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Abstract: Basketball is a popular sport worldwide, and many researchers have utilized various
machine learning models to predict the outcome of basketball games. However, prior research has
primarily focused on traditional machine learning models. Furthermore, models that rely on vector
inputs tend to ignore the intricate interactions between teams and the spatial structure of the league.
Therefore, this study aimed to apply graph neural networks to basketball game outcome prediction,
by transforming structured data into unstructured graphs, to represent the interactions between
teams in the 2012–2018 NBA season dataset. Initially, the study used a homogeneous network
and undirected graph to build a team representation graph. The constructed graph was fed into
a graph convolutional network, which yielded an average success rate of 66.90% in predicting the
outcome of games. To improve the prediction success rate, feature extraction based on the random
forest algorithm was combined with the model. The fused model yielded the best results, and the
prediction accuracy was improved to 71.54%. Additionally, the study compared the results of the
developed model with previous studies and the baseline model. Our proposed method considers the
spatial structure of teams and the interaction between teams, resulting in superior performance in
basketball game outcome prediction. The results of this study provide valuable insights for basketball
performance prediction research.

Keywords: unstructured data; graph convolutional network; game outcome prediction; features
extraction; random forest

1. Introduction

Machine learning (ML) is an interdisciplinary field that combines computer science,
statistics, and other disciplines to develop predictive models that imitate certain aspects
of human thinking. Accurate prediction is essential for various industries, including
policy-making, risk prevention, resource management, and economic and social develop-
ment. In the sports industry, prediction models are increasingly used by coaches, players,
and companies to improve competitiveness and profits. For example, accurate predic-
tions can inform sales planning, investment decisions, training programs, tactical choices,
and injury prevention strategies [1–3].

Sports industries have grown rapidly in recent decades, driven by economic, techno-
logical, and social developments. Sports markets generate significant value and revenue,
such as through sports betting, venue management, and broadcast management, as exem-
plified by the 2022 FIFA World Cup in Qatar. With the rise in popularity of sports, there has
been growing interest in predicting sports outcomes [4–6]. Among all sports, the National
Basketball Association (NBA) in the United States is one of the most influential basketball
leagues, generating billions of dollars in revenue. Winning games, gaining advantages,
and maintaining team performance are crucial goals for competitive organizations such
as the NBA. To achieve these goals, coaches and team administrators analyze and predict
future team and player performance, and adjust team lineups and tactics accordingly.
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While sports outcome prediction has received widespread attention [7–12], the existing
research has mainly focused on basketball, particularly NBA games, using data mining
methods or traditional machine learning models [13–20]. However, there has been less
research on applying graph neural networks (GNN) to predict basketball game outcomes.
This paper will use the NBA as an example to build a team representation graph. To increase
the model’s utility in different sports and basketball leagues, we will use a homogeneous
network and undirected graph to predict winning and losing outcomes in basketball games.

In this paper, we propose a basketball game outcome prediction method based on
graph convolutional networks. The GCN methodology has been widely applied to various
practical fields, such as computer vision, natural language processing, traffic, recommender
systems, and chemistry [21]. We chose GCN as our prediction model, due to its ability
to consider the influence of competitors, gain insight into team relationships, and its
applicability to different sports and basketball leagues.

The proposed model was applied to the NBA dataset from 2012 to 2018. We trans-
formed traditional structured data into unstructured graph data to represent NBA teams
spatially and used the random forest (RF) algorithm for feature extraction. We then per-
formed a GCN-based game outcome prediction analysis, using the constructed graph. Our
aim is to stimulate information transfer between teams, deepen their understanding of
their strengths, and improve future performance based on predictions.

This paper contributes to the literature in several ways. First, we apply GCN to the
basketball game prediction problem, which, to the best of our knowledge, has not been
done before. Second, we convert NBA game data into graph structure data, which allows us
to understand the advantages of each team in the NBA and use it for game result prediction
analysis. Third, we use RF and other methods to extract features from the NBA dataset and
use the GCN model to predict the game outcome, resulting in a better prediction accuracy
than previous studies.

Section 2 reviews the relevant literature, while Section 3 briefly describes the overall
flow of our study, explains the methodology used in the study, and presents the graph
structure of the NBA. In Section 4, we introduce the dataset, apply the proposed model
and algorithm to the NBA dataset, and compare and evaluate it with the baseline model.
Finally, Section 5 discusses and concludes the paper.

2. Related Work

It is important to note that this paper proposes a graph convolutional network (GCN)
prediction model for basketball games, which is specifically applied to the NBA dataset.
Therefore, the relevant literature for this study mainly focused on two aspects: basketball
game outcome prediction and the GNN methodology, as well as sports outcome prediction.

