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Abstract: Accurate prediction results can provide an excellent reference value for the prevention of
large-scale flight delays. Most of the currently available regression prediction algorithms use a single
time series network to extract features, with less consideration of the spatial dimensional information
contained in the data. Aiming at the above problem, a flight delay prediction method based on
Att-Conv-LSTM is proposed. First, in order to fully extract both temporal and spatial information
contained in the dataset, the long short-term memory network is used for getting time characteristics,
and a convolutional neural network is adopted for obtaining spatial features. Then, the attention
mechanism module is added to improve the iteration efficiency of the network. Experimental results
show that the prediction error of the Conv-LSTM model is reduced by 11.41 percent compared with
the single LSTM, and the prediction error of the Att-Conv-LSTM model is reduced by 10.83 percent
compared with the Conv-LSTM. It is proven that considering spatio-temporal characteristics can
obtain more accurate prediction results in the flight delay problem, and the attention mechanism
module can also effectively improve the model performance.

Keywords: flight delay prediction; deep learning; spatio-temporal characteristics; attention mechanism

1. Introduction

For a long time, the basic contradiction in the development of civil aviation was that the
supply capacity could hardly meet the fast-growing market demand, resulting in substantial
fluctuations in flight punctuality and frequent flight delays. During the 13th Five-Year Plan
period, the Civil Aviation Administration of China (CAAC) implemented the policy of
controlling the total amount and adjusting the structure, the problem has been alleviated
to a certain extent by artificially controlling the total number of flights [1]. From 2020,
the total number of flights dropped sharply, and flight punctuality improved due to
COVID-19 [2]. However, as the global epidemic situation slows down, the total number
of flights will continue to rise, and flight delays in the post-epidemic era will continue to
warrant attention [3]. Many factors can lead to flight delays, the most common ones include
air traffic control reasons, weather reasons, airline reasons, and passenger reasons [4], and
with the growth of flight volume, the proportion of irregular flights caused by weather is
increasing, approaching 60% in 2021 [5]. Therefore, it is necessary to study the influence of
weather factors on flight delays and improve the performance of flight delay prediction
under bad weather.

The current flight delay prediction problem can be divided into two main categories:
classification prediction of delay levels and regression prediction of delay times. Compared
with classification prediction models, regression models can predict specific delay times,
providing more granular guidance for practical application in the relevant sectors. The
trending nature of the regression model itself makes it more advantageous in problems that
examine significant associations between independent and dependent variables and the
strength of the effects of multiple different independent variables on a dependent variable,
and the flight delay problem is the result of the interaction of delay times with multiple
characteristic factors in the data.
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In the traditional machine algorithm to build the regression model, Luo et al. first
used the phase space reconstruction theory to find that there are chaotic characteristics in
the time series composed of flight arrival delays and built the flight delay prediction model
by the support vector machine method [6]. Churchill et al. studied the delay spread of
a single flight in multiple chain airports based on two machine learning models, logistic
regression and decision tree. Through experimental comparison, the prediction error of the
logistic regression model is lower [7]. Ma et al. established a chaotic short-term prediction
model based on an extreme learning machine for the chaotic characteristics of flight delay
time series [8]. Luo et al. first added the characteristics of the aviation information network
to the airport data and used the SVR method to obtain a nonlinear regression prediction
model [9]. He et al. built a flight delay prediction model based on the support vector
machine regression method and used the feature with the highest correlation with the flight
delay time in the data set as a variable to predict the overall delay level [10]. Feng et al.
designed a web service based on the linear regression method to predict whether and how
long a flight will be delayed [11]. Wang et al. built a flight delay model based on random
forest regression and decision tree regression using real data sets from large domestic
airports, and the model fit reached 0.83, reducing the risk of overfitting the model [12].

