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Abstract: The movement of employees within an organization is a research area of great relevance in
a variety of fields such as economics, management science, and operations research, among others. In
econophysics, however, only a few initial incursions have been made into this problem. In this paper,
based on an approach inspired by the concept of labor flow networks which capture the movement
of workers among firms of entire national economies, we construct empirically calibrated high-
resolution networks of internal labor markets with nodes and links defined on the basis of different
descriptions of job positions, such as operating units or occupational codes. The model is constructed
and tested for a dataset from a large U.S. government organization. Using two versions of Markov
processes, one without and another with limited memory, we show that our network descriptions of
internal labor markets have strong predictive power. Among the most relevant findings, we observe
that the organizational labor flow networks created by our method based on operational units possess
a power law feature consistent with the distribution of firm sizes in an economy. This signals the
surprising and important result that this regularity is pervasive across the landscape of economic
entities. We expect our work to provide a novel approach to study careers and help connect the
different disciplines that currently study them.

Keywords: labor flow networks; firm-size distribution; career studies; career sequences; manpower
analysis

1. Introduction

The study of job change is of great practical and academic relevance, as it is one
of the fundamental components of the employment process of any economic system.
Several disciplines study versions of this problem, including economics [1,2], management
science [3], and operations research [4–6]. Although a great deal of progress has been made
in elucidating this critical process, numerous questions remain outstanding. In particular,
there is yet to be an integrated interdisciplinary picture that explains both the micro and
macro aspects of the problem while maintaining the true system heterogeneity.

In recent years, a new way to approach the problem of job change has started to
develop based on the observation that once a person makes a job transition between two
firms (i.e., two employers), the probability to observe other subsequent job transitions
between the same two firms is significantly larger than what would be expected by random
chance [7]. This result has provided empirical support for the development of a new class
of large-scale, high-resolution job change, Labor Flow Networks (LFNs) [8–10], which
conceptualize the system as a set of nodes representing firms and links representing pairs
of nodes between which a job transition is relatively likely to occur (in economics terms,
such job changes have low friction). Based on data from two different countries, Finland
and Mexico [8–10], the first examples of LFNs were created, encoding large cross-sections
of the employers and employees in the workforce in their respective countries (for Finland,
the data are comprehensive for about a decade). From the physical standpoint, LFN models
are constituted by complex random environments that harbor non-equilibrium transport
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processes operating near equilibrium and, as such, can be understood from many of the
rules of non-equilibrium statistical mechanics [11]. A number of important observations
have emerged from the LFNs literature. First, it has been realized that firms contribute
in heterogeneous ways to unemployment [9,10] with some firms being responsible for
more unemployed people. Second, the firm-size distribution in an economy [12,13] is
related to both network and temporal features displayed by the LFNs [10]. Third, that
socio-economic status and race play important roles in occupational mobility [14]. Fourth,
that the relationship between vacancies and jobs in an economy (the so-called Beveridge
curve) cycles in a counter-clockwise manner [15] tracing a hysteretic curve that does not
retrace its steps as it returns to a previous state through a business cycle. This continues to
be an active area of research, with new directions being explored [16].

As an empirical model, the key ingredients of LFNs are (i) data that relate employers
and employees and (ii) a statistical test that confirms that job changes among those employ-
ers are not random. This provides a flexible, data-driven framework that makes it possible
to model a multitude of systems with considerable accuracy, especially if the dynamics of
the system are sufficiently slow. This opens the possibility to study a related, and yet-to-be
explored context of employment, internal labor markets. The study of such job markets has
the potential to bring about greater conceptual understanding of the job change process
because, when information about organizations is available, it can offer greater depth than
national level data (organizations usually record personnel details such as academic accom-
plishments, years of work experience, job responsibilities, etc.). Because the system sizes
of organizations are limited and thus cannot achieve the regularity of the thermodynamic
limit, and because people’s careers inside organizations are not long enough for the phase
space to be effectively explored, the dynamics of careers in organizations lives in the space
between mesoscopic and macroscopic systems.

In this article, aided by the availability of data from a large US governmental organiza-
tion, we apply the network approach for the study of so-called internal labor markets, that
is, the jobs internal to an organization among which individual workers transition while
pursuing an organizational career. Internal labor markets are not just smaller versions
of large economic systems, but instead have different operating rules and are organized
differently than a national economy and thus cannot be assumed to display the same
regularities as national employment landscapes. For example, there are no independent
firms inside an organization that can be viewed as the employers (nodes) of the network.
Another distinction is that job changes inside an organization can occur from mechanisms
different than job search (such as organizational reorganization or promotions based on
seniority).

Here, to test the application of LFNs to internal labor markets, we first study ways
to identify the relevant network nodes based on one of several possible job descriptors
that we refer to as “location”. We work with three different descriptors, operating units,
occupational codes, and geographic locations. Thus, when the network is constructed
of, say, operating units, job transitions by individuals connect the operating units that
individuals exit and join immediately after. We show that the different networks produced
by using these different choices of nodes all display predictive power (i.e., their links are
better predictors of future job changes than random chance), although some networks
perform much better. Another important finding is that the choice of network node leads
to networks that may have interesting topological properties. Most notably, we find a
reproduction of the Zipf-law of firm-size distribution when nodes correspond to operating
units of the organization [10,12,13,17]. Furthermore, because the approach microscopically
tracks the movements of each person, forecasting of individual work trajectories (that is,
so-called organizational careers) inside internal labor markets becomes possible. Careers
can be forecast with memoryless Markov chains [10], the most similar model to a physical
system, or with memory of prior jobs by using the method in [18]. We evaluate the quality
of the predictions through a variety of methods including Jensen-Shannon divergence [19]
and Jaccard indices, and find strong agreement between observation and prediction with
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both methods, although the use of memory leads to even stronger agreement with empiri-
cal observation.

