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Abstract: In this work, we study the problem of designing control laws that achieve time-varying
formation and flocking behaviors in robot networks where each agent or robot presents double
integrator dynamics. To design the control laws, we adopt a hierarchical control approach. First,
we introduce a virtual velocity, which is used as a virtual control input for the position subsystem
(outer loop). The objective of the virtual velocity is to achieve collective behaviors. Then, we design a
velocity tracking control law for the velocity subsystem (inner loop). An advantage of the proposed
approach is that the robots do not require the velocity of their neighbors. Additionally, we address
the case in which the second state of the system is not available for feedback. We include a set of
simulation results to show the performance of the proposed control laws.

Keywords: time-varying formation; flocking behavior; robot networks; hierarchical control; graph theory

1. Introduction

Collective behaviors in nature are interesting phenomena that have attracted the
attention of scientists from different disciplines. Interesting examples include flocks of
birds and schools of fish, social networks, vehicular traffic, etc. In these examples, collective
behaviors emerge due to local interactions between the members of the swarm. Such
collective behaviors can be used to perform complex tasks; thus, the objective is to emulate
them in groups of robots (in this work, the words agent and robot are used interchangeably),
such as wheeled mobile robots, aerial and underwater vehicles, or robot manipulators.
Controlling multiple agents presents some advantages, such as time reductions and energy
savings when performing complex tasks. On the other hand, some of the applications that
can be performed when replicating the collective behaviors in robot networks are search
and rescue missions, object transportation, agricultural irrigation, and area mapping.

Examples of collective behaviors are consensus, rendezvous, synchronization, forma-
tion, and flocking. In this work, we only focus on formation and flocking behaviors in
robot networks with double integrator dynamics. Currently, we can find a great variety
of works that address these behaviors. A survey on formation control algorithms can be
found in [1]. In this work, the authors classify the cases of study in formation control
based on position, displacement, and distance measurements. In [2,3], the leader–follower
approach is used to carry out the desired formation in multi-agent systems with double
integrator dynamics. In [4,5], the leader–follower approach is also used, but these works
consider time-varying formation problems. The problem of time-varying formation is more
challenging than fixed formation since the geometric pattern of the formation changes over
time. The problem of achieving time-varying formation with bounded control inputs is
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addressed in [5]. The authors present experimental results to validate the performance of
the proposed controllers. A bearing-based formation control approach is presented in [6].
The control strategy allows one to track the time-varying leader velocities and to scale the
geometry of the formation. A distributed control protocol that achieves time-varying for-
mation for robot networks with linear dynamics is proposed in [7]. The authors introduce
an adaptive coupling strength, which is updated according to the relative positions of the
agents. A controller that allows one to accomplish time-varying formation robot networks
with switching directed topologies is designed in [8]. A fault-tolerant time-varying forma-
tion control is proposed in [9]; to achieve the control goal, adaptive control theory is used.
In [10], an affine formation maneuver algorithm that makes use of undirected graphs for
the communication between agents is presented.

On the other hand, the flocking control problem mainly consists of causing all agents
in the group to move to the same velocity while keeping a desired shape. In [11], the author
proposes a control law that ensures the flocking behavior in robot networks with double
integrator dynamics; it is important to point out that the controller also avoids collisions
between agents and static obstacles. In [12], three control algorithms are proposed: the
first two replicate the flocking behavior in free space and the third algorithm replicates
the collective behavior in a space with obstacles; numerical results are shown to validate
the three cases. A bounded control law based on potential fields that maintains a safe
distance between the agents is presented in [13]. A flocking algorithm that allows the
tracking of a virtual leader is studied in [14]; it is important to point out that in in this
work, it is demonstrated that the flocking is achieved even when only some agents know
the reference signals. The same problem is addressed in [15], where the authors consider
the case wherein only some robots have access to the leader information. In addition, the
authors employ adaptive control theory, which is the main difference with respect to [14];
moreover, the authors assume uncertainties and disturbances in the dynamic model of
the robots. In [16], the problem of flocking is solved using an adaptive flocking control
law, and the adaptive neural network estimates the uncertain nonlinear dynamics of the
agents. The flocking problem with time delays is addressed in [17]. An optimal control
approach is used to design flocking control in [18]; such an algorithm allows one to address
obstacle avoidance and trajectory tracking problems. In [19], the authors propose a dynamic
feedback position control law to address the problem. Such a control law does not require
the velocity information of the agents to achieve the desired behavior. The flocking problem
in discrete time is studied in [20]; the proposed algorithm is decentralized and allows the
agents to converge to a formation based on flocking behavior, and simulations for the
validation of the algorithm are shown. Unlike the mentioned works above, in [21–23], the
authors design an observer to estimate the velocity, due to the fact that, in practice, it is not
always possible to measure all the states of the system.