With the continuous development and progress of prediction algorithms and the
successful application of deep learning methods in various fields, recurrent neural networks
are especially widely used in regression problems with time series [13–20]. LSTM (Long
Short-Term Memory) [21] has a strong feature extraction ability for time series data, so
the prediction accuracy is significantly higher than traditional machine learning methods.
Khanmohammadi et al. first adopted the model prediction of ANN, and the results were
due to the traditional backpropagation algorithm [22]. Kim et al. construct sequences for
flight data and, in a single airport, employ an RNN model to predict flight delays [23].
Li et al. built a regression prediction model based on the LSTM network by considering the
correlation between the airline and airport in the time dimension and the space dimension
which can fully extract the information of the flight data [24]. Fu et al. proposed a data
augmentation method for the unbalanced characteristics of the flight delay data set which
improved the prediction performance of the model to a certain extent [25]. Song et al.
specifically constructed a neural network model for the flight segment from Shanghai
Hongqiao Airport to Beijing Capital Airport to achieve dynamic prediction of flight arrival
delays [26]. Wang et al. positioned their research on the departure delay time prediction of
a single flight and dynamically updated the training data through the latest flight operation
data to build a flight delay prediction model [27]. Zhang et al. collected the ADS-B signal
as a dataset and extracted the spatial information in it and built a flight delay prediction
model through the LSTM algorithm [28]. Chen et al. used the Conv-LSTM algorithm to
extract both temporal and spatial features and verified the effectiveness of the model on an
urban rail transit dataset [29]. Zhang et al. captured dynamic spatial dependencies through
the PageRank algorithm, then input LSTM to weight the spatial dependencies, and finally
added a temporal attention mechanism and introduced auxiliary features to improve the
accuracy of the prediction model [30].

In the problem of flight delay regression prediction, a large number of scholars have
studied the time dimension, but there are fewer flight delay prediction models that in-
corporate a comprehensive consideration of the spatial dimension. Aiming at the above
problems, a flight delay prediction model based on Att-Conv-LSTM is proposed. On the
basis of the time series in the extracted data, the meteorological data is added to expand
the feature column, and the spatial information of the data is synchronously extracted by
a convolution operation. It makes full use of the hidden spatial features within the sam-
ples and the temporal features between samples and then adds the attention mechanism
module to improve the learning efficiency of the algorithm. In this paper, the validity of
the proposed model is verified against the flight data of four domestic airports, and the
influence of different factors, such as meteorological data and sequence length on the delay
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state, as well as the weight distribution of the attention module in the time series network
are discussed.

2. Flight Delay Regression Prediction Model

The flight delay regression prediction model consists of three parts which are the data
preprocessing when inputting the model, the training of the network, and the prediction
when outputting the model. The entire prediction structure is shown in Figure 1. The
preprocessing module mainly fuses flight and meteorological data, encodes the fused
data and converts dimensions; the model training module is responsible for building the
network, learning and training network parameters and saving the model; the prediction
module directly outputs the predicted specific time of each flight delay.
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2.1. Model Input

In a deep learning algorithm, the data set input to the model is a crucial part, and a
high-quality data set can greatly improve the performance of the model. Before the original
data is input into the neural network for training, data preprocessing is required first. The
preprocessing process consists of four parts: data cleaning, data fusion, data encoding, and
serialization. After data processing, all variables will be converted into numerical variables
and normalized uniformly, and then the time series will be divided by a sliding window so
that the samples have time series characteristics at the same time.

2.1.1. Dataset Introduction

The dataset used in this paper is the flight and meteorological data of four domestic
airports provided by the North China Air Traffic Administration, namely Beijing Capital
Airport, Beijing Daxing Airport, Tianjin Binhai Airport, and Shijiazhuang Zhengding
Airport, with a sample size of 3.05 million, 790,000, 1.07 million, and 590,000, and the data
was recorded from September 2019 to October 2020. The flight data includes 23 features,
such as “flight number”, “aircraft model”, “take-off and landing time”, “take-off and
landing airport”, “altitude”, and “speed”. Meteorological data is recorded every minute
and includes 49 features, such as “runway visual range”, “rainfall”, “temperature”, and
“wind speed”. In order to better describe the impact of flight delays on the time dimension,
Figure 2 shows a statistical graph of flight delay time at Tianjin Airport from 10:00–14:00 on
1 October 2019.
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The figure records the delay time of 27 flights during this period. It can be seen from
Figure 2 that when the first flight is delayed, it will have a greater impact on the delay
of several flights after a short period of time. With the passage of time, the delay time of
subsequent flights gradually decreases which shows that the impact of flight delays only
exists in several adjacent flights, and the number of flights affected by delays involves the
choice of the parameter of time sequence in the network model.