The ability to track so-called organizational careers through the labor flow network
method should not be understated. While the study of labor markets at national levels
can yield limited information about careers, in general the data sources are not capable of
providing enough information to perform accurate studies. Some data lose visibility of
individuals, others only track workers for limited periods of time, and there is almost no
information about the nature of the jobs undertaken by individuals (no concrete data on
job responsibilities or tasks). In contrast, within an organizational setting, where personnel
data are available, the ability to use LFNs to understand the job landscape within the
organization becomes a tool that clarifies employment dynamics at both the individual
and organizational levels over time. This means that the network approach is able to
bring together concepts of operations research, management science (specifically career
studies), and economics of job search for the first time in such a concrete way, providing
an opportunity to develop an integrated view of internal labor markets that is currently
missing.

The remainder of the paper is organized as follows. Section 2 discusses the data for
the Army Acquisition workforce, defines the methods of analysis, the logic behind those
methods, and the relevant notation. Then, in Section 3 we present the results of our analysis.
Of particular interest, Section 3.2 addresses the similarity between the organization we
analyze and the firm-size distribution. Finally, we discuss our findings and their relevance
to the study of oganizations and careers in Section 4.

2. Materials and Methods
2.1. Data

The data we study are for the Army Acquisition Workforce (AAW). This is a civilian
organization that is part of the United States Army whose function is to provide logistical
support to the military component of the Army by purchasing equipment, training, and a
number of other logistical needs. The AAW has both uniformed military and civilian
components. Job changes within the civilian component (which are the only ones we
study here) are not based on military orders, but function as a typical job market, where
employees apply for jobs as openings emerge. Thus, the organization has freedom of career
mobility based on qualifications and individuals can join or leave as with any other job in
the private sector. Information of the AAW is public, and can be found online [20]. The
data have two parts, one associated with individuals and the other with the structure of
the AAW. The datasets cover the period between 2012 and 2020. All employee records are
anonymized by associating to each individual a hashed key. Each employee record contains
the position occupied each month the employee is part of the AAW. This information
includes the individual’s operational unit as well as his/her occupational series [21], a code
assigned by the US government to positions that imply certain responsibilities and other
requirements. Over the period, the AAW has ranged in size from under 35,000 to close to
42,000 individuals. There are around 1000 operational units in the AAW, and employees
span close to 100 occupational codes.

2.2. Methods
2.2.1. Basic Network Elements

To describe the job landscape inside an organization, we distinguish between two
types of entities, employed individuals (α, β, . . . ) and the “location” of the employment
(i, j, . . . ) (the term location is not ideal, but other choices such as class, used in the manpower
literature [22] are also problematic and thus we choose location because it better fits our
analysis). Our data identify individuals as well as several possible choices of locations
such as operating units within an organization, geographic locations (such as US States)
where some part of the organization operates, or types of occupations that the organization
requires (say, data analysts or accountants, recorded with a standardized code system [21]).
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Here, we use the term location as a descriptor to indicate where the individual can be found
within the organization. For example, if we are interested in knowing the movements of
the workforce by geography, i would represent a particular US state where some of the
organization has facilities. On the other hand, if we want to know the distribution of the
workforce by occupation, i would be an occupational code.

Our characterization of the system is based on the structure of labor markets, which
are studied by looking at the interrelated dynamics of individuals employed or looking
for employment and the jobs those individuals occupy or the vacancies they may aspire to
fill. In previous studies of LFNs, the choice of location was not discussed in itself, perhaps
determined by the data available (e.g., in [8,10] only firms and employees are recorded,
making locations represent firms). However, in our case, not only does the data provide an
opportunity to explore several possibilities, but there is a genuine question about which
choice of location to use in terms of better accuracy of the models, something we address
below and return to in Section 4.

Given a choice for i, an Organizational Labor Flow Network (OLFN) is generated
in the following way. Consider a set of individuals E = {α, β, . . . } and job locations
N = {i, j, . . . , }. We denote the sizes of the sets as e = |E | and n = |N |. The work histories
of individuals, usually called sequences in career studies, are typically recorded at discrete
and uniformly distributed time points to, to + 1, . . . , to + T, where to is the initial time of
observation, T the number of time units of observation (equal to the duration of the data)
and, in our case, the units are in months. Thus, we define the employment sequence of agent
α by

cα(t) = i [i ∈ E , t ∈ {tα,o, tα,o + 1, . . . , tα,o + τα}], (1)

where i is a job location, tα,o the first time α is observed to be in the organization, and τα is
the so-called job tenure (the number of time units an employee spends in the organization).
Note that to ≤ tα,o ≤ to + T and 0 ≤ τα ≤ T − (tα,o − to) and that information about
individual starting and ending times is necessary to know given that many employees join
and/or leave over a period of time.

The nodes of an OLFN are constituted by the job locations E . A link (i, j) between
two nodes in the OLFN is possible only if there are job transitions from i to j, but this
may not guarantee a link. Instead, (i, j) would be included as a link in the OLFN if
statistically significant job transitions are observed between the nodes [10]. The statistical
test is explained in Section 2.2.2.

2.2.2. Statistical Significance of Organizational Labor Flow Networks

An OLFN can be defined in several ways beyond the choice of locations, just as long
as it leads to reliable networks in terms of forecasting future job change. This means that,
to construct an OLFN, we must check that information gathered at some period of time
can be used to forecast a subsequent time period. This requires that we statistically test the
reliability of past information in terms of providing information about the future. But, how
to design this test?

In this system, job changes past or future appear as job transitions. Thus, we must
find a way to take information about transitions and convert this to links in a network.
In other words, links may only be introduced between pairs of locations (nodes) that have
had job transitions between them, although the final decision can depend on additional
criteria (see below). Following on, we must further consider whether linking a node pair
should be done independently or related to linking other node pairs. We can quickly
realize that to choose links between node pairs independently of each other runs the risk
of ignoring correlations. For example, some locations are characterized by many people
(large operating units or popular occupation codes), while others by a few. For the case of
a large location, it is likely that it sends and receives many workers, an effect that is felt
across many of the node pairs that involve that node. This acts as a correlation between the
large node and the transitions involving other nodes, effectively coupling its possible links.
Therefore, it is generally more appropriate to decide on adding links by taking into account



Entropy 2023, 25, 784 5 of 19

their correlated structure. The simplest way to do this would be to correlate links that
connect to the same node, independent of other nodes. This approach, however, is likely to
ignore higher order correlations that trickle through from node to node. Therefore, an even
better strategy would be to decide on links on the basis of the whole network structure.