2.1. Basketball Game Outcome Prediction

In this section, we will examine the data sets used in previous studies for predicting
basketball game outcomes, the number of features used in each study, the most successful
algorithm employed, and the corresponding success rates achieved.

In recent years, several studies have been conducted to predict the outcomes of
basketball games using machine learning algorithms. Loeffelholz et al. [22] used neural
networks to model the NBA 2007–2008 season and found that the most effective method
was the feed-forward neural network (FFNN), with a success rate of 74.33%. Similarly,
Zdravevski and Kulakov [23] predicted two consecutive NBA seasons using algorithms
in Weka, with logistic regression being the most effective method, with a success rate of
72.78%. On the other hand, Miljkovic et al. [24] predicted the NBA 2009–2010 season games
using data mining and found that the most efficient method was naive Bayes, with a success
rate of 67%.

Cao [25] used machine learning algorithms to build a model for predicting NBA game
outcomes and found that simple logistic regression was the most effective method, with
a success rate of 69.67%. Lin, J. et al. [26] attempted to determine the winners of NBA
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1991–1998 season games using random forests and achieved a 65% success rate. Tran, T. [27]
predicted NBA games using matrix factorization, with an accuracy of 72.1%.

Li, Y. et al. [13] attempted to predict the games for the NBA 2011–2016 seasons using
a data envelopment analysis methodology and tested with the 2015–2016 season, with a
73.95% accuracy rate. Horvat, T. et al. [17] used seven different machine learning models to
predict basketball game outcomes for the NBA 2009–2018 season and found that k-nearest
neighbors was the best method, with an accuracy of 60.01%. Li [28] conducted a study
on modeling the NBA 2012–2018 season using machine learning classifiers. The study
employed three different classifiers and found that linear regression following use of a least
absolute shrinkage and selection operator (LASSO) was the most effective method, achiev-
ing a success rate of 67.24%. In another study conducted by Ozkan I A. [18], the outcomes
of games from the 2015–2016 season of the Turkish Basketball Super League were estimated
using a concurrent neuro-fuzzy system, with a 79.2% success rate.

ÇENE E. [29] explored the performance of seven different algorithms in predicting
EuroLeague games for the 2016–2017 and 2020–2021 seasons. Their findings revealed that
logistic regression, support vector machines (SVM), and artificial neural networks (ANN)
were the most effective models, with an overall accuracy of approximately 84%.

Another study by Osken C and Onay C. [30] focused on identifying player types using
k-means and c-means clustering, and using cluster memberships to train prediction models.
Their approach achieved a prediction accuracy of 76% over a period of five NBA seasons.

Table 1 presents a comparison of previous studies that have attempted to predict
basketball game outcomes. The table displays the datasets used in each study, the number
of data points and features, the most successful algorithm used, and the corresponding
success rates achieved.

Table 1. Studies in the literature on predicting the outcome of basketball games.

Author(s) Year Amount of
Data

Number of
Features Dataset Model Success Rate

Loeffelholz et al. [22] 2009 620-Training,
30-Test 11 NBA 2007–2008 FFNN 74.33

Zdravevski and Kulakov [23] 2009 50%-Training,
50%-Test 10

NBA
2consecutive

seasons

Logistic
Regression 72.78

Miljkovic et al. [24] 2010 778 games 32 NBA 2009–2010 Naive Bayes 67

Cao [25] 2012 80%-Training,
20%-Test 46 NBA 2005–2011 Simple Logistic

Regression 69.67

Lin, J. et al. [26] 2014 85%-Training,
15%-Test 17 NBA 1991–1998 Random Forests 65

Tran, T. [27] 2016 - 15 NBA 1985–2015

Dependent
Probabilistic

Matrix
Factorization

72.1

Li, Y. et al. [13] 2019 80%-Training,
20%-Test 10 NBA 2011–2016 DEA 73.95

Horvat, T. et al. [17] 2020 11,578 games 10 NBA 2009–2018 K-NN 60

Li [28] 2020 7380 games 14 NBA 2012–2018 Linear
Regression 67.24

Ozkan I A. [18] 2020 240 games 9

Turkish
Basketball

Super League
2015–2016

CNFS 79.2

ÇENE E. [29] 2022 70%-Training,
30%-Test -

EuroLeague
2016–2017,
2020–2021

Logistic
Regression,
SVM, ANN

84

Osken C and Onay C. [30] 2022 - 49 NBA 2012–2018 ANN 76
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2.2. GNN Methodology and Sport Outcome Prediction