2.1.2. Data Preprocessing Process

With the development of deep learning in recent years, the architecture of “code-neural
network” has gradually matured. Therefore, keeping the architecture of the neural network
fixed, focusing on the data, and improving the quality of the dataset is a more efficient way
to improve the performance of the model. High-quality datasets can enable models to train
and learn features more efficiently, so dataset preprocessing is particularly important. In
order to obtain a high-quality dataset and make the data more suitable for the input of the
network model, the original data needs to be cleaned first. After merging the cleaned flight
data and meteorological data according to time, encode it, and finally construct time series
samples through the sliding window and input them into the neural network model. The
schematic diagram of the entire data preprocessing process is shown in Figure 3.
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1. Data cleaning and labeling:

When the key features are missing in the data, the method used in this paper is to
delete the entire flight or weather data; when the data contains outliers, the average value of
the features is used to fill in. Since the neural network chosen in this paper is a supervised
algorithm, after cleaning the data, we need to label the training set data.

2. Data fusion:

Putting the features of the data into the model completely and diversely helps the
neural network to extract the information between the features. This paper fuses flight
data and meteorological data, expands the feature columns of the dataset, and enriches the
diversity of samples. In addition, the fusion of meteorological data will greatly increase the
sample size and play a role in data enhancement, making the data set more suitable for the
network model. Before fusion, it is necessary to extract the associated primary key as the
basis for fusion. First, the planned departure time of the flight data is extracted, then the
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recorded time of the weather is extracted, and the two times are used as the key value for
fusion; that is, when the two times are the same, combine the two flight and weather data
into one. In this way, a piece of flight data with the weather information at the moment
when the flight is scheduled to take off is obtained.

3. Data encoding:

In order to eliminate the influence between the dimensions of different feature columns,
the data input to the neural network often needs to encode the data set into the same
dimension and perform normalization processing, so that the neural network can better
learn the association between the data. Since the fused data contains numerical features
and discrete features, this paper adopts different coding methods for these two features [31].
The numerical features use Min-Max normalization coding, and the discrete features use
Catboost coding [32].

4. Serialization:

Due to the short-term temporal correlation between flight delay data, we construct the
input data as a time series, and the serialization process is shown in Figure 4. First, sort the
data set according to the recording time to obtain the data set, then use the sliding window
of the sequence length to perform sliding segmentation, slide down one data at a time, and
obtain a new time series data of length. Use the label of the last flight data in the sequence
data as the output of the network model.
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After constructing the time series samples, it is necessary to divide the data set of the
samples. According to general experience, the proportion of the sample size of the training
set and the verification set in this paper is 8:2.

2.2. Model Output

The prediction of the regression model is the delay in outputting the prediction given
the input variables. After data preprocessing, the input of the model is converted into
tensors to fit the input dimension of the network. Table 1 lists the parameter structure
of the input and output of the Att-Conv-LSTM network. The initial input dimension is
(15, 72), that is, 15 pieces of data obtained after serialization are used as 1 sample, and each
sample contains 72 columns of features. The construct of the Att-Conv-LSTM model makes
its input require four-dimensional data, so the initial data are dimensionally transformed
before being input into the model using the Reshape layer. After dimension conversion, a
four-dimensional array of (15, 8, 9, 1) is obtained, where the last dimension is the number of
filters. The output of each layer of the network is shown in Table 1. The output dimension
indicates the dimension of the data after the current network layer. The parameter quantity
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represents the sum of the parameters in the current network layer and is directly related to
the amount of space used in the disk for that layer of the network.

Table 1. Network structure composition and parameter quantity.

Network Layer Output Dimension Parameter Quantity

Reshape (15, 8, 9, 1) 0
Att-Conv-LSTM (15, 8, 9, 8) 1472

Batch-Normalization (15, 8, 9, 8) 32
Att-Conv-LSTM (15, 8, 9, 16) 9280

Batch-Normalization (15, 8, 9, 16) 64
Att-Conv-LSTM (15, 8, 9, 8) 5792

Batch-Normalization (15, 8, 9, 8) 32
Dense (1) 8641

Since the regression model can obtain the specific delay time, it does not refer to the
standard of no delay within 15 min stipulated by the Civil Aviation Administration of
China. In order to evaluate the error of the model in the flight delay prediction problem,
the evaluation standard used in this paper is RMSE (Root Mean Square Error), and its
calculation formula is

RMSE = (
1
n∑n

i=1 (yi −>yi)
2)

1/2

, (1)

where yi
>yi is the predicted value during training, and the calculation result is in minutes

after the square and square root.