This work focuses on the design of control algorithms that achieve time-varying
formation and flocking for robot networks where each node is modeled as a double in-
tegrator. The main contribution of this work is the decentralized dynamic hierarchical
control law where, unlike the controllers reported in the literature, for the agent i, the
proposed controller only requires the relative position of its neighbors and its own velocity.
Additionally, the algorithm works for undirected and directed graphs. However, the graph
must be connected. Furthermore, we consider the case wherein the velocity of the agents is
not available from measurements, and, for the flocking case, only a few agents know the
desired flocking velocity. To address the aforementioned problems, we propose Luenberger
and distributed observers to estimate the unknown states and signals. Finally, we provide
numerical simulations to show the effectiveness of the proposed control laws and observers.
The remainder of the paper is organized as follows. Some preliminaries and the problem
statement are given in Section 2. Formation and flocking control laws using the full state of
the robots are developed in Section 3. The problem of time-varying formation and flocking
without velocity measurements is studied in Section 4. Section 5 presents a distributed
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observer for the problem of flocking with partial information. Extensive simulations are
reported in Section 6. Finally, the paper ends with some conclusions given in Section 7.

2. Preliminaries
2.1. Problem Statement

Consider a robot network with N identical elements whose dynamics are governed by
double integrator dynamics

ṗi = vi (1a)

v̇i = ui (1b)

where the states of the i-th robot are the position pi ∈ <n and velocity vi ∈ <n; ui ∈ <n

is the control input and i ∈ N = {1, 2, . . . , N}. Next, we describe the collective behaviors
under study.

Formation. The time-varying formation problem consists of steering all the robots of the
team to a certain position to form a desired time-varying geometric shape or pattern
while the velocity of each robot converges to the rate of change of the formation.
The formation control objective can be defined as

lim
t→∞

pij(t)− δij(t) = 0 and lim
t→∞

vi(t) = δ̇i(t) ∀i, j ∈ N (2)

where pij(t) = pi(t)− pj(t) ∈ <n is the error of position between the agent i and
its neighbor denoted by j. δij(t) = δi(t)− δj(t) ∈ <n describes the geometry of the
formation and δi(t) ∈ <n, δj(t) ∈ <n are time-varying offset vectors that are at least
twice differentiable.

Flocking. In this collective behavior, all the robots follow a common reference velocity
while maintaining a desired formation; thus, the flocking control objective is to
achieve

lim
t→∞

pij(t)− δij(t) = 0 and lim
t→∞

vi(t) = vd(t) + δ̇i(t) ∀i, j ∈ N (3)

where vd(t) ∈ <n is the desired velocity for the team.

From the above definitions, the time-varying formation is a special case of flocking
when vd(t) = 0.

2.2. Graph Theory

We consider that the communication topology is fixed and the communication chan-
nels can be either unidirectional or bidirectional. Such topologies can be modeled by
undirected and directed graphs. A graph G = (N , E) consists of a set of nodes N (each
node represents a robot in the network) and a set of edges E ∈ N ×N . If the set of edges
are unordered pairs ofN , the graph is called undirected. For an undirected graph, the edge
(i, j) ∈ E denotes that robots i and j can obtain information from each other. On the other
hand, if the edges are ordered pairs of N , the graph is called a directed or digraph, and
information only flows in one direction. The adjacency matrix A = [aij] ∈ <N×N for an
undirected graph is defined as

aij =

{
1 if (i, j) ∈ E
0 otherwise

(4)

For a directed graph, we have

aij =

{
1 j ∈ Ni
0 otherwise

(5)
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where Ni is the set of neighbors transmitting information to agent i. The Laplacian matrix
L = [`ij] ∈ <N×N is defined as

`ij =


N

∑
k=1

aik i = j

−aij i 6= j.
(6)

For an undirected graph, the Laplacian matrix is symmetric and positive semidefinite.
However, for a directed graph, L is not necessarily symmetric. By construction, the Lapla-
cian matrix satisfies L1N = 0, meaning that the vector 1N =

[
1 . . . 1

]> ∈ <N is an
eigenvector of L and it is associated with the zero eigenvalue λ1 = 0. For an undirected
graph, all of the nonzero eigenvalues of L are real and positive, whereas, for a directed
graph, the rest of the spectrum of L have positive real parts. If the eigenvalue λ1 = 0
has algebraic multiplicity of one, then the graph is connected [24–26]. If there exists a
sequence of edges (undirected path) that joins any pair of nodes, we say that the graph is
connected [27]. A digraph is strongly connected if there is a directed path that connects
every pair of nodes.

