corresponding generated image data are fed into the identity discriminator as a
set of training samples. The identity discriminator will calculate the probability that this
set of data is the gait image data of the same person. This is achieved by optimizing the
objective function

Lid = Ey∼pdata(y)[log Did(y)]−Ex∼Pdata(x),v∼P(v)[log(1− Did(G(x, v)))] (11)

Combining each of the above optimization objectives, the total loss function for gener-
ating multi-view gait silhouette using GAN is:

Lall(G, D) = λ1Lga + λ2Lview + λ3Lid + λ4Lre (12)

where λi is a hyperparameter that can be adjusted during the optimization process to
control the weights of different loss functions in the overall network impact.

2.4. Gait Silhouette Feature Extraction

In this paper, the gait silhouette feature extraction is based on the GaitSet convolutional
neural network structure, as shown in Figure 7. The input of the network is the expanded
gait silhouette dataset. The feature extraction backbone consists of 6 convolutional layers.
The branches of the network are used to fuse the time-series features of the silhouette
images. The two features obtained from the backbone and branches are concatenated and
mapped through fully connected layers to obtain the gait contour features. In order to fully
use this network for feature extraction, the input image is cut, scaled, and cropped to obtain
a gait contour map of size 64 × 64.
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2.5. Feature Fusion Module Based on Bilinear Matrix Decomposition Pooling

After the input data are passed through the time-series branch network and the sil-
houette branch network, the body regional time-series data features ft and silhouette
features fo of the human walking process are obtained, respectively: ft ∈ Rm×4×18 and
fo ∈ R15872×1. The common methods of feature-level fusion are weighted average, tensor
concatenation, etc. In the two-branch network of the algorithm in this paper, the dimension-
ality of the output features is very different due to the different structures of the time-series
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branch network and the silhouette branch network. Therefore, the traditional feature fusion
methods are not applicable to the network of the algorithm in this paper. In order to make
full use of the different types of features extracted from the dual branch network, this paper
adopts a feature fusion method based on bilinear matrix decomposition pooling.

Bilinear pooling has gained more attention from researchers since it was proposed
by Lin et al. [30] for fine grained classification. For the feature fusion process from two
feature extractors, it is called Multimodal Bilinear Pooling (MBP). The process of bilinear
pooling is to obtain a feature matrix by bilinearly fusing (multiplying) two features at
the same position, and then sum pooling the feature matrices at all positions, and finally
expanding the pooled matrix into a vector. After performing matrix normalization and
L2 normalization operations on this vector, the fused features are obtained. However, the
original bilinear pooling suffers from the problem that the dimensionality of the fused
features is too high. Some researchers have improved on the MBP [31–33]. Based on a
priori knowledge, we designed the feature fusion module based on the introduction of
bilinear matrix decomposition and horizontal pyramidal pooling.

For the time-series data features ft and silhouette features fo, the bilinear pooling can
be defined as

Zi = ft
TWi fo (13)

where Wi ∈ Rm×4×18×15872 is a projection matrix and Zi is the output of the bilinear pooling
model. The projection matrix is decomposed into two low-rank matrices:

Zi = ft
TUiVi fo (14)

Expanding the decomposed matrix dimensions into the sum form,

Zi =
k

∑
d=1

ft
Tudvd

T fo = 1T
(

Ui
T ft

T �Vi
T fo

)
(15)

where k is the dimensionality of Ui = [u1, . . . , uk] and Vi = [v1, . . . , vk], 1T is the k-
dimensional all 1 vector, and � denotes the Hadmard product.

The decomposed feature matrix is sent to the horizontal pyramid [34] for dimension-
ality reduction. The horizontal pyramid used in this paper is divided into four scales of
1, 2, 4, 8. The input feature levels are partitioned into hierarchical regions of feature data
according to the pooling of different scales. The segmented data is denoted by Zm

n , which
can be understood as the feature data of the mth region in the nth scale. The feature vector
of the pyramid output is represented by Tm

n :

Tm
n = avgpool(Fm

n ) + maxpool(Fm
n ) (16)

Afterwards, the Tm
n downscaling is performed again by a 1 × 1 convolution. The

mapping is performed using a fully connected layer, and the resulting feature vectors are
used for classification.