We must also choose a time frame with job transitions that help us predict future
transitions. In this case, we pick a simple strategy that works well in that it provides proof
of principle. Thus, we divide the data into two equal-size time periods, to, . . . , to + bT/2c
and to + bT/2c, . . . , to + T, that we refer to respectively as T< and T>. The first time
period acts as the baseline, whereas the second corresponds to the forecasting (or test)
period. From the baseline period, we take transitions and consider them as candidates for
links. The testing period is then used to determine whether our choices of links have been
appropriate in terms of making our OLFN useful for prediction.

Having established time windows, we must decide how to introduce links. While an
approach that would explore the entire space of possible combinations of linking in some
designated period of time could be imagined, in practice this is very challenging due to
the combinatorial explosion of possibilities. Instead, we take an approach related to [7]
but also addresses the fact that their method ignores the link correlations we identified
above. In [7], each pair of firms in the city of Stockholm is considered independently and a
single transition between firms is used to gauge subsequent likelihood of transitions. Here,
as in [7], we adopt the notion that observing a transition between a node pair suggests
they should be linked, but introduce a numerical thresholdW representing the minimum
number of transitions (in either direction) between two locations i and j in order to make
that pair of nodes a candidate to have a link . This generates a candidate network where node
pairs have tentative links if they satisfy the threshold.

The final step of the statistical test is to check if the candidate network is indeed
predictive. To do this, we construct possible random future networks (meant to be in
time period T>) and compare them with information from the candidate network in the
past (from time period T<). Two pieces of information have been used in [10] for this
purpose. First, let us define κin

i (T>) and κout
i (T>) as, respectively, the number distinct

nodes from which workers transition into node i and the number distinct nodes to which
workers transition to from i, both within time period T>. Similarly, we define σ

(in)
i (T>)

as the number of workers that transition from other nodes into i over the period T>,
and σ

(out)
i (T>) the number of workers that transition from i to other nodes in the same

period. These quantities are versions of the concepts of node degree and node strength [23].
It was found in [10] that the most demanding version of test was the one that preserved

σ
(in)
i (T>) and σ

(out)
i (T>) because the statistic that measures the amount of deviation from

random transitions produced the smallest (yet highly significant) results. To perform this
test, we generate a large number of distinct realizations of random networks using Monte
Carlo. Each such network is created by randomly assigning transitions between nodes
in the period T> while requiring that σ

(in)
i (T>) and σ

(out)
i (T>) remain true in each and

every realization for all nodes. To generate a statistic, the random model lets us estimate an
expectation value for how many transitions can randomly occur between a pair of nodes
that is a candidate link, based on a given thresholdW , from period T<. Introducing the
notation C< for the set of candidate links during T< and C(s)> for set of stochastic transitions
predicted by each realization of one of the random models during T>, all the null models
generate an expected density of overlaps

℘(s)(W) =
〈|C< ∩ C(s)> |〉
|C<|

(2)

which measures the expected fraction of candidate links from T< that would also have a
transition during T> simply by random chance. In this expression, the customary notation
of size of a set | | and expectation 〈 〉 have been used. Clearly, the choice of stochastic model
alters the resulting set C(s)> .
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From the standpoint of observation, we want to know among the C<, what fraction of
them were observed to have transitions during T>. Labeling the observed transitions as
C(o)>T , the fraction of transitions matching candidate links is given by

℘(o) =
|C< ∩ C(o)> |
|C<|

(3)

The statistic of interest is finally defined as the ratio between the two quantities, which
we call the excess probability xW , given by

xW =
℘(o)

℘(s)
. (4)

If xW is above 1 with a large degree of certainty (has a very small p-value), we conclude
that the thresholdW leads to an OLFN that is useful for prediction. To provide intuition for
this statement, note that xW measures the network averaged increase in probability with
respect to the random model that a transition during T> occurs along a pair of nodes with
W or more transitions during T<. To illustrate, if xW is 2, the transitions actually observed
during T> are twice as likely to occur along pairs of nodes that hadW transitions during
T< than what would be expected from the random model. Therefore, a value of xW > 1
(and the greater the better) means that transitions during T> are predictable on the basis of
transitions during T< because they prefer to occur along candidate links by a factor of xW
than along random node pairs. Finally, as a technical point, the p-values can be determined
semi-analytically (or analytically in the case of the uncorrelated random model, where only
the total number of system transitions is preserved) by using the methodology in [10].

2.2.3. Career Sequences and Their Probability Distributions

To study careers, we are interested in the non-degenerate version of the sequences
encoded in Equation (1). To illustrate what this means, consider an employment sequence
cα in which α spends from t to t + ∆t working at location i, or cα(t) = · · · = cα(t + ∆t) = i
but cα(t− 1) 6= cα(t) and cα(t + ∆t) 6= cα(t + ∆t + 1). We will refer to such a time period
of uninterrupted work at a given location as a spell.

Since our primary interest is in the locations (or career steps) individuals take, we
create a non-degenerate version of cα called uα such that only the location of a spell is
recorded but not the number of time steps spent in a location. Thus, for example, if α’s career
is spent only in two locations, i and j and cα = {i, i, i, . . . , i, j, j, . . . , j}, the corresponding
career sequence is uα = {i, j}. We should note that uα preserves temporal ordering so that
if α first worked in location i and then in j, these appear in that same order in uα. Our
sequences also possess the feature that if an individual were to return to a previous location,
this would be captured in the sequence. Thus, an individual with an employment sequence
of the form {i, i, j, j, i, i} would have career sequence {i, j, i}.