3. Formation and Flocking Controllers

In order to design the formation and flocking control laws, we exploit the cascade
structure (chain of integrators) of the robot’s dynamics given in (1). To this end, we
introduce the virtual input ϑi ∈ <n and rewrite (1) as follows:

ṗi = ṽi + ϑi (7a)
˙̃vi = −ϑ̇i + ui (7b)

where ṽi = vi − ϑi ∈ <n is the velocity error. The open-loop system (7) can be analyzed
as an interconnected system with states (pi, ṽi) and inputs (ϑi, ui) coupled by the term ṽi.
Similar to the backstepping approach, the control problem is divided into two particular
control problems: the first step consists of designing the control ϑi that achieves time-
varying formation or flocking for the subsystem (7a), and as a second step, we design the
control ui that steers the velocity error ṽi asymptotically to zero.

The hierarchical control approach simplifies the control design; nevertheless, it im-
poses the restriction that the virtual input ϑi must be at least once differentiable; see (7b).
Furthermore, it is desirable that the time derivative of control input ϑi for the i-th robot
does not depend on the velocity of its neighbors. To fulfill the control objectives mentioned
above, we propose the following dynamic control law:

ϑi = vd(t) + δ̇i(t)− kiϕi (8a)

ϕ̇i = −kiϕi + c
N

∑
j=1

aij(pij − δij(t)−ϕij) (8b)

ui = ϑ̇i − γiṽi (8c)

where vd(t) ∈ <n is the desired flocking velocity that the robot network must follow,
ϕi ∈ <n is an additional state, ki, γi ∈ < are positive gains, c > 0 is the coupling strength,
aij is the ij-th element of the adjacency matrix and ϕij = ϕi −ϕj. In Figure 1, we present
in a visual manner the proposed control law, so that readers have a better interpretation.
Now, we are in a position to state the first result of this paper, which is summarized in the
following proposition.
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Figure 1. Block diagram of the proposed control for formation and flocking. In the green block, the
external controller is included, while the orange block contains the internal controller; the values of
the terms ai1, aij and aiN will change depending on the used graph.

Proposition 1. Assume that the graph G is connected and consider the robot network (1) in a
closed loop with (8). Then, the dynamic control law (8) guarantees

(i) time-varying formation if vd(t) = 0;
(ii) flocking behavior in the sense of (3).

Proof. To begin with stability analysis, we introduce the auxiliary state

ri = pi − pd(t)− δi(t)−ϕi ∈ <
n (9)

where pd(t) =
∫ t

0 vd(τ)dτ. Then, it follows that ṙi = ṗi − vd(t) − δ̇i(t) − ϕ̇i
and rij = ri − r j = pij − δij(t) −ϕij. Substituting the control law (8) in (1) and taking
into account (7), the closed-loop dynamics read

ṙi = −c
N

∑
j=1

aijrij + ṽi (10a)

ϕ̇i = −kiϕi + c
N

∑
j=1

rij (10b)

˙̃vi = −γiṽi. (10c)

Using the properties of the Kronecker product, the closed-loop dynamics can be
written in compact form as follows:

ϕ̇ = −(K⊗ In)ϕ+ c(L⊗ In)r (11a)

ṙ = −c(L⊗ In)r + ṽ (11b)
˙̃v = −(Γ⊗ In)ṽ (11c)

where ϕ =
[
ϕ>1 · · · ϕ>N

]> ∈ <nN , r =
[
r>1 · · · r>N

]> ∈ <nN , ṽ =
[
ṽ>1 · · · ṽ>N

]> ∈ <nN are
stacked vectors; K = diag{k1, . . . , kN} ∈ <nN×nN , Γ = diag{γ1, . . . , γN} ∈ <nN×nN are
positive definite diagonal matrices; In ∈ <n×n is the identity matrix; and the symbol ⊗
denotes the Kronecker product. Using the fact L1N = 0, it can be shown that the closed-loop
dynamics (11) have an equilibrium point at (ϕ, r, ṽ) = (0, 1N ⊗ r?, 0) for some r? ∈ <n.
To proceed with the stability analysis, we use the following change in coordinates [26]:

q = (Q⊗ In)r ∈ <n(N−1) (12)
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where the matrix Q ∈ <N−1×N is defined as

Q =


−1 + (N − 1)ϑ 1− ϑ −ϑ · · · −ϑ

−1 + (N − 1)ϑ −ϑ 1− ϑ
. . .