3. Experiment

To evaluate the effectiveness of the time-series feature extraction network, the sil-
houette feature extraction network, and the two-branch feature fusion network in gait
recognition, we conducted experiments on the OUMVLP-Pose dataset [35] and the CASIA-
B dataset [36], as well as on data collected in real scenes.

3.1. Datasets

In order to verify the feature extraction capability of the previously mentioned regional
time-series coding network and the effect of the gait silhouette image generation network,
we selected the OUMVLP-Pose gait recognition dataset with human keypoint location
sequence labels and the large gait dataset CASIA-B, consisting of gait silhouette maps for
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the single-branch network, respectively. Due to the lack of a public dataset containing both
human keypoint annotations and gait silhouettes, for the validation of the fusion effect
of the two-branch network, we acquired real-world videos of people walking. Based on
the recorded videos, we created a small dataset of gait recognition containing both human
keypoint data and gait silhouette images.

3.1.1. Public Datasets

The OU-MVLP dataset is a large multi-view pedestrian dataset created by Osaka Uni-
versity, Japan. The dataset contains 10,307 walkers, including 5114 males and 5193 females,
distributed in different age groups. The dataset contains a total of 14 views with 15◦

intervals between the views, and OUMVLP-Pose is built on top of OUMVLP. The builder
of the dataset used pre-trained models from OpenPose [37] and AlphaPose [38] to extract
the human skeletal point location information from the RGB images of OUMVLP. Figure 8
shows the schematic diagram of the OUMVLP-Pose dataset acquisition provided by the
OU-ISIR biometric database website.
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Figure 8. Collection settings for the OUMVLP-Pose dataset.

The CASIA-B dataset contains a total of 124 walkers and three walking states, including
normal walking (NM) with six sequences per person, walking with a bag (BG) with
two sequences per person, and walking while wearing a coat (CL), with two sequences
per person. Each sequence for each pedestrian has 11 observed viewing angles with an
angle range (0◦, 18◦, 36◦, . . . , 180◦) at 18◦ intervals. Figure 9 shows a schematic of the gait
silhouette acquisition environment in the CASIA-B dataset.
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3.1.2. Test Data in Real Scenarios

In order to evaluate the two-branch fusion model presented in the previous chapter,
gait data were collected in a realistic scenario. The acquisition was performed by setting up
a multi-view camera in a laboratory environment with nine subjects walking at a uniform
speed on a walking machine. In order to simulate the process of real-life surveillance
cameras on people, the camera views were located at 0◦, 90◦, and 135◦ of the subject’s body
(0◦ directly in front of the body and increasing counterclockwise). Figure 10 shows the
schematic diagram of the acquisition environment for the test data.
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3.2. Experimental Environment and Setup

The experimental environment is a Windows 10 operating system and Python 3.7 IDE;
the deep learning framework uses Pytorch; to improve the model computing efficiency, an
NVIDIA RTX3080Ti is used and CUDA11.0 and the corresponding cuDNN deep learning
acceleration library is installed.

In the regional time-series coding branch network training, 20 walkers were randomly
selected from the training sample in each iteration, and then 10 sequences were randomly
selected from the data of each walker. After that, 20 consecutive frames were randomly
selected from each sequence as the input data. The network used the Adam optimizer and
the initial learning rate was set to 0.0002. In the data expansion network for silhouette
images, firstly, the effectiveness of the generative adversarial network for generating images
was evaluated. This was followed by a gait recognition test using the expanded dataset.
During the training process, a total of 80,000 iterations were performed. The initial learning
rate was 0.0001, and the learning rate was decayed to 0.1 times at the 60,000th iteration. The
threshold distance of triplet loss was set to 0.2. The data set was divided by the large-sample
training (LT) method [16]. Data from the first 74 walkers were used for training, and data
from the last 50 were used for testing.

3.3. Experimental Results and Analysis

This section presents the results of the experimental analysis of single-branch and
two-branch fusion networks.