The frequencies with which career sequences occur is very useful information because
they offer insights on the sorts of choices individuals make under the constraints of the
opportunities that become available within the organization (an individual cannot change
into a job that is not offered, an important observation from the perspective of modeling
made by the seminal work of White [24]). In order to understand how common or rare
specific career sequences are, we define the distribution of observed sequences φ̂(u), where
u is the random variable of career sequences. For a given time period of observation,

φ̂(u = u) = ∑α δuα ,u

∑α uα
(5)

where uα corresponds to the career sequence of α, δuα ,u is the Kronecker delta equal to 1
when α’s career matches the desired sequence u and 0 otherwise, and the denominator is



Entropy 2023, 25, 784 7 of 19

the total number of distinct careers observed. Described intuitively, Equation (5) precisely
defines how we count careers to determine their probability of occurring.

Because careers can be sensitive to the initial location, we further specialize our
analysis to distinguish careers on the basis of their initial location. Let us label the first
location of career u as uo (or uα,o when the career refers to that of individual α). Then, we
are interested in the set of conditional distributions

φ̂(u = u|uo = i) =
∑α δuα ,uδuα,o ,i

∑α δuα,o ,i
. (6)

2.2.4. Temporal Statistics: Length of Service

Research on manpower identified early on some important features about the study
of workforces inside organizations. When the emphasis is not on specific individuals,
manpower studies are very similar to population studies with one critical difference: in
the latter, survival times of segments of the population can be known quite well and vary
slowly over time (the number of people of a certain ethnicity of a given age) whereas in the
former the population of employees is much more changeable [22]. Thus, the concept of
the completed length of service emerged [6,25].

The key conceptual point still carries over in terms of career forecasting: as an in-
dividual enters an organization, it is important to anticipate how long that individual
is likely to stay in the organization. For simplicity, we approach this question here in a
similar way to the manpower literature. In fact, we hinted at this point already in our
definition of employment sequences (Equation (1)), where we introduced the quantity τα

to represent α’s job tenure in the organization. This quantity corresponds to the length of
service random variable τ. Given the e individuals in the data, to determine the length of
service distribution ψ(τ) we exclude from E all those employment sequences for which the
last location recorded occurs in the last time unit in the data. This is because at this point,
we are not capable to tell if any of those individuals exit the organization in that very last
time unit, or if they continue in the organization.

Due to the sensitive nature of the data, we do not report the specific distribution of
length of service of individuals in the organization, but use it in order to model careers in
the ways we explain next (Section 2.2.5).

2.2.5. Markov Models of Career Sequences

To test the usefulness of OLFNs in modeling the movement of personnel across an
organization, we construct two Markov chains, one which relies solely on the network
structure (based on [9,10]) and another that uses the network structure plus memory
(when applicable) about the prior transition [18]. At the most basic level, Markov chains
require that one defines states of the system and probabilities to go between states. Our
method based solely on network structure uses as states the current job (node) held by an
employee, and the probability to transition between jobs is estimated on the basis of the
transitions made by all workers over some selected period of time of the data (for example,
the first half of the years in the data). On the other hand, our method to include memory
generally defines as a state the tuple made of the current and previous job a worker has
held (with exceptions needed to handle the first job of the worker), and the transition
probabilities are estimated from other workers and the last two jobs they held. We now
describe these details.

Let us start by clarifying that both models simply lead to the creation of simulated
employment sequences and their associated career sequences. Since we mostly focus
on career sequences, we introduce r(o) and r(1) to represent random career sequences
respectively created from the Markov network model or the Markov model with one-step
memory. These random variables are characterized by the distributions φ(o)(r(o)) and
φ(1)(r(1)). These distributions are created from a large number of model realizations. There
are two kinds of such realizations. On the one hand, a single random walker can only



Entropy 2023, 25, 784 8 of 19

generate a single career, not enough to generate useful distributions φ(o)(r(o)) or φ(1)(r(1)).
Therefore, to generate these distributions, we use Mw walkers which correspondingly
generate Mw careers from which to create the distributions. A second way to introduce
multiple realizations is to generate Md distributions φ(o)(r(o)) and φ(1)(r(1)) so that no one
single realization of Mw walkers dominates the results. Our ultimate goal is to determine
the quality of the models, which we do by defining below a set of metrics that compare
each of these distributions to φ̂(u).

A common feature to both models is the fact that individuals can begin to work at the
organization at any time in any one of its locations. For the purposes of modelling their
career sequences, one could ignore the specific point in time unless there were reasons to
assume that temporal interactions play an important role. The initial location, on the other
hand, is always relevant in terms of the number of either employment of career sequences
generated. Thus, we should keep in mind that all the distributions we study are in reference
to careers that start at each specific location (node) in the network.

One last feature shared by both models is that the number of time steps an individual
travels is drawn from the length of service distribution ψ(τ). The effect is that each
individual has a randomly drawn, fixed lifetime in the organization so that after time τ,
the individual’s career sequence (either r(o) or r(1)) is completed and counted toward the
appropriate distribution.

The model based on [10] makes use of the network structure but, deviating from that
article, also includes weights to construct the transition rates between nodes. In the model,
a simulated individual located at i at time step t has a probability pij to choose j as their
next location, and this probability is constant in time. To determine pij, we make use of all
the employment sequences in Equation (1). Such sequences can be used from the entire
data (all the time points) or limited to parts of the time (e.g., T< which would require some
small adjustments like redefining work spells). Assuming we are using the entire data, we
first count the number of moves fij from node i to j on the basis of the number of sequences
(and the number of times in that sequence) where a transition occurs from i to j. Concretely,

fij = ∑
α

tα,o+τα−1

∑
t=tα,o

δi,cα(t)δj,cα(t+1). (7)

This equation states that fij is given by the number of times any individual makes a
transition from i to j. For the Markov process, the probability of the transition i to j is then
given by the proportion of all transition out of i that go to j with respect to all transitions
out of i, or

pij =
fij

∑j fij
[i, j ∈ N ]. (8)

Note that the definitions of fij and pij include diagonal terms. Thus, the diagonal of
the transition matrix of the Markov chain accounts for the very frequent occurrence of
individuals remaining in their locations.