3. Conv-LSTM Network Based on Attention Mechanism

The attention mechanism was first applied to computer vision. In 2014, the Google
team [33] added the attention mechanism to the deep learning recurrent neural network
and achieved remarkable results in the problem of image classification. Then, the attention
mechanism began to be widely used by scholars. Bahdanau et al. [34] applied it to the field
of natural language processing and also obtained good results in translation algorithms. In
2017, the Google team proposed the Transformer encoder–decoder algorithm [35] which
completely adopted the self-attention mechanism, abandoned the recurrent and convo-
lutional neural networks commonly used in deep learning, and fully tapped the basic
depth. The characteristics of neural networks are outstanding in many natural language
processing tasks.

3.1. Network Description

The essence of the attention mechanism stems from visual attention: when the visual
system is facing a scene, it does not browse all the things in the scene but only looks at the
places it focuses on. That is to say when the algorithm learns that in a scene, a certain part
of the information is always highly related to the label; the next time it learns in a similar
scene, the algorithm will focus on this information and try not to look at other sections for
efficiency. The attention-based Conv-LSTM network structure is shown in Figure 5.

In the network structure, Query (hereinafter referred to as Q) is an element in a given
target, and Km (hereinafter referred to as K) is a part of the key value that constitutes the
element. That is, the Keywords: By calculating the relationship between Q and each K,
you can get each weight coefficient of the corresponding value of K and then the weighted
summation, the final attention weight value is obtained. The calculation steps can generally
be divided into the following three steps: (1) Calculate the similarity between Q and K to
obtain the weight; (2) Normalize the calculated weight; (3) With the normalized weights
and Vm weighted sum, the result of the weighted sum is the final attention value. However,
since attention is not an independent model, it just adds new information, and its variant
does not propose a new definition of network layer, so it can only be called an attention
mechanism module not a new model.
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The core part of the attention is a series of weight parameters. It iteratively learns
the degree of association between each element and the label in the sequence and then
reassigns the original input according to its correlation. The weight parameter is assigned
by the attention module. The introduction of the attention mechanism module will assign
different attention sizes to different vectors in a sequence, reflecting the influence of each
vector on predicting the current information. Due to the introduction of new information,
the efficiency of network learning will be greatly improved.

3.2. Feature Extraction

The essence of the attention mechanism is to perform a series of weighted sum op-
erations on the input by generating a weight coefficient for a specific label to identify the
importance of the features in the input to the target. The following mainly introduces the
basic principles of the attention mechanism to further understand the details of feature
extraction inside the regression model. Its implementation is shown in Figure 6:

After the output of the Conv-LSTM network, we can obtain an output X with dimen-
sion (Batch_Size, Step, N), where Batch_Size is the size of the batch, Step denotes the length
of the sequence, and N is the number of network cells. Firstly, X is treated as the feature
of each time node as the input in Figure 6 which is transformed into X1 (Batch_Size, N,
Step) after dimensional conversion to flip the second and third dimensions. Then, the
weights of each feature in each step are calculated using the fully connected layer and
Softmax classifier, and then the second and third dimensions are reduced after dimensional
conversion to obtain X2 (Batch_Size, Step, N). Finally, X2 is multiplied with the input, that
is, the weights of each step, multiplied by their features to obtain the final output value of
the attention mechanism.