3.3.1. Recognition Effect Based on the Regional Time-Series Coding Network

There are 18 human-joint-annotated positions in the OUMVLP-Pose dataset, but
the left eye, right eye, left ear, and right ear data are not significantly helpful for gait
recognition. Therefore, based on the human joint position settings in this paper, we used
the annotation data of joints 0–13 extracted by the OpenPose algorithm in the OUMVLP-
Pose dataset. Figures 11–13 show the change graphs of 50 frames of data in randomly
selected individual regions calculated from 18 human regions divided according to Table 1,
respectively. Figure 11 shows the variation curves of vectors, inter-joint distances, and joint
angles obtained for each region.
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Table 2 shows the accuracy of the time-series feature extraction branch designed in
this paper on the OUMVLP-Pose dataset. We extracted the keypoint data annotated in
the OUMVLP-Pose dataset into a uniform csv format data list in the form of sequence
data as the input of the temporal feature extraction branch. Compared with LSTM and
Transformer networks, which are commonly used for processing sequence data, the network
we designed achieved relatively better results. In particular, the accuracy of Rank-1 is higher
for 90◦ and 270◦. The reason for this situation may be that when the OUMVLP-Pose dataset
uses the OpenPose and AlphaPose algorithms to identify human keypoints, these two side
views observe the human joints more obviously, which makes the extracted pixel location
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information of keypoints more accurate. To validate this idea, we used Noitom’s motion-
capture suite to obtain real-time data streams of the movements from the accompanying
software. The acquired data were normalized and calculated to obtain the human keypoint
position information at the same pixel position coordinates as the OUMVLP-Pose dataset.
Figure 12 shows the comparative analysis of the human keypoint data captured by the
sensor during the motion and the human keypoint data obtained using OpenPose and
AlphaPose algorithms in the OUMVLP-Pose dataset. The evaluation index used for the
comparison is PCKh, which is the proportion of the normalized distance between the
keypoint data detected using the physical method and the data labeled in the dataset that
is less than a set threshold, using the head distance as the normalized reference. The data
from PCKh@0.5 is considered correct when the distance between the positions of the two
keypoints is less than 50% of the diagonal length of the bounding box of the head.

Table 2. Classification accuracy of time-series data extracted from the OUMVLP-Pose dataset.

Accuracy

Openpose Alphapose

LSTM Transformer Ours LSTM Transformer Ours

0◦ 74.5 83.8 86.8 75.6 80.5 86.7

15◦ 81.8 82.2 88.9 77.3 81.3 87.5

30◦ 77.1 78.8 85.4 80.2 80.6 86.2

45◦ 81.5 80.7 80.9 82.0 82.7 81.5

60◦ 78.9 77.3 80.6 76.5 79.2 81.5

75◦ 81.1 83.0 81.7 80.2 85.0 81.0

90◦ 81.8 84.1 86.0 80.0 86.5 85.7

180◦ 79.0 82.5 87.8 76.2 81.4 85.6

195◦ 77.8 88.2 90.9 79.6 85.6 89.8

210◦ 73.5 84.4 86.8 75.7 83.3 88.2

225◦ 80.7 82.0 85.8 81.6 81.2 86.5

240◦ 72.1 79.2 85.4 78.3 80.5 84.6

255◦ 79.3 83.5 86.3 80.2 82.4 85.4

270◦ 79.3 85.3 90.6 81.6 86.5 89.5

Average 78.5 82.5 85.9 78.9 82.6 85.7

In Figure 12, the PCKh results are mapped into the HSV color space, and the change
in the value of PCKh is indicated by the color shade. The darkest color indicates that PCKh
is equal to 0, and the lightest color indicates that PCKh is equal to 100. In this paper, we
compared the data measured by the wearer, the data recognized by OpenPose in the dataset,
and the data recognized by AlphaPose in the dataset, and the results shown in Figure 12
were obtained after calculating and averaging the two. The difference between the data in
the dataset and the real data can be seen in Figure 12. It also confirms the problem related
to the recognition effect proposed above.