The second category of relevant research focused on GNN, which is a cutting-edge
method used for sports outcome prediction. This technique can be traced back to Alek-
sandra P. (2021) [31], who used the GNN model to predict the outcomes of soccer games.
In the study, the author employed individual teams as nodes, past games as edges, and as-
signed different weights to the edges, to reflect recent games’ greater impact on the team
performance. The model was trained on a soccer dataset of a league, with an accuracy of
52.31%. Similarly, Xenopoulos P. and Silva C. (2021) [32] used a graph-based representa-
tion of the state of the game as input to GNN to predict the outcome of NFL and CSGO
games, resulting in a reduction of test set losses by 9% and 20%, respectively. Additionally,
Mirzaei A. (2022) [33] utilized dynamic graph (specifically a spatiotemporal graph) rep-
resentation learning to predict soccer games, using only the names of teams and players,
achieving an estimation accuracy of 50.36%. Bisberg A J and Ferrara E. (2022) [34] modeled
LoL (League of Legends) games with GCN, achieving an estimation accuracy of 61.9%.
The training, validation, and test networks were LPL (League of Legends Pro League), LCK
(LoL Champions Korea), and LCS (League of Legends Championship Series), respectively.
Moreover, the utilization of GCN combined with RF has proven to be successful in various
relevant cross-domain areas. For instance, Chen et al. [35] proposed a model that integrates
random forest and Graph WaveNet to capture spatial dependencies and extract long-term
dependencies from spatiotemporal data. The efficacy of this approach was demonstrated
on real-world datasets for traffic flow and groundwater level prediction, resulting in im-
proved performance. Similarly, in the field of activity recognition, Hu et al. [36] proposed a
correlation coefficient-based method to generate a graph from motion signals, followed by
random forest classification, resulting in a significantly high accuracy. Table 2 compares
previous studies’ use of GNN to predict game outcomes, including the datasets, amount of
data and features, the most successful models, and success rates.

Table 2. Studies in the literature on using GNN to predict the outcome of games.

Author(s) Year Amount of Data Number of Features Dataset Model Success Rate

Aleksandra P. [31] 2021 216,743 games No feature 52 leagues (Soccer) GNN
49.62 (multiple
leagues), 52.31
(single league)

Xenopoulos P. and
Silva C. [32] 2021 4038 games (NFL) - NFL 2017 season GNN -

Mirzaei A. [33] 2022 21,374 games Lineup 11 countries and 11
leagues (soccer) GNN 50.36

Bisberg A J and
Ferrara E. [34] 2022

LPL-Training,
LCK-Validation,

LCS-Test
5 LPL, LCK and LCS GCN 61.9

Several researchers have developed GNN prediction models for various sports, but
these models generally suffer from low accuracy. While some methods for predicting NBA
game outcomes exist, few studies have applied GNN to basketball games. Thus, this paper
proposes a new basketball game outcome prediction model and explores its application in
the NBA.

In contrast to previous research, this study divides NBA games played between the
2012 and 2018 seasons into six datasets and extracts features using principal component
analysis (PCA), least absolute shrinkage and selection operator (LASSO), and random
forest (RF) models. The results are then predicted using GCN.

3. Methodology

The following Figure 1 depicts an outline of the process of this paper. In the subsequent
subsections, we will provide a more detailed explanation of each step.



Entropy 2023, 25, 765 5 of 16

Figure 1. Basic flowchart of the study.

3.1. Graph Networks Construction

The objective of this study was to develop a team structure in the NBA that can be
used to predict game outcomes. To achieve this objective, we needed to create a graph that
defines the nodes and their relationships. In our research, we employed a homogeneous
graph that has only one node type and one relationship type. This type of graph provides a
simplified representation of the graph data and can be used in other basketball leagues.

An example of a homogeneous graph is presented in Figure 2. In this graph, each
node represents a team and contains information about 44 features. Nodes are labeled as
wins or losses for games, and the edges between the nodes represent recent games related
to the teams. Specifically, at time t, team A is directly connected to opponent team B, at time
t + 1, team A is directly connected to team C, and team B is directly connected to team D,
and at time t − 1, team A is directly connected to team E, and team B is directly connected
to team F. Moreover, each team is also connected to itself from its last game.

Since the structure of the graph is symmetric, the games are arranged in ascending
chronological order for each team. Thus, one team in the graph is connected to its own
last and next games. This structure enables us to consider the impact of recent games on
the prediction of game outcomes. Additionally, the graph convolutional network (GCN) is
able to learn the structure of the network built. Therefore, the prediction task can also be
interpreted as a node classification task.
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Figure 2. An illustration of the proposed homogeneous graph for sport outcome prediction.