In contrast to the pure network model, the model that keeps track of the previous step
(if the career has visited at least one other node) makes use of a slightly more complicated
transition matrix. Note that when an individual enters the network at a node and has not
yet made transitions to other nodes, the model is applied as if it was the pure network
model described above; only after one transition can memory begin to play a role. To make
use of memory, let us focus on a node j. The probability that an individual transitions from
j to h given that it had previously transitioned from i to j is based on the number of careers
that have previously made the same sequence of moves. Therefore, if f(i,j),(j,h) is given by

f(i,j),(j,h) = ∑
α

tα,o+τα−2

∑
t=tα,o

δi,cα(t)δj,cα(t+1)δh,cα(t+2), (9)
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the probability for an individual to go from j to h given that they came from i is given by

p(i,j),(j,h) =
f(i,j),(j,h)

∑h f(i,j),(j,h)
[i, j, h ∈ N ]. (10)

In both types of models, it is possible that the probabilities are 0 for an individual to
move beyond their current location. If that is the case, the individual merely remains in
the node until either the simulation finishes or the number of time units τ assigned to the
individual are complete. We should note that a single realization for a walker can last up to
the length of time we choose to model.

2.2.6. Evaluating Predicted Career Sequences

Next, we describe the metrics we use to assess the quality of the models. Essentially,
we are interested in knowing whether the models tend to produce with high probability
the careers actually observed, along with their observed frequencies. Symbolically, this is
equivalent to testing for the similarity of the numerical values between φ̂(u = u|uo = i)
and φ(m)(r(m) = r|ro = i) when u = r over the space of possibilities of u (the sample
space), where m = 0, 1 for the memoryless Markov model or the one-step memory model,
respectively. As a practical matter, we note that because all careers are distinguished by
their initial location i, all the quantities we define are computed according to their initial
location. Stated in plain English, the data show certain career paths and the models try
to imitate these. Therefore, evaluating the models is done by checking how “similar” the
imitation created by the models is to the observed careers.

In an ideal scenario, two distributions are similar if their sample spaces are similar and
the probabilities of events (the elements of the sample space) are also similar. To be precise
about what similar means, we now proceed to introduce several different quantitative
measures of that similarity and highlight how each focuses on a particular aspect of
that similarity.

Let us first concentrate on the similarity between probabilities φ̂(u = u|uo = i) and
φ(m)(r(m) = r|ro = i). In this case, similarity means that the observed and modeled
probabilities of the same career u starting at node i have similar values, i.e., φ(m)(r(m) =
u|ro = i) ≈ φ̂(u = u|uo = i). But this comparison has to be done carefully because for any
given initial node i, u is not independent of other careers starting from i. Let us denote
all the observed careers starting from i as U (i) = {uα}α∈E ;uo=i. Then, they are related
by the fact that ∑u∈U (i) φ̂(u = u|uo = i) = 1 which is the normalization condition for φ̂.
Modeled careers also satisfy a similar relation; calling the set of these careers R(m)(i) =
{r(m)

θ }{θ};ro=i for model m, they satisfy ∑u∈R(m)(i) φ(m)(r(m) = u|ro = i) = 1. Note that

U (i) = {uα}α∈E ;uo=i and R(m)(i) = {r(m)
θ }{θ};ro=i are, respectively, the sample spaces of

the observed and modeled careers starting at i. The relation between the probabilities of all
careers starting at a single node means that it is not enough to know that one particular
career u is such that φ(m)(r(m) = u|ro = i) ≈ φ̂(u = u|uo = i). Instead, we need to know
that the entire collection of careers starting from i have approximately equal values of
probability between observation and model. An effective way to study this is through
information theoretic methods. Here we apply the Jensen-Shannon divergence (JSD) for
this purpose [19]. This quantity measures information divergence between distributions in
such a way that, unlike the Kullback-Liebler divergence, is efficient in handling possible
mismatches in the sample spaces of the distributions. Defining the entropy of a random
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variable X with distribution P(X) as H(P) = −∑X P(X) log P(X), the JSD applied to
φ̂(u = u|uo = i) and φ(m)(r(m) = r|ro = i) takes the form

JSD(m)(i) = H
[

1
2

φ̂(u|uo = i) +
1
2

φ(m)(r(m)|ro = i)
]

− 1
2

[
H(φ̂(u|uo = i)) + H(φ(m)(r(m)|ro = i))

]
. (11)

Intuitively, the Jensen-Shannon divergence measures how much information two distribu-
tions share, with a value of 0 if they share all information (the distributions are identical),
and a maximum possible value of log(2) when one distribution has no information about
the other.

Since the distributions φ(m)(r(m) = r|ro = i) are generally different between different
Monte Carlo realizations, we generate one JSD(m)(i) for each of the Md realizations. To per-
form a complete test in terms of JSD, we create two versions of it, one that computes the
JSD between pairs of distributions φ(m)(r(m) = r|ro = i) emerging from the Monte Carlo
realizations (providing Md(Md − 1)/2 distinct values of JSD) and another comparing the
real distribution φ̂(u|uo = i) of careers against the simulated distributions (providing Md
values of JSD).

To explain this strategy further (using Md realizations), note that the random dis-
tribution φ(m)(r(m) = r|ro = i) and φ̂(u|uo = i) are both sample distributions. First,
the modeled distribution φ(m)(r(m) = r|ro = i) emerges from generating Mw walks that
begin at i and generate a set of walks R(m)(i). Second, the distribution φ̂(u|uo = i) is
formed by all the observed careers beginning at i. Because both distributions emerge
from a finite number of samples, even if either of the models m = 0 or 1 was perfectly
correct, one cannot expect the two distributions to overlap perfectly. Thus, a more realis-
tic evaluation of their similarity comes from observing how much φ̂(u|uo = i) typically
differs from φ(m)(r(m) = r|ro = i). This leads us to the need for creating Md versions of
φ(m)(r(m) = r|ro = i) to compare against φ̂(u|uo = i). When needed, we label each such
realization by the index q = 1, . . . , Md. Finally, note that the comparison between simu-
lated career distributions allows us to develop a baseline for how well the observed career
distribution is expected to match simulations. As a practical matter regarding numerical
estimation of entropy, our situation is dominated by careers out of virtually all starting
nodes where the most common career is to stay at that node; this means that we are able to
estimate entropy via simple naive methods as in our case these are not particularly affected
by problems such as those highlighted in the literature on entropy estimation [26–28].