3.3.2. Effect of the Multi-View Gait Image Generation Network

This section discusses the effect of the generation of our proposed gait silhouette
images. Figure 13 shows the generated fake images trained from the real images in the
CASIA-B dataset.
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In order to show the effectiveness of the image generation method proposed in this
paper, the distribution of the generated data was evaluated using the Inception Score [39].
Inception Score (IS) is a KL divergence (relative entropy) calculation of the data:

IS(G) = exp
(
Ex∼Pg(x)KL(p(y|x )‖p(y))

)
(17)

where p(y|x ) is the probability of the category output for a given generated image x, after
feeding it into a pre-trained Inception classification network [40], and p(y) is the edge
distribution, which represents the expectation of the probability of the category output by
this pre-trained classification network for all generated images. If the generated image
contains meaningful and clearly identifiable targets, the classification network should
determine that image as a specific category with a high confidence level, so p(y|x ) should
have a small entropy. In addition, for the generated images to be diverse, p(y) should
have a large entropy. If p(y) has a large entropy and p(y|x ) has a small entropy, i.e., the
generated images contain very many categories, and each image has a clear and high
confidence category, then p(y|x ) and p(y) have a large KL scatter.

Based on the above analysis, the IS entropy value is used to determine the degree of
dispersion of the generated data relative to the standard data, using the data distribution
of the gait silhouettes in each view in the data set as a benchmark. In the IS calculation,
the larger the IS value, the closer the generated data is to the ideal state. Also, the Kernal
MMD [41] and Wasserstein distance [42] methods were used in this paper to evaluate the
quality of the generated images, and the evaluation results are displayed in Table 3.

Table 3. Evaluation results of the generated images using different evaluation methods.

Inception Score Kernal MMD Wasserstein Distance

3.62 ± 0.07 3.75 ± 0.04 4.02 ± 0.04

Figure 14 shows the gait data of 10 people randomly selected from the original dataset,
the generated dataset, and the fused dataset, respectively. From Figure 14, it can be seen
that the distribution of gait silhouette data generated using the algorithm of this paper
has a similar pattern to that of the same kind in the dataset and achieves the purpose of
expanding the gait dataset in terms of quantity.
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Finally, we conducted tests using the original dataset as well as the expanded gait
silhouette dataset, and the results are shown in Table 3. From Table 4, it can be seen that
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the accuracy of recognition is higher after expanding the dataset due to the increase in
data volume. However, compared to the 90◦ side view, the accuracy improvement is more
obvious for the other views. This indicates that the side view exhibits richer and clearer
silhouette information. Therefore, the silhouette data from each view can also be relearned
afterwards and all converted to the 90◦ view for testing using gait energy images (GEI).

Table 4. Rank-1 accuracy obtained by testing on various subsets of the CASIA-B dataset.