3.2. Principal Component Analysis

Principal component analysis (PCA) is a widely used statistical technique that aims to
reduce the dimensionality of a dataset, while retaining the maximum amount of original
variation. The underlying concept of PCA involves finding the directions, also known as
“principal components”, in which the data varies the most, and projecting the data onto
these components.

Specifically, PCA identifies the first principal component as the direction with maxi-
mum variability in the data, and the subsequent principal components correspond to the
direction of maximum variability, after removing the earlier components. The number of
principal components equals the number of variables in the original dataset.

Our first step in performing a PCA on the data was to standardize it by subtracting
the mean of each variable from each data point and dividing it by the standard deviation
of each variable. Next, we computed the covariance matrix, which provides information
about the relationship between each pair of variables. Using the covariance matrix, we
derived the eigenvalues and eigenvectors, which indicate the amount of variance explained
by each principal component and the direction of the principal components, respectively.
These principal components are created through linear combinations of the original vari-
ables and are sorted in descending order of their corresponding eigenvalues. Based on a
predetermined number of components or the desired level of variance to be explained, we
then selected the top k principal components that accounted for the most variance in the
data. Finally, we projected the original data onto the principal components, to transform it
into the new coordinate system defined by the principal components.

By selecting only the most important principal components, PCA reduces the number
of variables required to describe the data, making the analysis more manageable and
efficient. This can also lead to an improved accuracy and interpretability of the results.

3.3. Feature Extraction Based on the LASSO Algorithm

The LASSO algorithm is a widely used method for feature selection in machine
learning. Its primary purpose is to extract a subset of important features from a large pool
of available features. The algorithm operates by adding a penalty term to the cost function
of a linear regression model. This penalty term encourages the coefficients of less important
features to be reduced to zero. As a result, the LASSO algorithm produces a sparse model,
where only the most significant features are retained.

The LASSO (least absolute shrinkage and selection operator) algorithm is a form of
regularization technique, which is commonly used to reduce the complexity of a model by
selecting the most relevant features, while setting the coefficients of less important features
to zero.
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The LASSO algorithm operates by adding a penalty term to the linear regression
objective function, which encourages sparsity in the coefficients. The penalty term is the
sum of the absolute values of the coefficients multiplied by a hyperparameter, known
as the regularization parameter. By increasing the regularization parameter, the LASSO
algorithm sets more coefficients to zero, effectively removing the corresponding features
from the model.

3.4. Feature Extraction Based on the Random Forest Algorithm

Random forest is a widely used machine learning algorithm for classification and re-
gression tasks, belonging to the ensemble learning category, where it aggregates predictions
of multiple models to generate a final prediction. Random forest can also be employed for
feature extraction, by identifying the most significant features within a dataset. The algo-
rithm works by creating multiple decision trees, where each tree is trained on a random
subset of data and features. The final prediction is then made by aggregating the results of
all trees.

During the training of the model, random forest calculates the importance of each
feature based on its contribution to the overall accuracy of the model. The features that have
a higher contribution are assigned higher scores. By analyzing these scores, we can identify
the most important features within the dataset. This process is beneficial when dealing
with high-dimensional data or when we want to simplify the model without compromising
its accuracy.

In conclusion, random forest is a valuable tool for feature extraction and can assist
in identifying the most relevant features within a dataset, which can be used to improve
machine learning models. Figure 3 depicts the process of feature extraction using ran-
dom forest.

Figure 3. Schematic diagram of feature dimensionality reduction based on random forest.

3.5. Graph Convolutional Network

Graph convolution networks (GCN) are neural networks that process data represented
by graph structures, making them an effective tool for analyzing and modeling complex
data that cannot be modeled using traditional Euclidean space models. Unlike traditional
convolutional neural networks that operate on images, GCN uses a convolution operator
on the graph structure.

The formula for graph convolution is expressed as

h(l+1)
i = σ

(
∑

j∈Ni

1
cij

W(l)h(l)j

)
(1)

Here, h(l)i denotes the feature vector of node i at layer l, W(l) represents the weight
matrix at layer l, cij is a normalization constant, and σ is an activation function. Ni
represents the set of neighboring nodes to node i.

The aforementioned formula serves as the fundamental operation in GCN. The output
feature vector of a node is a weighted sum of its neighboring nodes’ feature vectors,
passed through a nonlinear activation function. This process is repeated for multiple
layers, enabling GCN to learn hierarchical representations of the graph structure. More
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experimental details can be found in the following link: https://github.com/KaiZhao-
Aike/nbagcn.git (accessed on 20 March 2023).

4. Experiment and Results

In this study, our goal was to accurately predict the outcomes of NBA games. We elab-
orate on the dataset, experimental procedures, and results in the subsequent subsections.