In order to realize the attention mechanism, we regard the input raw data as the
form of <Key, Value> key-value pairs, and calculate the similarity coefficient between
the keyword and the value according to the Query value in the given task target, and
the corresponding value can be obtained. Then, use the weight coefficient to weight and
sum the values to get the output. We use Q, K, and V to denote Query, Key, and Value,
respectively. The formula for the attention weight coefficient W is as follows:

W = so f tmax(QKT) (2)
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Figure 7 shows the input and output principles of the attention mechanism:
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Taking a sample x1, . . . , xn with a sequence length of n as an example, as shown in
Figure 7, after the output of the Conv-LSTM network, the attention mechanism module
connected to it first assigns the sequence an tanh activation function to obtain the sequence
et

1, . . . , et
n, where ht−1 represents the intermediate state, Ct−1 represents the hidden state,

and U helps to find the optimal value during the iterative process. Then, through the
so f tmax classifier, each vector in the sequence is assigned a weight value to obtain the
weight sequence αt

1, . . . , αt
n. Finally, the weight sequence is transposed and summed

with the original input sequence to obtain the final output of the attention module. The
calculation formula of the whole process is as follows:

et
k = Vtanh(W[ht−1, Ct−1] + Uxk), (3)

αt
k =

exp(et
k)

∑n
i=1 exp(eti)

, (4)

x̃t = (αt
1xt

1, . . . , αt
nxt

n)
T

. (5)
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3.3. Model Training and Optimization

The training iteration based on the Att-Conv-LSTM prediction model consists of
forward propagation and back propagation which, respectively, completes the forward
propagation from the shallow layer to the deep layer and the reverse back propagation for
continuous error correction. The overall training process of the model is shown in Figure 8.
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3.3.1. Model Training

The training of the model consists of two parts, forward propagation and back prop-
agation. In forward propagation, this paper defines the initial weight value, activation
function, and error function. After forward propagation, the calculation result and the error
value are obtained. In back propagation, the error of the output layer is input to the hidden
layer through back propagation, the hidden layer adjusts the weight value, and performs
forward propagation again, thereby performing an iterative process of network training.

In this paper, the BP [36] chain rule is used in the network training process to calculate
the error term of the hidden layer, and then the weight gradient is calculated according
to the error term. Formula (6) represents the derivation process for the weight matrix

according to the full differentiation rule ∂Z(l)T

∂W(l) = A(l−1), where Z(l) denotes the state of

the neuron at layer l and A(l−1) denotes the output of the neuron at layer l in matrix form.

Then, calculate ∂J
∂W(l) =

∂Z(l)T

∂W(l) ⊗
∂J

∂Z(l) = A(l−1)⊗ ∂J
∂Z(l) according to the chain derivative rule,

and write ∂J
∂Z(l) as δ(l) for convenience of representation. The momentum factor is updated

according to the results of the weight derivation as shown in Formula (7), and finally, the
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weight matrix is updated by Formula (8) for the next iterative process. The calculation
formula of the weight gradient is as follows.

∂J
∂W(I)

= δ(l) ⊗ (A(l−1)), (6)

V(t + 1) = µV(t)− η[(
∂J

∂W(t)
) + λW(t)], (7)

W(t + 1) = W(t) + V(t + 1). (8)

In the above formula, t is the number of iterations, µ is the momentum factor which
indicates the influence of the correction range of the previous weight on the current weight
value, V(t) is the momentum variable, and η is the learning rate which determines the
speed of model training; λ is the weight decay coefficient.

In addition, deep learning generally divides the data set into training set and valida-
tion set. Each round of training will output the average loss value of the entire dataset
through the above-mentioned forward propagation, and whether the loss value of training
and validation is reduced synchronously as the standard, then continuously adjust the
parameters in the network model through back propagation, and finally, obtain a set of
parameters suitable for the network structure.

3.3.2. Model Optimization

In this paper, the Adam [37] algorithm is used to optimize the network. This method
is an improved first-order optimization algorithm based on the traditional stochastic
gradient descent method which can dynamically change the weight value of the neural
network during the iterative training of the neural network. The advantages of the Adam
algorithm are: (1) The implementation method is simple, and there is no need to adjust
hyperparameters. (2) It has an initial learning rate and can be adjusted automatically.
(3) It is suitable for large sample size data and requires less memory. The detailed process
of applying the Adam algorithm to gradient descent during neural network training is
as follows: (1) Update the current number of iterations; as shown in Formula (9), t is
the number of steps to update. (2) Calculate the gradient value of the network objective
function to the parameters; as shown in Formula (10), θ is the parameter to be updated, f (θ)
is the loss function, gt is the gradient obtained by the derivation of the objective function
f (θ) to θ. (3) Calculate the first-order matrix of the gradient values; as shown in Formula
(11), β1 is the first-order moment decay coefficient, mt is the first moment of the gradient gt.
(4) Calculate the second-order matrix of the gradient; as shown in Formula (12), β2 is the
second-order moment Attenuation coefficient, vt is the second moment of the gradient gt.
(5) Correct the first-order matrix; as shown in Formula (13), >mt is the bias correction of mt.
(6) Correct the second-order matrix; as shown in Formula (14), >vt is the bias correction of vt.
(7) Update the parameter θt [38].