Shifting to sample space testing, we introduce the Jaccard index which determines
how similar two sets are by checking for the proportion of elements that are common
between the sets; when both sets have the same elements the Jaccard index is 1, and when
they share no elements it is 0. Thus, for a given location i, we define the Jaccard index
J(m)(i) of node i due to model m as

J(m)(i) =
|U (i) ∩R(m)(i)|
|U (i) ∪R(m)(i)|

(12)

which quantifies how much the sets U (i) andR(m)(i) resemble each other. SinceR(m)(i) is
a product of simulations, one does not expect J(m)(i) to be the same for every realization.
One simple approach (that we adopt here) to deal with this is to create a union of the
simulated careers, ∏Md

q ∪R
(m)
q (i) and compare this set with U (i). Note that the choice to

check against the union over R(m)
q (i) is well justified on the basis that we are not after a

test of probability, only sample space.
As a final check, we introduce a ratio test for careers. This check is useful for several

purposes. For one, it can identify particular career sequences that are especially rare
compared to random expectation. Another advantage is that it can be put to use in
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generating career profiles for each starting node that provide a sense for how well the
collection of modeled careers match the collection of observed careers. A final use comes as
an alternative to the measurements from JSD and can be readily applied to obtaining full
descriptions of a model over the entire network. All these depend on the definition

d(m)(u, i) = log
[

φ̂(u = u|uo = i)
φ(m)(r(m) = u|ro = i)

]
, (13)

which compares the observed probability of career u with initial location i against its simu-
lated probability. The quantity approaches 0 as the simulated and observed probabilities of
a career become more similar (i.e., φ(m)(r(m) = u|ro = i) ≈ φ̂(u = u|uo = i)). On the other
hand, if a model overestimates the frequency of u, d(m)(u, i) > 0; if it is underestimated,
d(m)(u, i) < 0.

Using d(m)(u, i) over all observed careers beginning at i provides another way to test
the models. This can be done, for a given node, by measuring the average d(m)(u, i) over
observed career paths, or

〈d(m)(i)〉 =
∑u∈U (i) d(m)(u, i)

|U (i)| . (14)

As indicated, this quantity can also serve as a measure of the quality of a model at the level
of each individual starting point for careers. A related quantity that can be derived is the
variance of d(m)(u, i), defined as

var(d(m)(i)) =
∑u∈U (i)

[
d(m)(u, i)− 〈d(m)(i)〉

]2

|U (i)| (15)

which provides a measure of how well models capture the totality of the careers predicted
to start at i.

A final use for d(m)(u, i) is introduce is the creation of a profile for the effectiveness
of each model to recover individual observed careers. Let us create a rank-ordered list of
careers u ∈ U (i) so that u0 is the most probable career departing i (that is φ̂(u = u0|uo = i)
> φ̂(u = u|uo = i) for u 6= u0). Similarly, u1 is the second most probable career from i,
which means that φ̂(u = u0|uo = i) > φ̂(u = u1|uo = i) > φ̂(u = u|uo = i) for u 6= u0, u1.
After ordering all careers, we can construct the curve π

(m)
i (c) = (c, 10d(m)(uc ,i)) where

c = 0, 1, . . . , |U (i)| − 1. This profile for node i shows in decreasing order of importance how
closely model m is able to reproduce careers in i. A perfect model will tend to produce a
flat curve of the form (c, 1). On the other hand, if some careers deviate strongly, there will
be noticeable jumps.

3. Results
3.1. The Validity of Organizational Labor Flow Networks

To verify that OLFNs are in fact informative, we apply the method in Section 2.2.2
where the time steps are monthly periods and the T< and T< are quarterly periods
(3 months). To test that the information of previous transitions is strong enough, we
simply imposeW = 1 and measure the time series of x1 over the years of data we possess.

Given our ability to choose the definition of locations, we explore the three versions
mentioned above, operating units, occupational series code, and geographic location (in
this case, at the state level). The results are shown in Figure 1. The model used corresponds
to fixed strength of nodes based on candidate links, the most demanding test based on
results from [10]. For all choices of the definition of location, the excess probabilities xW
are considerably above 1 which means that defining and OLFN on the basis of any of these
locations produces networks on which a walker (representing an employee) can travel
along careers that are likely to be found in the real data. However, the value of xW is larger
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for units than other definitions of location (solid blue line). This result in interesting in
that it reinforces the value of work done in [8–10] where nodes are defined on the basis of
firms in the economy. The similarity is that, just like firms, operating units are the actual
administrative units within which people work.

Figure 1. Quarterly excess probabilities xW over the time frame of the data. We make the measure-
ments with three different definitions of locations, operating units (dotted line), occupational series
codes (circle), and US state where the employee is located (dashed line). The model corresponds to
fixed strength of nodes based on candidate links, the most demanding test based on results from [10].
Even in this case, it is clear that xW is markedly above 1.

Given the effectiveness of using operating units for predicting job change, we further
explore this definition of network. In Figure 2, we study the effect of the thresholdW on
the excess probability xW . The temporal tracking is the same as in Figure 1. In this case,
we see that increasingW leads to modest gains in predictive ability of the network, yet
remaining within the same order of magnitude asW = 1.

Figure 2. Quarterly excess probabilities xW and the values of ℘(o) and ℘(r) across the time frame of
the data for units in the AAW, tested across increasingW . The dotted lines correspond toW = 1,
the circles toW = 2, and dashed lines toW = 3. The bundle of curves in the middle of the plot
correspond to ℘(o). The lower bundle of curves represent ℘(s)(W) due to random models. Finally,
the excess probabilities xW are represented by the upper bundle of curves.
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Based on this analysis, we conclude that even a single observed transition (W = 1)
between a node pair has considerable predictive power regarding future transitions and
therefore, in the absence of some pre-established tolerance level, we adopt even a single job
transition to be an acceptable link in an OLFN. Clearly, our result confirms that the idea of
OLFNs is not just theoretical, but one that actually captures real employment affinity and
can help predict future job changes. The results of this analysis also dictate how we define
the probabilities of transitions in our Markov models (see Section 2.2.5).