4.1. Datasets

Acquiring sufficient relevant data is a fundamental requirement for building effective
prediction models. With the era of big data and rapid technological advancements in the
sports industry, obtaining statistical information on sports has become easier. In this study,
we utilized a dataset containing NBA statistics from 2012 to 2018 obtained from Kaggle,
a data modeling and analysis competition platform that enables companies and researchers
to explore machine learning. The dataset, submitted by Paul Rosetti, is called “NBA
Enhanced Box Score and Standings (2012–2018)” [37]. The file 2012-18_teamBoxScore.csv,
included in this dataset, contains basic and advanced data for each of the 82 games played
by 30 NBA teams in each season from the 2012–2013 to the 2017–2018 seasons. It covers
only the regular games of the NBA seasons during this period. The dataset consists of two
rows for each game, representing the home team and the away team, with a total of 14,758
rows (excluding one game in the 2012–2013 season). To predict game outcomes using GCN,
we divided the statistics for each season into separate datasets, resulting in six datasets in
total. Table 3 provides the definitions of the 44 features used in this study. All the features
used in our prediction model were calculated per team and per game. They were calculated
by aggregating the statistics of the players who played in the game for each team. We
calculated features such as “Team2p%” and “Team3p%” by computing the percentage of
2-point and 3-point shots made by each team in that particular game. Other features such
as “TeamFTA” and “TeamFTM” were calculated by counting the number of free throws
attempted and made by each team in the game, respectively.

4.2. Feature Engineering

The primary objective of this paper was to utilize a GNN model to predict basket-
ball game outcomes. To achieve this goal, feature extraction was critical for improving
the accuracy of the model. The selection of appropriate features is crucial for accurate
prediction, and it appears to be more important for the accuracy than the availability of a
large number of games/instances (Bunker et al., 2022) [5]. The manual selection of features
based on researchers’ domain expertise can be challenging to interpret, so machine learning
algorithms can be employed to output feature importance. The PCA, LASSO, and RF
methods were used to extract key variables as input features, reduce the dimension of the
input data, and thus improve the model’s performance.

The feature extraction method applied to our GCN model consisted of two steps.
The first step involved the correlation coefficient matrix, as illustrated in Figure 4, which
displayed the correlation coefficients between the features. A heatmap graphically repre-
sented data, using color to depict values. Near the scale of 0, the color indicates that two
features are not correlated. As the color gradually becomes lighter, the positive correlation
between the two features strengthens. Conversely, as the color darkens, the negative cor-
relation between the two features intensifies. The overall colors suggested that some of
the 44 features were highly correlated, indicating redundancy in the feature information.
Therefore, performing feature extraction was appropriate and meaningful.

The second step involved the application of three feature extraction methods proposed
in this paper. We randomly split the dataset into training, validation, and test sets, using a
70-10-20 ratio. The training set was used to fit the feature extraction models, and then the
validation and test sets were transformed using the same models.

https://github.com/KaiZhao-Aike/nbagcn.git
https://github.com/KaiZhao-Aike/nbagcn.git
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Table 3. The 44 feature definitions and specific descriptions.

Features Description Features Description

teamLoc Identifies whether team is home or visitor teamDayOff Number of days since last game played
by team

teamAST Assists made by team teamTO Turnovers made by team
teamSTL Steals made by team teamBLK Blocks made by team
teamPF Personal fouls made by team teamFGA Field goal attempts made by team

teamFGM Field goal shots made by team teamFG% Field goal percentage made by team
team2PA Two-point attempts made by team team2PM Two-point shots made by team
team2P% Two-point percentage made by team team3PA Three-point attempts made by team
team3PM Three-point shots made by team team3P% Three-point percentage made by team
teamFTA Free throw attempts made by team teamFTM Free throw shots made by team
teamFT% Free throw percentage made by team teamORB Offensive rebounds made by team
teamDRB Defensive rebounds made by team teamTRB Total rebounds made by team

teamTREB% Total rebound percent by team teamASST% Assisted field goal percent by team
teamTS% True shooting percentage by team teamEFG% Effective field goal percent by team

teamOREB% Offensive rebound percent by team teamDREB% Defensive rebound percent by team
teamTO% Turnover percentage by team teamSTL% Steal percentage by team

teamBLK% Block percentage by team teamBLKR Block rate by team
teamPPS Points per shot by team teamFIC Floor impact counter for team

teamFIC40 Floor impact counter by team per 40 min teamOrtg Offensive rating for team
teamDrtg Defensive rating for team teamEDiff Efficiency differential for team

teamPlay% Play percentage for team teamAR Assist rate for team
teamAST/TO Assist to turnover ratio for team teamSTL/TO Steal to turnover ratio for team

poss Total team possessions pace Pace per game duration

The first method was PCA, which is an unsupervised method that maximizes the
variance, without using output information. PCA was utilized to reduce the dimension
of the features and eliminate correlations among them. To determine the number of
principal components n_components, we set this to a contribution rate of 0.95, resulting
in the extraction of seven principal components. This step effectively reduced the model
complexity, improved its running speed, and eliminated the influence of feature correlation.
In subsequent experiments, we utilized a graph-based model, by inputting the seven
principal components obtained earlier, in order to examine the model improvement effect.