t = t + 1, (9)

gt = ∇θ ft(θt−1), (10)

mt = β1·mt−1 + (1− β1)·gt, (11)

vt = β2·vt−1 + (1− β2)·gt
2, (12)

>mt = mt/(1− β1
t), (13)

>vt = vt/(1− β2
t), (14)
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θt = θt−1 − α·>mt/(
√

>vt + ε). (15)

4. Results

This section will introduce the experimental environment and basic parameters and
compare and verify the model performance of the algorithm through various indicators.
The regression prediction model based on Att-Conv-LSTM is an improved model based on
the Conv-LSTM algorithm. Therefore, it is necessary to compare the network performance
of the two from various indicators, such as error, and analyze the influence of flight
information, weather factors, and sequence length on flight delays. The effect of prediction
is verified, and the effectiveness of attention is verified by comparing the experimental
results of different prediction models.

4.1. Experimental Environment and Parameter Configuration

The experimental environment processor is Intel Xeon E5Mu1620, the GPU memory is
11.92GiB, the operating system is Ubuntu16.04 (64-bit), the experimental platform is the
Tensorflow 1.10.0 deep learning framework developed by Facebook, and the development
language is a python language using Pycharm as python development tool to facilitate
better debugging and management of the program.

The experimental data uses domestic flight data from 2019 to 2020. The experiment in
this chapter uses the total flight data set. The data set contains 72 flight and meteorological
features. The features finally input into the neural network are a three-dimensional matrix.

The structure of the flight delay prediction model based on Att-Conv-LSTM is de-
signed according to Figure 1. The network with different layers in the feature extraction
part has the same structure except for the number of filters in the dense block. In this exper-
iment, a random seed is set for the current GPU to ensure consistent training results each
time. The experimental hyperparameters mainly include the selection of loss function and
optimizer, the setting of learning rate correlation value, etc. The complete hyperparameter
configuration of the experiment is shown in Table 2.

Table 2. Experimental environment parameters.

Main Parameters The Parameter Value

Loss function Cross entropy
Learning rate 0.00001

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Batch normalization ξ = 10−3

The number of filters per layer 4/8/4
Convolutional kernel size (3 × 3)

Sequence length 15
Batchsize 256

Epoch 100

4.2. Influence of Meteorological Data on Model Performance

This subsection discusses the improvement in model performance brought about
by meteorological data in regression models. Table 3 lists the comparison of prediction
errors based on the Conv-LSTM network, Beijing Capital Airport fused, and unfused
meteorological data.

Table 3. The effect of meteorological data on errors.

Dataset Amount of Data RMSE

Flight data 59,724 17.52
Flight data with meteorological data 58,586 10.31
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According to the data in the table, it can be seen that in the regression model, the
integration of meteorological data with 1 min precision did not bring about an increase
in the sample size, but rather a decrease due to data pre-processing that removed rows
with a small number of null values in the meteorological data features. The error after
incorporation was reduced by 7.21.

4.3. The Effect of Sequence Length on Model Performance

In the regression model, the network used in this paper is more effective for informa-
tion extraction in the time dimension. Since the sequence length is an important parameter
in the recurrent neural network series, this section will discuss the impact of the sequence
length on the network results during the serialization process. In this paper, five different
step size parameters are tested, and the data set used is the flight and meteorological data
of Beijing Capital Airport. The final accuracy is shown in Table 4.

Table 4. Effect of sequence length on prediction error and training time.