...
...

...
. . . . . . −ϑ

−1 + (N − 1)ϑ −ϑ · · · −ϑ 1− ϑ

 (13)

with

ϑ =
(N −

√
N)

N(N − 1)
.

By construction, the matrix Q satisfies [28]

Q1N = 0, QQ> = IN−1, Q>Q = IN −
1
N

1N1>N . (14)

Using these properties, it can be shown that

q = (Q⊗ In)r = 0 =⇒ r = 1N ⊗ r? (15)

Finally, by taking into account (12), (14) and

r = (Q> ⊗ In)q +
1
N
(1N1>N ⊗ In)r,

the closed-loop dynamics (11) become

ξ̇ = Aξ ξ (16)

where ξ =
[

ϕ> q> ṽ
]> ∈ <3nN−n is the extended state and

Aξ =

 −K⊗ In c(LQ> ⊗ In) OnN
On(N−1)×nN −c(Lr ⊗ In) Q⊗ In

OnN OnN×n(N−1) −Γ⊗ In


where Lr = QLQ> ∈ <N−1×N−1 is the reduced Laplacian matrix; OnN×nN ∈ <nN×nN and
On(N−1)×nN ∈ <nN×nN denote zero matrices. Since G is a connected graph by assumption,
the real parts of the eigenvalues of Lr are positive [26]. Moreover, the eigenvalues of Lr are
the same as the Laplacian matrix L except for λ1 = 0. This implies that the matrix −cLr is
Hurwitz. Since each matrix on the diagonal of Aξ is a Hurwitz matrix and Aξ is a block
upper triangular matrix, it follows that Aξ is also Hurwitz. Therefore, the origin of (16)
(ξ = 0) is a globally exponentially stable equilibrium point.

From Equation (15), the exponential convergence of q(t) to zero implies r(t)→ 1N ⊗ r?

as t→ ∞ and hence ri(t)→ r?, which in turn implies rij(t)→ 0. Combining the previous
result with the exponential convergence of ϕ(t) to zero yields

lim
t→∞

pij(t)− δij(t) = rij(t) +ϕij(t) = 0, i, j ∈ N .

This implies that the robot network achieves the desired geometry formation. The last
part of the proof consists of showing that the robots’ velocities satisfy limt→∞ vi(t) = δ̇i(t)
(∀i ∈ N ) for time-varying formation and limt→∞ vi(t) = vd(t) + δ̇i(t) for the flocking
behavior. This can be done by noticing that limt→∞ ṽi(t) = vi(t)− ϑi(t) = 0, and from (8a)
one has limt→∞ vi(t) = ϑi(t) = vd(t) + δ̇i(t) − kiϕi(t). Since ϕi(t) → 0 as t → ∞, it
follows that

lim
t→∞

vi(t) = vd(t) + δ̇i(t)
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meaning that the flocking behavior is achieved. Finally, for time-varying formation (vd(t) = 0),
we have limt→∞ vi(t)− ϑi(t) = vi(t)− δ̇i(t) + kiϕi(t) = 0 and hence

lim
t→∞

vi(t) = δ̇i(t)

which implies that the time-varying formation is achieved.

4. Time-Varying Formation and Flocking Controllers without Velocity Measurements

Motivated by the fact that many commercial robots are only equipped with position
sensors, in this section, we combine the dynamic control law (8) with a linear observer that
estimates the second state for the robot i. Consider the robot network

ṗi = vi (17a)

v̇i = ui (17b)

yi = pi, ∀i ∈ N (17c)

where yi ∈ <n is the output of the system. To address the lack of velocity measurements,
we propose the observer

˙̂pi = v̂i + Ξ1iỹi (18a)
˙̂vi = ui + Ξ2iỹi (18b)

ỹi = pi − p̂i (18c)

where p̂i ∈ <n and v̂i ∈ <n denote, respectively, the estimated position and estimated
velocity; ỹi ∈ <2 is the output error and Ξ1i ∈ <n×n, Ξ2i ∈ <n×n are the observer gains.
In Figure 2, we show a block diagram that depicts the controller when including the
Luenberger observer.