Rank-1 Accuracy

Algorithm GaitSet

Dataset
Original Data Full Data

NM BG CL NM BG CL

0◦ 87.7 82.5 62.1 91.8 85.8 66.4

18◦ 90.2 85 73.4 95.9 90.2 75.4

36◦ 91.6 88.1 79.5 93.4 91.8 81.7

54◦ 90.6 85.5 78.3 94.9 88.7 77.3

72◦ 89.2 85.4 73.4 93.6 83.3 72.1

90◦ 90.2 82.5 72.3 91.7 81 73.1

108◦ 91.3 83.3 70.6 95 84.1 72.5

126◦ 92.6 87.2 72.4 94.8 92 73.5

144◦ 92.7 90.1 76.9 95.9 92.2 78.6

162◦ 93.6 90.5 66.4 92.8 94.4 68.4

180◦ 87.8 80.1 51.2 85.8 79 65

Average 90.7 85.5 70.6 93.2 87.5 73.1

To better demonstrate the effectiveness of our design, we used the same method as
GaitGAN to train and test our designed gait silhouette image generation network. The
dataset used was CASIA-B and was divided into training set, gallery set, and probe set. In
the experimental design of GaitGAN, three states, NM, BG and CL, were included. The gait
data of the first 62 subjects were put into the training set, and the gait data of the remaining
62 subjects were put into the test set. In the test set, the first four sequences of each subject
in one state were put into the gallery set, and the last two sequences were put into the probe
set. By putting the data from the gallery set into the model, the corresponding features
were output, and then the data from the probe set were also put into the model to get the
corresponding features. The two features were compared and the corresponding similarity
results were output. Tables 5–7 show the results obtained after image generation using our
gait silhouette image generation adversarial network and performing feature extraction
and matching compared with the results obtained using GaitGAN. As can be seen from the
table, our method achieves higher recognition rates than GaitGAN in most views. However,
in the BG and CL states, the recognition rate of some views of GaitGAN is higher than
that of our method. After the experiments, it can be seen that our gait silhouette graph
generation network needs to be optimized compared to the GEI generation method of
GaitGAN when strong disturbances are included. In future work, we will consider the
simultaneous generation of silhouette images under different viewpoints as well as the
synthesis of GEI under specific views to provide more sufficient data for improving the
gait recognition process.
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Table 5. Recognition Rate of ProbeNM.

GaitGAN Probe Set View (Normal Walking)

Ours 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

G
al

le
ry

se
tv

ie
w

0◦
100.0 79.03 45.97 33.87 28.23 25.81 26.61 25.81 31.45 54.84 72.58

99.70 77.52 40.64 31.52 26.00 25.70 26.90 25.42 30.67 52.66 70.53

18◦
78.23 99.19 91.94 63.71 46.77 38.71 37.90 44.35 43.55 65.32 58.06

77.09 99.65 90.47 61.55 46.79 32.76 36.54 40.32 44.69 65.06 58.77

36◦
56.45 88.71 97.58 95.97 75.00 57.26 59.68 72.58 70.16 60.48 35.48

54.36 88.44 98.04 93.72 74.56 55.49 56.38 71.72 70.62 61.55 34.42

54◦
33.87 53.23 85.48 95.97 87.10 75.00 75.00 77.42 63.71 37.10 22.58

30.28 50.89 85.04 96.76 87.05 73.02 72.97 77.46 62.51 37.04 20.06

72◦
27.42 41.13 69.35 83.06 100.0 96.77 89.52 73.39 62.10 37.10 17.74

26.52 45.37 66.73 80.24 99.89 97.02 88.42 71.53 60.00 34.49 15.08

90◦
22.58 37.10 54.84 74.19 98.39 98.39 96.77 75.81 57.26 35.48 21.77

22.56 38.46 53.54 72.26 98.74 98.02 95.57 76.56 54.95 36.04 20.43

108◦
20.16 32.26 58.06 76.61 90.32 95.97 97.58 95.97 74.19 38.71 22.58

18.55 31.42 57.58 76.09 91.25 94.46 98.50 94.75 71.32 39.45 21.08

126◦
29.84 37.90 66.94 75.00 81.45 79.03 91.13 99.19 97.58 59.68 37.10

27.05 36.51 65.70 75.03 80.25 77.84 90.46 99.60 97.05 56.81 37.05

144◦
28.23 45.97 60.48 66.94 61.29 59.68 75.00 95.16 99.19 79.84 45.97

26.57 44.76 58.16 65.72 61.57 58.67 75.04 94.67 99.65 78.64 44.97

162◦
29.03 34.68 36.29 25.00 19.35 16.13 20.16 37.90 51.51 76.61 41.94

28.34 31.68 34.78 25.07 18.63 15.46 17.65 35.44 52.49 78.42 40.91

180◦
42.74 28.23 24.19 12.90 11.29 11.29 14.52 21.77 30.65 49.19 77.42

41.91 27.62 22.95 12.46 10.79 10.66 14.63 20.49 29.54 47.65 78.29

Table 6. Recognition Rate of ProbeBG.