The LASSO method is a powerful feature extraction technique that is able to reduce
variance, select the most relevant features from a potentially large and multicollinear set of
predictors, identify redundant predictors, and improve prediction accuracy. After applying
LASSO, the coefficients of some features were reduced to zero and these features were
excluded from the model. The remaining features with nonzero coefficients were used to
build the final model. In our experiment, we used the scikit-learn implementation of the
LASSO regression model on the training set to select the most important features, by setting
alpha 0.1. To illustrate the application of LASSO, we used data from the NBA 2013–2014
season to predict game outcomes. Our results showed that, out of 44 features, only 12 fea-
tures were selected by LASSO for prediction. As shown in Table 4, these features included
teamEDiff (0.361368), teamPF (−0.037388), teamFTA (0.028293), teamPPS (0.024126), team-
Drtg (−0.017633), team3PA (−0.009556), teamBLK% (0.006646), team3P% (0.004803), team-
STL/TO (0.004417), teamDREB% (−0.004153), teamFIC (0.004135), and teamTO (−0.002860).
Overall, our findings suggest that LASSO can effectively identify the most important pre-
dictors in complex regression models with many potential predictors, and thus improve
the prediction accuracy.

To identify the most important features and gain unique insights into their contribu-
tions to the prediction task, we employed the random forest (RF) method. In our study,
we used the classification and regression tree (CART) algorithm for random forest and the
mean decrease impurity method for calculating feature importance. By ranking the features
according to their importance, low-importance features could be ignored without adversely
affecting the accuracy of the model. This step helped to significantly reduce the noise
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and data redundancy in the analysis. The results of the RF method, presented in Table 5,
provided clear indications of the feature importance, allowing us to reduce the number
of features from 44 to 3. Among the top-ranked features, which consistently appeared
as the most important across the six seasons, were teamEDiff, teamDrtg, and teamFIC.
The extracted features were utilized to train the models, thereby enhancing their overall per-
formance. To ensure the consistency of the feature importance results across the six datasets,
we chose the 2013–2014 season as a representative sample. This season was selected because
it demonstrated a consistent pattern of change in the feature importance results.
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Figure 4. Correlation coefficient heatmap of 44 features in the 13–14 season.

Table 4. The 44 feature coefficients calculated by the LASSO algorithm from the NBA 2013–2014 season.

Features Score Features Score Features Score

teamEDiff 0.361368 teamDRB 0.000000 teamFIC40 0.000000
teamFTA 0.028293 teamFGM 0.000000 teamTREB% 0.000000
teamPPS 0.024126 teamFGA 0.000000 teamBLKR 0.000000

teamBLK% 0.006646 teamBLK 0.000000 teamTO% 0.000000
team3P% 0.004803 teamSTL 0.000000 teamOREB% 0.000000

teamSTL/TO 0.004417 teamAST 0.000000 teamEFG% 0.000000
teamFIC 0.004135 teamDayOff 0.000000 teamTS% 0.000000
teamFT% 0.000000 teamORB 0.000000 teamASST% 0.000000
teamFTM 0.000000 teamTRB 0.000000 teamLoc 0.000000
team3PM 0.000000 poss 0.000000 teamTO −0.002860
team2P% 0.000000 teamSTL% 0.000000 teamDREB% −0.004153
team2PM 0.000000 teamAST/TO 0.000000 team3PA −0.009556
team2PA 0.000000 teamAR 0.000000 teamDrtg −0.017633

pace 0.000000 teamPlay% 0.000000 teamPF −0.037388
teamFG% 0.000000 teamOrtg 0.000000 - -
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Table 5. The 44 features importance ranking based on random forest from the NBA 2013–2014 season.