Figure 2. Block diagram of the proposed control for formation and flocking using the observer.

Proposition 2. Consider the robot network (17) and the observer (18) in a closed loop with the
dynamic controller

ϑi = vd(t) + δ̇i(t)− kiϕi (19a)

ϕ̇i = −kiϕi + c
N

∑
j=1

aij(pij − δij(t)−ϕij) (19b)

ui = ϑ̇i − γi(v̂i − ϑi) (19c)

where vd(t) ∈ <n is the desired flocking velocity, ki, γi ∈ < are positive gains, c > 0 is the
coupling strength, and v̂i ∈ <n is the estimated velocity. Assume that the communication graph G
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is connected and the observer gain Ξi =
[

Ξ1i Ξ2i
]> ∈ <2n×n is chosen such that the matrix

Ai − ΞiCi is Hurwitz where

Ai =

[
On In
On On

]
, Ci =

[
In On

]
.

Then, the controller (19) in combination with the observer (18) guarantees

(i) time-varying formation if vd(t) = 0;
(ii) flocking as defined in (3);
(iii) v̂i(t)→ vi(t) as t→ ∞.

Proof. First, we define the observer error x̃i =
[
(pi − p̂i)

> (vi − v̂i)
> ]> ∈ <2n. By tak-

ing into account (17) and (18), the time derivative of x̃i is given by

˙̃xi = Aoi x̃i (20)

where Aoi = Ai − ΞiCi ∈ <2n×2n. By taking into account the observer error dynamics (20),
the robot network (17) and the control law (19), the overall closed-loop dynamics are given by

ϕ̇i = −kiϕi + c
N

∑
j=1

aijrij (21a)

ṙi = −c
N

∑
j=1

aijrij + ṽi (21b)

˙̃vi = −γiṽi + Ei x̃i (21c)
˙̃xi = Aoi x̃i (21d)

where Ei =
[

On γi In
]
∈ <n×2n and ri is defined in (9). Notice that the addition of the

observer error dynamics does not destroy the cascade structure of the closed-loop dynamics.
Therefore, we can follow the steps of the proof of Proposition 1 to obtain

η̇ = Aηη (22)

where η =
[

ϕ> q> ṽ> x̃>
]> ∈ <5nN−n is the extended state vector, q ∈ <n(N−1)

is defined in (12), x̃ =
[
x̃>1 · · · x̃>N

]> ∈ <2nN , and Aη is a block upper triangular matrix
given by

Aη =


−K⊗ In c(LQ> ⊗ In) OnN OnN×2nN

On(N−1)×nN −c(Lr ⊗ In) Q⊗ In On(N−1)×2nN
OnN OnN×n(N−1) −Γ⊗ In −E

OnN×2nN O2nN×n(N−1) O2nN×nN Ao

 (23)

with Ao = blockdiag{Ao1, · · · , AoN} ∈ <2nN×2nN and

E =

 E1 · · · On×2n
...

. . .
...

On×2n · · · EN

.

Since the observer gain Ξi guarantees that Aoi = Ai − ΞiCi is Hurwitz, each matrix on
the diagonal of Aη is Hurwitz; thus, the equilibrium point η = 0 is exponentially stable.
The previous result directly implies that

lim
t→∞

v̂i(t) = vi(t),
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and hence item (iii) is proven. Due to the fact that ϕ(t), q(t) and ṽ(t) converge exponentially
to zero, we can follow the steps of the proof of Proposition 1 to prove items (i) and (ii).

5. Flocking Control with Partial Information

In order to design the controllers (8) and (19), it is assumed that all the robots have
access to the desired flocking velocity vd(t). In this section, we study the scenario in which
only a portion of the robots have access to the flocking velocity. Let N d ⊂ N be the subset
that contains all the robots that have access to vd(t). Since at least one robot knows vd(t),
it is possible to estimate the flocking velocity for the robot i /∈ N d by using information
about its neighbors.

Proposition 3. Assume that G is undirected (directed) and connected (strongly connected). More-
over, assume that the desired flocking velocity vd(t) ∈ <n is a bounded continuous function and
satisfies that v̇d(t)→ 0 as t→ ∞. Then, the distributed observer

˙̂vd
i = −µ

(
N

∑
j=1

aijv̂d
ij + di(v̂d

i − vd(t))

)
(24)

where µ > 0 is the observer gain, v̂d
i (t) ∈ <n is an estimate of vd(t), v̂d

ij = v̂d
i − v̂d

j and

di =

{
1, if i ∈ N d

0 otherwise
(25)

guarantees that v̂d
i (t)→ vd(t) as t→ ∞.