GaitGAN Probe Set View (Walking with a Bag)

Ours 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

G
al

le
ry

se
tv

ie
w

0◦
79.03 45.97 33.06 14.52 16.13 14.52 11.29 15.32 22.58 33.87 41.13

78.02 44.59 30.46 15.42 15.16 11.65 11.32 13.79 21.86 31.35 40.65

18◦
54.84 76.61 58.87 31.45 26.61 16.13 24.19 29.84 32.26 41.94 32.26

52.59 78.63 56.75 30.59 25.81 16.34 24.94 27.96 30.76 40.19 32.46

36◦
36.29 58.87 75.81 53.23 44.35 30.65 34.68 46.77 42.74 34.68 20.16

35.68 56.72 75.06 52.68 43.95 27.96 35.49 45.81 40.36 33.91 20.04

54◦
25.00 45.16 66.13 68.55 57.26 42.74 41.13 45.97 40.32 20.16 13.71

23.86 44.69 65.72 67.79 55.60 41.75 40.69 44.68 40.35 17.67 13.49

72◦
20.16 24.19 38.71 41.97 65.32 56.45 57.26 51.61 39.52 16.94 8.87

19.57 23.74 36.94 40.57 66.25 55.87 58.61 50.46 40.57 17.56 8.70

90◦
15.32 27.42 37.90 38.71 62.10 64.52 62.10 61.29 38.71 20.97 12.10

9.70 18.94 36.25 37.46 58.30 62.81 60.70 59.60 37.76 15.44 10.33

108◦
16.13 25.00 41.13 42.74 58.87 58.06 69.35 70.16 53.23 24.19 11.29

15.79 25.06 40.74 41.52 58.07 58.05 70.59 69.76 53.62 23.69 10.44

126◦
19.35 29.84 41.94 45.16 46.77 52.42 58.06 73.39 66.13 41.13 22.58

18.52 27.56 41.44 45.21 45.76 50.00 57.17 73.46 65.17 41.66 22.75

144◦
26.61 32.26 48.39 37.90 37.10 36.29 38.71 67.74 73.39 50.00 32.26

25.60 31.47 46.25 37.69 35.94 36.42 37.85 66.79 70.15 45.70 31.58

162◦
29.03 34.68 36.29 25.00 19.35 16.13 20.16 37.90 51.51 76.61 41.94

28.64 33.54 35.48 26.45 20.49 16.08 19.46 38.05 50.77 75.15 40.85

180◦
42.74 28.23 24.19 12.90 11.29 11.29 14.52 21.77 30.65 49.19 77.42

41.19 28.10 25.75 13.68 10.77 12.28 15.45 20.95 30.56 50.80 78.05
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Table 7. Recognition Rate of ProbeCL.

GaitGAN Probe Set View (Walking Wearing a Coat)