3.2. Structure of Organizational Labor Flow Networks

Once networks are generated, we check their general topological characteristics. As in-
dicated above, three possible definitions of nodes can be used, operational unit, occu-
pational series code, or geography. However, given that geographic location appears to
provide the smallest values of xW above 1, we concentrate on the topological features of
the OLFNs generated with locations defined as operational units and occupational series.

In Figure 3, we present the degree distributions Pr(k) of the OLFNs defined with
W = 1, where k represented the degree of a node. Given the small number of nodes present
in the network built on occupational codes, the degree distribution (left) does not seem
to provide a clear structure. The effect of the number of nodes on this lack of structure
is another reason why our expectations for obtaining systematic results based on state
locations as nodes are low, further justifying our obviating this analysis (while there are
about 100 distinct occupations, there are only 50 states in the US; this small number of
nodes is unlikely to show much connectivity structure).

Figure 3. Degree distributions for OLFNs defined by occupational series (left) or operational units
(right). The plots are shown in log-log scale. For units, we add a reference solid line that decays as
k−1.2.

On the other hand, when the network is defined in terms of operational units, much
more topological information can be seen. First, the right panel of Figure 3 exhibits a long
tail distribution of degree, with close to two decades of steady, near-linear decay in double
logarithmic scale which is consistent with a power-law. Assuming this shape of the degree
distribution (a power-law), we find by inspection a decaying slope of a value of ≈−1.2,
or Pr(k)∼k−1.2. This slope is close to the value observed in much on the literature on the
firm-size distribution, known to show exponents in a range near −1 but with considerable
variation that includes the value −1.2 (see [29,30]). Although here we are reporting the
probability of a node to have degree k, the degree is a consequence of job transitions
which are proportional to the size of units. Consequently, the exponent we measure can be
directly compared to that of the firm size distribution. In addition, no prior empirical work
has addressed the internal structure of firms, and the simulation studies that have been
performed [31] have predicted that the distribution of unit sizes inside a firm should grow,
which is the opposite prediction to our observations.

The agreement between the exponent value found here and exponents in the literature
on the firm-size distribution suggests that large organizations, even if they have highly
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controlled structures, somehow organize themselves in a way that mimics the organization
of entire economies. After the seminal paper by Simon and Bonani recognizing this
phenomenon [12], and given the abundant literature on this topic (see e.g. [13,17]), we do
not attempt to explain this phenomenon here. However, we do note the importance of
this finding in the context of this debate because it suggest that the phenomenon is a truly
emergent feature of the functioning of economic entities.

3.3. Jensen-Shannon Divergence

Moving beyond the macro-structure of the system, we now focus on the probabilistic
structure of careers. For this purpose, we apply the JSD explained in Section 2.2.6. Given
the limited value shown in defining careers in terms of geographic locations, we narrow
our focus to operating units and occupational series only.

Evaluating the numerical values of JSD requires establishing a baseline, as explained
above, that compares careers among the random distributions versus the comparison of
careers between a random and the observed distribution. In Figure 4, we illustrate the
nature of the results of our analysis. The left panel contains JSD distributions for one
illustrative occupational series code. The model without memory is represented by the red
and green distributions. The red distribution corresponds to Md distinct values of the JSD
between the distribution of observed careers φ̂ commencing in the occupational code of
interest and the Md modeled distributions φ(o) of careers starting at the same occupation
code. In contrast, the green distribution is constructed from the Md(Md − 1)/2 distinct JSD
values that emerge from comparing all the pairs of distributions Md distributions φ(o) with
each other. From the figure, we see that the green distribution among the random career
realizations is characterized by lower values of JSD. This should be expected from the fact
that the careers generated by the model are fundamentally similar to each other. The red
distribution, in contrast, has larger values of JSD because observed and random careers
need not be as similar. It is notable, however, that the JSD values are small indicating that
both random models perform well.

Figure 4. Distributions of values of JSD when comparing careers generated by random modeling
and observed careers. Locations defined by operating unit on panel (A) and by occupational series
are shown on panel (B). The model without memory can be seen on both panels, with the green
distributions showing the pairwise comparisons between the random distributions of careers and
the red showing the comparisons between the observed distribution against each of the random
distributions. Similarly, the one-step memory model can also be seen on both panels (in blue),
with the distributions showing the pairwise comparisons between the random distributions of careers
and the orange showing the comparisons between the observed distribution against each of the
random distributions.

When memory is introduced, generating random career distributions φ(1), the orange
and blue JSD distributions emerge. Once again, the JSD values that emerge from comparing
Md(Md − 1)/2 random distributions in pairs are lower (blue) than the Md distinct JSD
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values that compare φ̂ with φ(1). We can also observe that memory lowers the JSD values
of these distributions in comparison to the ones from the model without memory.

Similar results can be gleaned when locations are redefined to operating units (Figure 4,
right panel). While the examples presented in Figure 4 correspond to a particular unit and
occupational code, the qualitative characteristics observed are consistent for the remaining
nodes and definitions of locations.

3.4. Jaccard Index

Having tested the similarity of the distributions, we are now in a position to determine
if the structure of careers predicted by the models is similar to real observed careers.
As explained above in Section 2.2.6, the Jaccard index eliminates the advantage that comes
to popular careers when evaluated through the JSD. Instead, all careers are compared on
equal footing, providing much more clarity about the difference between the models and
the real-world.

Although it would be perfectly informative to generate distributions of values of the
Jaccard index, it is very useful to compare the two models we use directly on the basis of
their ability to achieve large values of Jaccard index approaching 1. Each point in Figure 5
corresponds to a starting career location i (left are occupational series, right are units) where
the horizontal coordinate represents the Jaccard index of U (i) ∩

[
∏Md ∪R(1)(i)

]
and the

vertical coordinate to the Jaccard index of U (i) ∩
[
∏Md ∪R(0)(i)

]
.