Proof. The flocking estimation error is defined as v̄d
i , v̂d

i − vd(t) and, from (24), its time
derivative is given by

˙̄vd
i = −µ

(
N

∑
j=1

aijv̄d
ij + div̄d

i

)
− v̇d(t) (26)

where we use the fact that v̂d
i − v̂d

j = v̄d
i − v̄d

j . Using again the Kronecker product, (26)
becomes

˙̄vd = −µ(L⊗ In)v̄d − µ(D⊗ In)v̄d − 1N ⊗ v̇d(t)

= −µ(F⊗ In)v̄d − 1N ⊗ v̇d(t) (27)

where v̄d =
[
(v̄d

1 )
> · · · (v̄d

N)
>
]>
∈ <nN , D = diag{d1, . . . , dN} ∈ <N×N and F = L +

D ∈ <N×N . Since G is undirected (directed) and connected (strongly connected) by
assumption, the eigenvalues of F are strictly positive (see [29] for further details). This
implies that the matrix −µ(F⊗ In) is Hurwitz. Thus, if v̇d(t) = 0, the system (27) has an
exponentially stable equilibrium point at the origin. The differential Equation (27) can be
analyzed as a stable linear system with a continuous bounded input v̇d(t) that converges
asymptotically to zero [30]. Therefore, we can conclude that

lim
t→∞

v̄d(t) = 0.

Therefore, v̂d
i (t)→ vd(t) as t→ ∞ for all i ∈ N .

The results of Propositions 2 and 3 can be combined to solve the problem of flocking
without velocity measurements and with partial information.
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Proposition 4. Consider the robot network (1) in a closed loop with the flocking control law

ϑi = v̂d
i (t) + δ̇i(t)− kiϕi (28a)

ϕ̇i = −kiϕi + c
N

∑
j=1

aij(pij − δij(t)−ϕij), ϕi(0) = ϕi0 ∈ <
n (28b)

ui = ϑ̇i − γi(v̂i − va
i ) (28c)

where v̂i ∈ <n and v̂d
i ∈ <n are obtained from the observers (18) and (24), respectively. Assume

that G is undirected (directed) and connected (strongly connected). Moreover, assume that the
desired flocking velocity vd(t) ∈ <n is a bounded continuous function and satisfies that v̇d(t)→ 0
as t → ∞. Then, the controller (28) in combination with the observers (18) and (24) achieves
flocking in the sense of (3).

Proof. By taking into account (17), (7), (18), (24) and (28), the closed-loop dynamics read

ϕ̇i = −kiϕi + c
N

∑
j=1

aijrij (29a)

ṙi = −c
N

∑
j=1

aijrij + ṽi + v̄d
i (29b)

˙̃vi = −γiṽi + Ei x̃i (29c)
˙̃xi = Aoi x̃i (29d)

˙̄vd
i = −µ

(
N

∑
j=1

(aij + di)v̄d
ij

)
− v̇d(t). (29e)

Using (12) and (14), the closed-loop dynamics can be written as

σ̇ = Aσσ + Bσv̇d(t) (30)

where σ =
[

ϕ> q> ṽ> x̃> (v̄d)>
]> ∈ <6nN−n and

Aσ =


−K⊗ In c(LQ> ⊗ In) OnN OnN×2nN OnN

On(N−1)×nN −c(Lr ⊗ In) Q⊗ In On(N−1)×2nN Q⊗ In
OnN OnN −Γ⊗ In E OnN

O2nN×nN O2nN×n(N−1) O2nN×nN Ao O2nN×nN
OnN OnN×n(N−1) OnN OnN×2nN −µ(F⊗ In)


and

Bσ =
[

OnN OnN×n(N−1) OnN OnN×2nN In
]>

.

It can be verified that Aσ is Hurwitz and hence σ = 0 is a globally exponentially stable
equilibrium point if v̇d(t) = 0. Therefore, the closed-loop dynamics (30) are a stable linear
system with input v̇d(t) that converges to zero. Thus, we conclude that σ(t)→ 0 as t→ ∞.
This in turn implies that v̂i(t) → vi and v̂d

i (t) → vd(t) as t → ∞. Following the steps
of Proposition 1, it can be shown that pij(t) − δij(t) → 0 and vi(t) → vd(t) + δ̇i(t) as
t→ ∞.