Sequence Length Training Time per Epoch RMSE

1 4 s 11.31
5 8 s 10.26
10 26 s 9.82
15 36 s 12.42
20 49 s 12.84

Table 4 lists the change of the accuracy with the increase in sequence length. The compar-
ison shows that when the sequence length is 10, the RMSE reaches the lowest value of 9.82.

Figure 9 shows a graph of the model error RMSE versus training time as the sequence
length increases. It can be seen from the figure that with the increase in the sequence length,
the error of the model shows a downward trend. When the sequence length reaches 10,
the error value is the lowest, but it is not that the longer the sequence length, the model
performs better. As sequence length increases, the data contains more information, and the
prediction results may be more accurate. However, the larger the sequence length is, the
more difficult it is to capture the change of flight status in the short term, because there is
a short-term temporal correlation between the states of flights, and flight states with too
long a time gap have very little or no effect on the state of flights at the current time. It
also causes the network to learn irrelevant information which causes data redundancy and
increases the prediction error. When it is greater than 10, the model prediction error begins
to decrease, indicating that flight delays only exist in a certain length of time series. At the
same time, as the sequence length increases, the training time also increases gradually.
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The influence of the flight status after a long time on whether the flight at the current
moment is delayed has been small or even disappeared. Therefore, the network will learn
irrelevant information, resulting in data redundancy and increased errors. In addition,
longer time series will consume more training time. Therefore, it is necessary to experiment
to choose the appropriate sequence length so that the prediction error is within a small
range. From the comparison of several sets of data in the chart, it can be seen that, in the
regression model, 10 is a more appropriate time series length value. Therefore, in this paper,
the value of the sequence length is 10 as the basic parameter of the subsequent experiments.

4.4. Comparative Analysis with Traditional Flight Delay Prediction Methods

In order to verify that the Att-Conv-LSTM method based on deep learning has greater
advantages over traditional algorithms in terms of data processing as well as prediction
accuracy, the results of different flight delay prediction models are compared separately
as shown in Table 5. Several regression models, Linear Regression [11], Decision Tree
Regression [12], and Random Forest Regression [12], are trained on the Shijiazhuang
Zhengding Airport dataset which is described in detail in Section 2.1.1. Among the above
methods, Linear Regression constructs linear functions for input and output values, and
Decision Tree Regression and Random Forest Regression are two classical traditional
machine learning regression methods. With the same data set, Linear Regression has
the largest error RMSE value, while Att-Conv-LSTM has the smallest error RMSE value.
The effectiveness of the Att-Conv-LSTM method is verified by comparing it with several
regression analysis methods.

Table 5. RMSE under traditional flight delay prediction methods.

Model RMSE

Linear Regression 16.04
Decision Tree Regression 10.03

Random Forest Regression 12.12
Att-Conv-LSTM 6.81

4.5. Comparative Analysis with Different Time-Series Neural Network Flight Delay
Prediction Methods

In this section, the experiment mainly compares the training errors of three different
network models from the size of the loss value and discusses the role of model improvement
in the iteration of the neural network algorithm.

The loss function is used to estimate the degree of inconsistency between the predicted
value f (x) of the model and the real value y. It is a non-negative real-valued function,
usually represented by L(y, f (x)). In general, the smaller the loss function, the better the
robustness of the model and the better the performance. Table 6 shows the loss values of
the Bi-LSTM network, Conv-LSTM network, and Att-Conv-LSTM network model training.

Table 6. RMSE under different time-series regression models.

Dataset Bi-LSTM Conv-LSTM Att-Conv-LSTM

Beijing Capital Airport 10.75 9.82 8.97
Beijing Daxing Airport 9.16 7.87 7.23
Tianjin Binhai Airport 10.27 9.12 8.25