Ours 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

G
al

le
ry

se
tv

ie
w

0◦
25.81 16.13 15.32 12.10 6.45 6.45 9.68 7.26 12.10 11.29 15.32

25.06 17.08 16.75 12.09 7.52 7.00 10.12 8.56 15.12 10.45 14.29

18◦
17.74 37.90 34.68 20.97 13.71 8.87 12.10 19.35 16.94 24.19 19.35

16.52 36.50 35.16 22.85 14.75 8.69 12.04 18.64 16.48 23.66 20.78

36◦
13.71 24.19 45.16 43.55 30.65 19.35 16.94 22.58 28.23 20.16 10.48

14.55 24.06 45.52 44.45 30.42 20.48 17.84 22.49 29.06 19.74 10.28

54◦
2.42 19.35 37.10 55.65 39.52 22.58 29.03 29.84 29.84 16.94 8.06

4.60 20.89 36.22 54.90 40.64 23.90 29.15 28.70 28.52 16.50 8.72

72◦
4.84 12.10 29.03 40.32 43.55 34.68 32.26 28.23 33.87 12.90 8.06

5.87 14.76 28.67 39.87 44.70 35.40 33.65 28.19 32.94 11.50 7.08

90◦
4.03 10.48 22.58 31.45 50.00 48.39 43.55 36.29 31.45 13.71 8.06

3.06 7.52 15.67 23.74 45.68 47.57 40.76 31.69 24.54 10.70 5.50

108◦
4.03 12.90 27.42 27.42 38.71 44.35 47.58 38.71 32.26 15.32 4.84

4.15 11.50 26.49 27.08 38.97 45.00 48.65 39.07 33.00 15.60 4.55

126◦
10.48 10.48 23.39 27.42 26.61 25.81 37.10 45.97 41.13 15.32 10.48

10.50 9.97 22.45 27.69 25.98 25.08 37.25 99.7 41.50 15.30 9.63

144◦
8.87 13.71 26.61 22.58 18.55 19.35 21.77 35.48 43.55 20.97 12.90

8.80 14.55 25.97 23.06 19.29 19.26 20.47 35.04 42.98 21.59 12.70

162◦
14.52 18.55 20.97 17.74 12.10 12.10 17.74 21.77 37.10 35.48 21.77

15.00 18.98 20.65 18.06 11.97 10.55 15.64 20.08 37.68 35.50 22.86

180◦
17.74 13.71 11.29 6.45 10.48 5.65 6.45 5.65 14.52 29.03 27.42

16.57 13.67 10.84 6.71 10.09 5.76 6.32 6.79 13.87 27.03 28.84

3.3.3. Testing of the Fusion Model in Real Scenarios

The testing in real scenarios was divided into two parts: quantitative assessment and
qualitative assessment.

First was the quantitative evaluation part. By setting up cameras under three views
of 0◦, 90◦, and 135◦ in an indoor environment, the data of keypoints of the human body
were collected using OpenPose and the data under the three views was averaged. The
silhouette extraction was performed by background subtraction. Figure 15 shows our
gait data collection in different views. In accordance with our laboratory regulations and
data privacy instructions, we defocused the background of the images and mosaicked the
volunteers’ faces. In addition, we visualized the extracted feature data for characterizing
the relevant motion patterns. This is shown in Figure 16.
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Figure 16. Comparison of trends in movement characteristics of different volunteers.

In Figure 16, region 1 shows the curve obtained after min-max normalization of the
fused feature vectors, and the data in region 2 are the first five larger and the last five smaller
data extracted from region 1. Region 3 is the curve obtained after Z-score normalization
of the fused feature vectors, and the data in region 4 are the first five larger and the last
five smaller data extracted from region 3. From Figure 16, we can see that different walkers
show different movement patterns in their bodies while walking. According to these
patterns, we can effectively identify the walkers in the video.

To verify that the module we designed has better feature fusion effects, we chose
three fusion methods—Concatenation, Squeeze-and-Excitation Networks (SENet) [43],
and Feature Pyramid Network (FPN) [44]—for comparison. The experimental results are
shown in Table 8. Compared with Concatenation, the method based on bilinear pooling
decomposition can utilize the acquired feature information more effectively and reduce
the data loss due to information fusion. Compared with SENet, the computational process
of our method is simpler. It can still obtain good feature fusion results with reduced
computing resources. FPN is a commonly used feature fusion method that maintains
high quality information during feature fusion by adding lateral connections to the feature
pyramid at different levels. Our method is a bit more complex than FPN, mainly due to
the addion of a bilinear matrix decomposition computational process before feeding into
FPN. The purpose of this is to utilize the feature information as much as possible and to
reduce the dimensionality of the computed fused features by horizontal pyramid pooling.
Therefore, our method achieves better results than using only FPN.

Table 8. Rank-1 accuracy obtained using different feature fusion modules.

Rank-1 Accuracy
View Concatenation SENet FPN Ours

0◦ 60.8 79.3 75.6 80.5

90◦ 66.5 88.5 80.0 88.6

135◦ 65.6 85.0 77.9 86.4

The Rank-1 and Rank-5 accuracy of recognition with data collected in real scenes is
shown in Table 9. Rank-1 accuracy is the percentage of the number of predicted category
labels with the maximum probability that the true label is equal to the total number of
samples. Rank-5 accuracy is the percentage of the predicted category with the maximum
probability that one of the five categories is the same as the true label, and the prediction
result is true.
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Table 9. Rank-1 and Rank-5 accuracy obtained by testing data collected under real scenarios.