6. Numerical Results

In this section, we present numerical results to show the performance of the proposed
control laws and observers. To carry out the simulation, we consider a robot network
with six agents represented by (1). The simulations are carried out on Matlab software.
In each simulation, it is assumed that only the position of each robot is available from
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sensor measurements; thus, the observer (18) is used in combination with the formation
and flocking controllers.

6.1. Time-Varying Formation Control

First, we validate the performance of the time-varying formation that is obtained
from (19) by setting vd(t) = 0. All the robots start at rest, i.e., vi(0) = 0, and the initial
position of each agent is chosen as

p1(0) = [−0.36 0.9]>, p2(0) = [1.8 1.8]>, p3(0) = [−1.8 2.7]>,

p4(0) = [2.7 2.7]>, p5(0) = [−2.7 − 1.8]>, p6(0) = [2.7 − 0.9]>.

The initial conditions for the Luenberger observer states were set as p̂i(0) = v̂i(0) = 0 for
all i ∈ N . On the other hand, the initial condition for the auxiliary state ϕi was set as ϕi(0) = 0
for all i ∈ N . The control and observer gains are, respectively, chosen as K = Γ = 5I ∈ <12×12

and Ξi = [ 6I 5I ]> ∈ <4×2, while the coupling strength is set as c = 2.
To achieve the desired time-varying formation, we use the following

δ(t) = δ0 + δ1 tanh(at− 6)

time-varying offsets, where a = 0.25 and δ0 ∈ <nN and δ1 ∈ <nN are constant vectors and
have been proposed as

δ0 =
[
−1.2 1.4 2 1.4 −3.6 0 3.6 0 −2 −1.4 1.2 −1.4

]>
δ1 =

[
0.4 −1.4 0.4 −1.4 −0.4 0 0.4 0 −0.4 1.4 −0.4 1.4

]>.

In this simulation, the communication graph is a directed ring and its corresponding
Laplacian matrix is given by

L =



1 0 0 0 0 −1
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

.

To obtain a better insight into the performance of the Luenberger observer, we compute
the norm of the velocity errors given

||evx || = ||v̂x − vx||, ||evy || = ||v̂y − vy||

where

vx =
[

v>x1 · · · v>x6
]
∈ <6, vy =

[
v>y1 · · · v>y6

]
∈ <6

v̂x =
[

v̂>x1 · · · v̂>x6
]
∈ <6, v̂y =

[
v̂>y1 · · · v̂>y6

]
∈ <6

The time evolution of ||evx || and ||evy || is shown in Figure 3. Clearly, both quantities
converge to zero exponentially; therefore, the estimated velocity converges to the actual
velocity of the robots.

In Figure 4, we show that the the time-varying formation is achieved, due to the fact that
pxij

(t)− δxij(t) and pyij
(t)− δyij(t) converge exponentially to zero after the transient response.

The estimated velocity is shown in Figure 5. In the figure, all robots’ estimated
velocities converge to the rate of change of the formation given by δ̇i(t) after a few seconds.
From the results of Figures 4 and 5, we can conclude that the formation objective is achieved.
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Figure 3. Time evolution of the quantities ||evx || and ||evy ||.
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Figure 4. Time evolution of the formation error pij(t)− δij(t) in the first simulation, (a) x [m] and (b) y [m].
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Figure 5. Estimated velocity of each robot, (a) v̂x [m/s] and (b) v̂y [m/s].
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Figure 6 shows the robots’ trajectory in the x − y plane. As can be seen for t < 6,
the agents move from the initial position to achieve the formation in blue dotted lines;
subsequently, for t > 6, the agents move to a line formation, in which they remain for the
rest of the time.

Figure 6. Trajectory of the robots in the plane during the first simulation;� denotes the initial position
of the robots and© denotes the final position of the robots.

6.2. Flocking Control

The objective of the second simulation is to validate the performance of the flocking
controller (19) together with the observer (18). The desired velocity profile is proposed as

vd(t) =
[

0.6− 0.1(tanh(t− 10)− tanh(t− 30))
−0.2(tanh(t− 10)− tanh(t− 30))

]
.