Shijiazhuang Zhengding Airport 9.31 8.21 6.81

It can be seen from the experimental results in Table 6. Compared with Bi-LSTM, the
Conv-LSTM network adds the convolution part, and the error is reduced by an average of
11.41% in the datasets of the four airports; compared with Conv-LSTM, Att-Conv-LSTM
network adds an attention mechanism to further extract the time information in the data,
and the error is reduced by an average of 10.83%.
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Figure 10 shows the decreasing trend of the training loss value based on the Att-Conv-
LSTM network under the Shijiazhuang Airport dataset. The horizontal axis represents the
number of training rounds, and the vertical axis represents the loss value. The sample size of
the training set accounts for 80%, the sample size of the validation set accounts for 20%, and
the number of model training rounds is 100 rounds. The sequence length of this experiment
is 10, and the other hyperparameter configurations remain the same as in Table 2.
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The curves of the training set and the validation set of the four airports in this paper
all fit well. Generally, the smaller the loss value, the better the training effect. As can be
seen from the above figure, under the Att-Conv-LSTM network model, the loss values of
the training set and the validation set decrease gently, and the fitting is good which is in
line with the declining law of the general deep learning model of which the RMSE of the
validation set is the lowest, reaching 6.81.

4.6. Feature Dimension Analysis of Attention Mechanism

In the classification model and regression model, the time dimension is the most
important information in the network feature extraction, and the time series length is also
an important parameter in the model. The attention mechanism added in the improved
model can assign a weight to each step size in each sample. This section visualizes the
weight parameters in the two models in order to see more intuitively the effect size of the
time series in the network.

In the experimental analysis in Section 4.3, the sequence length value of 10 is the most
suitable choice for the regression model. Similarly, the weight of the attention feature is
visualized as shown in Figure 11. It can be seen that the closer to the forecast data to be
predicted, the more weighted the bar data vector is in a sample with a stride of 10.

Entropy 2023, 25, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 10. Loss value curve of Shijiazhuang Zhengding Airport in Att-Conv-LSTM model. 

4.6. Feature Dimension Analysis of Attention Mechanism 
In the classification model and regression model, the time dimension is the most im-

portant information in the network feature extraction, and the time series length is also an 
important parameter in the model. The attention mechanism added in the improved 
model can assign a weight to each step size in each sample. This section visualizes the 
weight parameters in the two models in order to see more intuitively the effect size of the 
time series in the network. 

In the experimental analysis in Section 4.3, the sequence length value of 10 is the most 
suitable choice for the regression model. Similarly, the weight of the attention feature is 
visualized as shown in Figure 11. It can be seen that the closer to the forecast data to be 
predicted, the more weighted the bar data vector is in a sample with a stride of 10. 

 
Figure 11. Attention feature dimension map under regression model. 

5. Conclusions 
To give more accurate flight delay prediction results, a flight delay regression predic-

tion model Att-Conv-LSTM is proposed in this paper. The model can predict the specific 
delay time using spatio-temporal neural network and the attention mechanism module 
and considering meteorological information. The effectiveness of the model is verified in 
the dataset of four airports in Beijing, Tianjin, and Hebei. The main conclusions of the 
paper are as follows: 
1. Compared with a single temporal neural network, a higher accuracy can be obtained 

by simultaneously extracting time series features and spatial features in the data. At 
the same time, the attention module is added to further improve the learning effi-
ciency of the network. 

Figure 11. Attention feature dimension map under regression model.



Entropy 2023, 25, 770 15 of 16

5. Conclusions

To give more accurate flight delay prediction results, a flight delay regression predic-
tion model Att-Conv-LSTM is proposed in this paper. The model can predict the specific
delay time using spatio-temporal neural network and the attention mechanism module
and considering meteorological information. The effectiveness of the model is verified
in the dataset of four airports in Beijing, Tianjin, and Hebei. The main conclusions of the
paper are as follows:

1. Compared with a single temporal neural network, a higher accuracy can be obtained
by simultaneously extracting time series features and spatial features in the data.
At the same time, the attention module is added to further improve the learning
efficiency of the network.

2. The flight delay status has a short-term time correlation, so the length of the time
series in the data is an important parameter in the Att-Conv-LSTM network. If the
sequence is too long, it will result in data redundancy and reduce prediction accuracy.
For the four domestic airport datasets selected in this paper, when the sequence length
is 10, the model can achieve the best performance.

3. Meteorological factors are one of the most important factors that cause flight delays.
After adding meteorological data, the dataset becomes more feature attributes, the
convolution structure in the algorithm can play a greater role, and the accuracy rate
will be improved accordingly.

The follow-up research will focus on feature engineering, how to improve the accuracy
of the model by improving the quality of the dataset, and study the realization of the
regression model to predict the specific delay time.
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