View Rank-1 Accuracy Rank-5 Accuracy

0◦ 80.5 88.7

90◦ 88.6 95.2

135◦ 86.4 90.6

Average 85.2 91.5

Finally, there is the qualitative evaluation part. We used a short-time video taken for
recognition effect testing, and the duration of the pedestrian walking video is 5 s. In order
to systematize the recognition process, we designed the upper computer interface of the
gait recognition system using PyQt5, as shown in Figure 17.
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By recording the video and analyzing it, the feature data extracted from the two branch
networks are fused to achieve human-gait-based identity recognition. The time duration
and effect of each stage of the recognition process are shown in Table 10, which proves the
feasibility and practicality of the design of this paper.

Table 10. Test results of short-time video input in real scenarios.

Stage Silhouette Analysis Keypoint Analysis Recognition

No. 1 2 3 1 2 3 1 2 3

Time (s) 32.06 40.02 36.75 7.65 6.62 6.56 5.33 5.42 5.66

4. Discussion

Gait recognition technology has a wide range of prospects in the real world. In
practical applications, the large amount of data required for gait recognition has been an
important factor affecting the recognition results. In this paper, we have considered a
combination of human time-series feature extraction and gait data expansion to achieve
gait recognition with less data. In Section 3.3.1, we analyzed the regional time-series data
in order to obtain the motion pattern of human walking and to observe the effect of our
designed time-series feature extraction network. By visualizing and analyzing the joint
vectors, inter-joint distances, and joint angles, we found that the distribution of our regional
time-series data has different patterns when a person is walking. This laid the foundation
for our next step of quantitative analysis. After comparing with the commonly used
time-series feature extraction networks, we found that the time-series feature extraction
network we used has better results. To evaluate the effectiveness of the multi-view gait
silhouette generation, we performed KL scatter analysis by calculating the Inception Score
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and proved that our gait silhouette generation network is effective. After classification
using a unified feature extraction algorithm, it was also demonstrated that the gait dataset
after data expansion showed more significant identity feature information than the original
dataset. Tests in real scenarios also provided proof of the effectiveness of our approach. In
this paper, our main work is the extraction of time-series features of human motion and the
data expansion of gait silhouette images. In future work, we will conduct a more detailed
study, including the optimization of the time-series feature extraction network and the
gait silhouette feature extraction network, especially the design of the Transformer-based
feature extraction network. For example, the CSTL [45] network constructed based on
Transformer and the Significant Spatial Feature Learning (SSFL) module has achieved good
results in feature extraction of gait silhouette image using the global relationship modeling
capability of the proposed network. Also, we can add a regularization method similar
to ReverseMask [46] to improve the feature extraction capability for gait images, and to
improve the accuracy of gait recognition.

5. Conclusions

For the problem of low accuracy of gait recognition caused by incomplete and insuf-
ficient gait data under short video input, this paper designs a method to fuse time-series
branch and contour branch data. By analyzing the relationships between human limbs
during motion, the regions used to characterize human motion patterns are defined. The
time-series features are extracted from the data changes of the keypoints of the human
body in each region. The method of CNN combined with Transformer is used for temporal
feature extraction. This method solves the problem that Transformer has the ability of
long-range modeling but is insensitive to local information. In this paper, the OUMVLP-
Pose dataset is used to test the temporal branching network. The test results show that the
feature extraction capability of the time-series feature extraction branch designed in this
paper is stronger than that of the general time-series data processing network. In order to
expand the gait silhouette data for recognition, this paper designs a generative adversarial
network that generates gait image data according to the distribution pattern of the input
data. The silhouette branch was tested using the silhouette maps of the CASIA-B dataset.
The effectiveness of the generative adversarial network designed in this paper is proved
according to the IS entropy value and the distribution law of the generated data. In order
to fully combine the time-series data features and contour data features, a feature fusion
module based on bilinear matrix decomposition pooling is designed in this paper. This
feature fusion module fuses the feature data of two different dimensions on the basis of
fully preserving the original features. In this paper, the bifurcated fusion model is tested
under real scenarios in terms of both qualitative and quantitative evaluation, and the
results show that the model we designed has high accuracy. The designed upper computer
interface can integrate the recognition process, which makes the design of this paper have
more practical feasibility.
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