Features Score Features Score Features Score

teamEDiff 0.3846 teamFG% 0.0097 teamPF 0.0038
teamDrtg 0.1163 teamSTL% 0.0092 team2PA 0.0037
teamFIC 0.1018 team3PM 0.0079 poss 0.0033
teamPPS 0.0602 teamAST 0.0069 teamDREB% 0.0033
teamOrtg 0.0438 teamBLK% 0.0057 team2PM 0.0032

teamPlay% 0.0331 teamSTL/TO 0.0057 teamFGA 0.0030
teamEFG% 0.0252 teamFGM 0.0054 teamORB 0.0027

teamTREB% 0.0187 teamAST/TO 0.0051 teamBLK 0.0021
teamTRB 0.0156 teamBLKR 0.0050 teamFTA 0.0018
teamDRB 0.0155 teamFT% 0.0044 pace 0.0017
teamAR 0.0154 teamFTM 0.0042 teamTO 0.0012
team3P% 0.0152 teamTO% 0.0042 teamLoc 0.0007
teamTS% 0.0145 team3PA 0.0040 teamDayOff 0.0007
team2P% 0.0132 teamOREB% 0.0038 teamSTL 0.0007

teamFIC40 0.0101 teamASST% 0.0038 - -

4.3. Experimental Results and Comparison

In this section, we present a quantitative analysis of our model, including an evalu-
ation of its prediction accuracy and a comparison of its performance with other models.
To construct the graph, we used the open-source fork of Thomas Kipfs’s original GCN
model [38] available at [39], and implemented it in Python using Pytorch [40]. The adja-
cency matrix constructed in Section 3.1 was used to construct the graph that was then fed
into the GCN. We split the basketball dataset into 70% for training, 10% for validation,
and 20% for testing. Our experiment involved training the GCN model for 500 epochs,
with a learning rate of 0.01 and a hidden layer size of 64. To prevent overfitting and improve
the model’s generalization, we used a dropout rate of 0.5 during training.

Tables 6–9 showcase the prediction accuracy of the various graph-based models in
predicting basketball game outcomes using the 2012–2018 NBA season dataset. This study
found that the graph architectures used in the models were highly effective in predict-
ing the outcomes, with the graph-based models outperforming the previously studied
prediction models.

This study also found that combining GCN models with feature extraction resulted
in better outcomes than using GCN models alone. Feature extraction was identified as
an important factor in achieving better results. We observed that the GCN + RF model
achieved the highest average accuracy of 71.54% on all datasets, outperforming the widely
used baseline model. The GCN + LASSO model also showed high accuracy levels and
outperformed the original GCN model.

However, the study found that GCN + PCA did not yield the desired outcomes. The
PCA dimensionality reduction criterion selects principal components that maximize the
variance of the original data on the new axis, potentially losing some important information.
Moreover, features with small variances are not necessarily unimportant, and such a unique
criterion may overlook crucial data. The results suggest that reducing the input space’s
dimensionality may have resulted in the loss of vital information necessary for predicting
the game’s outcomes.

The aim of this study was to determine the impact of graph-based models on the
prediction of basketball game outcomes, and the findings demonstrated that the GCN + RF
model achieved the best average performance over the six datasets. The study identified
the most critical factors affecting the outcome of NBA games based on the evaluation
metrics, providing valuable information for team administrators and coaches, who can
utilize this information to improve team playing abilities based on the key factors that
affect the winning or losing of a game.

Although adding more features should theoretically result in better prediction results,
our study found that the prediction performance improved after extracting important
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features from the NBA dataset. This emphasizes the significance of appropriate feature
extraction for effective prediction. Our results showed that, compared to the original
GCN model, the GCN models derived from the RF and LASSO techniques demonstrated
improved accuracy. While LASSO outperformed RF in certain seasons, on average, RF
showed a slightly better accuracy. However, the GCN + PCA model exhibited a decrease
in accuracy.

Furthermore, we compared the prediction results of our proposed model with three
models commonly used in previous studies, the decision tree (DT) classifier, the support
vector machine (SVM) classifier, and linear regression (LR). Table 6 displays the accuracy
of our proposed model and the baseline models in the dataset without feature extraction.
The results indicated that the GCN model had a similar predictive power to the DT, SVM,
and LR models, and its predictive accuracy was even better when combined with a feature
extraction method, as shown in Tables 7–9. Our proposed graph-based model was more
effective in predicting basketball game outcomes compared to the other models when using
LASSO and RF extraction algorithms. It is worth noting that, although Li [28] utilized the
same dataset as our study, our proposed model achieved a higher prediction accuracy.

Table 6. Comparison of the prediction performance of GCN and baseline models without feature
extraction.

Season DT Classifier SVM Classifier LR GCN

2012–2013 0.6728 0.7114 0.7029 0.6850
2013–2014 0.6789 0.6965 0.6887 0.6790
2014–2015 0.6707 0.7439 0.7002 0.6900
2015–2016 0.6890 0.6748 0.6820 0.6080
2016–2017 0.6992 0.6585 0.7012 0.6690
2017–2018 0.6829 0.6707 0.6992 0.6830
Average 0.6823 0.6926 0.6957 0.6690

Table 7. Comparison of the prediction performance of GCN and baseline models using PCA feature
extraction.