Figure 5. Comparison of Jaccard indices calculated from models with memory and without memory
for units (B) and occupational codes (A) for locations in the OLFN . Each point is an initial node for
careers. The horizontal coordinate captures the Jaccard index of the collected Md careers created in
the one-step memory model, and the vertical the Jaccard index of the collected Md careers created
with the memoryless model. The solid line highlights the diagonal of the plot.

The results clearly illustrate the situation. The memoryless model is hardly ever able
to approach the value 1, generating values that are almost exclusively confined in the range
between 0 and 0.1 (with some exceptions). On the other hand, the model with one-step
memory is partially successful at achieving Jaccard indices of 1, as well as generating
other less optimal, yet better performing values between 0 and 1 in comparison to the
memoryless model.

3.5. Career Profiles and Overall Evaluation of Career Forecasts

In order to develop better intuition about the ability of our models to replicate obser-
vation, we also study the career profiles generated.

In Figure 6 we present the profiles π
(m)
i (c) for the same operating unit and occupa-

tional code as those in Figure 4 with both the memoryless and one-step memory models.
In both panels, it is clear that generally the one-step memory model performs better than the
memoryless model. Deviations tend to be more attenuated. In both examples, the quality
of the forecast of the most likely careers starting from each of the nodes (the points to the
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left of the plot representing u0, u1, . . . ) is high, represented by the fact that the symbols can
be located near the reference line at height 1.

Figure 6. Career profiles π
(m)
i (c) starting from location i. The left panel uses the same unit that is

displayed in the left panel of Figure 4; the right panel uses the same occupation as in the right panel of
Figure 4. The memoryless model career profiles are shown in blue and the one-step memory models
in red. Since the most important careers from the standpoint of probability distribution are found on
the left of the plot (smallest values of c), it is clear that the models perform well. However, one-step
memory is more effective. In addition, forecasting on the basis of occupations proves to be less
reliable than using units, as can be seen from the larger number of large fluctuations in the profiles.

To assess the models globally in terms of their performances, we show the distribution
of Equations (13) measured across starting career nodes (units and occupations) and models.
For d(m)(u, i), we present Figure 7 covering units and occupations with memoryless and one-
step memory models. From the figures, we see that the majority of careers are forecasted
correctly (with appropriate values of probability), seen by the concentration of the peaks
around 0. Note, however, that the efficiency of the OLFN based on units is superior.

Figure 7. Histograms of d(m)(u, i) for the memoryless (left column) and one-step memory (right
column) models for OLFNs of units (top row) and occupations (bottom row) across all starting nodes
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i and all observed careers. Despite the tails on the left of the histograms, the large frequencies are
highly concentrated around 0, indicating the general effectiveness of the models in reproducing
real careers. Memory indeed helps arrive at better predictions of careers, as can be seen from the
reduction of the amount of the mass of the histograms for negative values of d(m)(u, i). The plots
have different numbers of bins because OLFNs based on units (top row) have many more nodes than
those based on occupations (bottom row); see Section 2.1.

As a final assessment, we present in Figure 8 histograms of the values of var(d(m)(i))
from Equation (15), for OLFNs generated from units and occupations. In this case, we see
once again the that models perform well given the large frequency of 0. In addition, OLFNs
with unit-defined nodes continue to perform best.

Figure 8. Histograms of the values of var(d(m)(i)) over all starting nodes for units (left) and oc-
cupations (right). The memoryless model is captured by the orange histogram and the one-step
memory by the blue histogram. The variances are concentrated around 0 and the tails of the distribu-
tions decay very fast, with units generally displaying smaller values of variance and hence better
forecasting capabilities.

4. Some Final Discussions and Conclusions

The results we have obtained in the manuscript show that the LFN network approach
can be successfully applied to internal labor markets, leading to OLFNs. Further, we find
that even a single transition is effective at providing evidence that two nodes in a labor
network should be connected, a result that is in agreement with the finding in [7–10].
With this in mind, we are able to generated OLFNs that provide the substrate on which
to model careers (either for memoryless or one-step memory models) that allows us to
forecasts the workforce job changes at a microscopic level, i.e., for any career sequence.

The finding that OLFNs of units behave in the same way as the firm-size distribution
is new and of critical importance. The lack of availability of data such as the one presented
here has made the reporting of this regularity impossible. However, the relevance of this
observation is that it opens a new window into our understanding of this interesting yet
not-fully explained phenomenon. In particular, given the supervised nature of the structure
of a single organization such as this one, it suggests that the firm-size distribution may
be a consequence of an optimization process that seeks to make the functioning of the
interacting units as efficient as possible.

Another advancement of our paper is the introduction of a notion of career sequences
occurring on a network of operational units, new in the study of careers. We expect that,
as we focus more on its details, numerous relevant features of the system will start to
emerge such as the value of work or friendship ties in people’s careers.

We find that the introduction of memory in the modeling of careers is an essential
component that has been missing from the approaches that have so far been deployed for
this problem. A variety of techniques have been used in order to understand movements
of individuals across an organization, including pattern clustering of sequences [32,33],
Markov modeling performed at several levels of sophistication [6,24,34], and manpower
analysis [4]. However, the use of memory has so far been neglected as an effective approach
to model careers.
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A limitation of our current methodology is that it is calibrated against observed job
transitions rather than possible job transitions. This is an important issue because the
finite nature of the system does not provide enough observation of rare transitions to be
extracted from the data. In order to overcome this, study of the characteristics of each job
(say, occupational series, location, career field) offers a new direction to pursue in order
create a more flexible model that may be able to predict what could happen even if it has
never been observed.

We believe that the analysis performed here, including the application of new ideas
and techniques, will spark interest in pushing this topic forward, and attempting to bring to-
gether the related but generally non-intersecting approaches that have so far been deployed
in career studies.
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