It is important to point out that the first derivative of the desired velocity profile v̇d(t)→ 0
as t → ∞; hence, the condition in Proposition 3 is fulfilled. On the other hand, the
initial conditions, the control and observer gains, the time-varying formation δi(t) and the
communication graph are the same as in the first simulation.

Before performing the tests to validate the flocking control, we carried out a simulation
to assess the performance of the distributed observer (24). Note that the distributed
observer (24) does not depend on the states of the robot network. We consider that only
robots 1 and 5 know the desired velocity profile; thus, the parameter di is set as d1, d5 = 1
and d2,3,4,6 = 0. This means that the rest of the robots will have to recover the information
through the distributed observer. The initial condition and observer gain for the distributed
observer were chosen as v̂d

i (0) = 0 for all i ∈ N and µ = 10.
Figure 7 shows the trajectories obtained with the distributed observer (24). As can be

observed, all the estimated states converge to the desired velocity profile in both coordinates;
see Figure 7a,b. With this result, we can say that the estimator is working well; therefore, it can
be used in combination with the observer-based flocking approach described in Section 4.

According to the definition of flocking given in Section 2, this behavior is achieved
if all the robots’ velocities follow the desired flocking velocity plus the rate of change
of the formation and the robots maintain a safe distance from one another and form a
desired geometric pattern. The velocity matching condition is shown in Figure 8, where
all the estimated velocities of the robots converge to vd(t) + δ̇i(t). The second flocking
condition is depicted in Figure 9, where clearly the distance pij(t)− δij(t) converges to
zero, meaning that the robots achieve the desired formation. It is important to highlight
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the good performance of the observer-based flocking algorithm considering that only the
position of the robots is obtained from sensor measurements and only two robots know the
the desired flocking velocity profile.

0 10 20 30 40

0

0.2

0.4

0.6

0 10 20 30 40

-0.4

-0.3

-0.2

-0.1

0

45

45

(a)

(b)

Figure 7. Estimated desired velocities generated by the distributed observer (24), (a) estimated
velocity in the x coordinate, (b) estimated velocity in the y-component. The dotted line represents the
desired velocity profile

0 5 10 15 20 25 30 35 40 45

-1

0

1

2

3

0 5 10 15 20 25 30 35 40 45

-2

0

2

4

(a)

(b)

Figure 8. Estimated velocity of each robot in the flocking simulation, (a) v̂x [m/s] and (b) v̂y [m/s].
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Figure 9. Time evolution of the distance error pij(t)− δij(t) in the flocking simulation, (a) px [m] and
(b) py [m].

Figure 10 shows the trajectory of the robot network in the plane, which is similar
to the flocking behavior observed in birds—that is, while maintaining a time-varying
formation, all the robots move with the same speed. With this result and the ones presented
in Figures 8 and 9, we can conclude that the proposed flocking control law is able to emulate
the flocking behavior.

Figure 10. Trajectory of the robots in the plane during the flocking simulation; � denotes the initial
position of the robots and© denotes the final position of the robots.
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7. Conclusions

In this work, we study the problem of designing control laws that achieve time-
varying formation and flocking in robot networks where each robot is modeled as a double
integrator system. To solve this problem, we adopt a hierarchical control strategy that
allows us to design a decentralized dynamic controller able to achieve both collective
behaviors. For instance, if time-varying formation is pursued, we only need to set the
desired flocking velocity to zero. An important advantage of the proposed controller is that
for the robot i, the control input ui does not require the linear velocities of its neighbors; it
only requires the relative position of the neighbors and its own velocity.

Since, in practice, it is not always possible to measure all the states of the system, a
Luenberger observer is proposed to estimate the robot’s velocity. The hierarchical control
approach allows us to easily combine the formation and flocking control law with the
observer, and the stability analysis is very straightforward. In addition to the velocity
observer, we design a distributed observer that estimates the desired flocking velocity for
those robots that do not have access to the desired velocity profile.

To model the communication between agents, the theory of graphs is employed.
The proposed controller works for either undirected or directed graphs. As a result, it is
possible to avoid the use of the leader–follower approach, which is most used in these types
of works; the only condition is that the graph must be connected and strongly connected
for the distributed observer. To validate the presented theory, numerical results are shown
that allow us to conclude to that the proposed control law is able to emulate the collective
behavior under study; in the case of the distributed observer, the obtained results were
good, considering that only two agents knew the desired velocity profile. Finally, as future
research, we will study the case of collision avoidance, so as to later implement the method
presented in this work in some unmanned vehicles.
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