Season DT + PCA SVM + PCA LR + PCA GCN + PCA

2012–2013 0.6087 0.6343 0.6250 0.4960
2013–2014 0.6002 0.6239 0.6190 0.4970
2014–2015 0.5892 0.6022 0.6210 0.4960
2015–2016 0.6103 0.6105 0.6080 0.5107
2016–2017 0.6220 0.6221 0.6102 0.5200
2017–2018 0.6120 0.6342 0.6330 0.5240
Average 0.6071 0.6212 0.6194 0.5073

Table 8. Comparison of the prediction performance of GCN and baseline models using LASSO
feature extraction.

Season DT + LASSO SVM + LASSO LR + LASSO GCN + LASSO

2012–2013 0.6928 0.7322 0.7250 0.7295
2013–2014 0.7012 0.6820 0.7009 0.7024
2014–2015 0.7144 0.7023 0.7122 0.7285
2015–2016 0.6912 0.6988 0.6922 0.6829
2016–2017 0.7008 0.7102 0.6820 0.6932
2017–2018 0.7201 0.6979 0.7030 0.7053
Average 0.7034 0.7039 0.7026 0.7070
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Table 9. Comparison of the prediction performance of GCN and baseline models using random forest
feature extraction.

Season DT + RF SVM + RF LR + RF Our Proposed Method (GCN + RF)

2012–2013 0.7112 0.7152 0.7090 0.7215
2013–2014 0.7022 0.7220 0.7080 0.7154
2014–2015 0.7209 0.7090 0.7201 0.7378
2015–2016 0.7030 0.7113 0.7152 0.7073
2016–2017 0.7103 0.7098 0.7168 0.7154
2017–2018 0.7022 0.6889 0.7012 0.6951
Average 0.7083 0.7094 0.7117 0.7154

Table 10 presents a performance comparison of the two extraction algorithms, GCN +
LASSO and our proposed method (GCN+RF), using 10-fold cross-validation. The data in
the table show the accuracy of each method for different seasons, as well as the average
accuracy across all seasons. The presented results indicate that our proposed method
(GCN+RF) achieved a slightly better average accuracy than GCN + LASSO. Nevertheless,
the performance of each method varied across different seasons, indicating that neither
method consistently outperformed the other in all situations.

Table 10. Performance comparison of GCN using two extraction algorithms with 10-Fold Cross-
Validation.

Season GCN+LASSO Our Proposed Method
(GCN + RF)

2012–2013 0.7128 0.7295
2013–2014 0.6890 0.7105
2014–2015 0.6989 0.7285
2015–2016 0.7003 0.6829
2016–2017 0.7054 0.6879
2017–2018 0.6981 0.7106
Average 0.7008 0.7083

5. Conclusions and Discussion

Predicting the outcome of a basketball game is an important but complex task, which
relies on several factors, such as a team’s status, the opponent’s situation, and the internal
and external environment. In this paper, we propose a graph-based model that takes
into account the complex interactions among NBA teams to predict game outcomes. Our
model constructs a graph, in which teams are nodes and are connected to their opponents,
as well as their own past and future games. These nodes and edges form a message passing
network that is trained using a semisupervised GCN model. To improve the prediction
accuracy, we combined our model with feature extraction methods. We demonstrated the
superiority of our proposed method by comparing it with other prediction studies.

This study used NBA regular season data from the 2012 to 2018 seasons, and the pro-
posed model achieved the highest accuracy compared to other baseline models. Combining
the GCN model with feature extraction methods, such as PCA, LASSO, and RF. The RF
and LASSO methods improved the model’s accuracy, while the PCA method decreases
it. This experiment shows that the one-hop neighbor aggregation in the GCN model gave
the best results. Compared to other prediction studies, the proposed model considers the
connections between NBA teams and the influence of opponents on the game, providing a
new perspective for basketball sports management and performance prediction analysis.

The study has limitations that could be addressed in future research. The homo-
geneous graph constructed in the current model does not distinguish team nodes from
opponent team nodes, and the relationship between nodes is singular. The use of spa-
tiotemporal graphs to represent games on the same date could extend the spatial structure
representation of NBA teams and better take into account time information. The category
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of nodes is a single team representation, and future research could consider adding infor-
mation such as coaches and players, whose influence on game outcomes is crucial. Further
research could apply the proposed model to other basketball leagues, use richer game data,
find more suitable feature information and extraction methods, and adjust the number
of layers and aggregation methods of the GNN, to improve the accuracy of the model in
predicting game outcomes.
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