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Abstract: We studied the tunable control of the non-Markovianity of a bosonic mode due to its
coupling to a set of auxiliary qubits, both embedded in a thermal reservoir. Specifically, we considered
a single cavity mode coupled to auxiliary qubits described by the Tavis–Cummings model. As a
figure of merit, we define the dynamical non-Markovianity as the tendency of a system to return to
its initial state, instead of evolving monotonically to its steady state. We studied how this dynamical
non-Markovianity can be manipulated in terms of the qubit frequency. We found that the control
of the auxiliary systems affects the cavity dynamics as an effective time-dependent decay rate.
Finally, we show how this tunable time-dependent decay rate can be tuned to engineer bosonic
quantum memristors, involving memory effects that are fundamental for developing neuromorphic
quantum technologies.

Keywords: open quantum system; non-Markovanity; quantum memristor

1. Introduction

In open quantum systems, the Markovian approximation is widely used due to its
mathematical simplicity and because it provides a good description of the phenomenology
observed in the lab. The Markovian approximation implies that the state of the reservoir
is not correlated at different times, which can be interpreted as a memoryless bath [1,2].
Nonetheless, in several real-world systems and applications, memory effects play an
important role and have to be explicitly accounted for, such as in biological systems [3–5],
quantum metrology [6,7], quantum simulation [8,9], and quantum memdevices [10–14].
Therefore, the manipulation of non-Markovianity is an important step for the development
of new technologies, where quantum memristive devices could particularly benefit the
realization of neuromorphic quantum computing [15–17].

On the other hand, the definition and quantification of non-Markovianity in quantum
systems is still an open question [18–22]. Nevertheless, there are two widely accepted cases
in the scientific community. One is based on the distinguishability of the states of a quantum
system [21] undergoing dissipative evolution. This definition takes into account that when
a quantum system interacts with a Markovian environment, the system’s information will
flow unidirectionally to the environment. States evolving under these conditions can only
lose distinguishability during the dynamics. Therefore, we can distinguish non-Markovian
behavior if, for a dissipative evolution, the states recover some of their distinguishability
during certain time intervals. The second definition of non-Markovianity is based on the
behavior of entanglement between the system and an auxiliary system [22]. If at the initial
moment of the evolution the system is correlated to some auxiliary system, then these
quantum correlations can only monotonically decrease in time if the system is coupled to a
Markovian environment. Therefore, we identify non-Markovianity with cases where the
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quantum correlations do not decrease monotonically with time. Both of these definitions of
non-Markovianity provide a method to quantify its degree and involve an optimization
process over all possible initial states for the evolution.

Recently, non-Markovian dynamics have become an area of active research both
in theory and experiment, driven by the wide interest in quantum technologies [23–29].
In experiments using an all-optical setup, the transitions between Markovian and non-
Markovian regimes can be reached, controlling the information backflow of the system [25]
as well as the observation of the so-called weak non-markovianity regime [26].

In this article, we focus on dynamical non-Markovianity (DnM), which means the
degree of non-Markovianity presented in a given dynamic. Specifically, we will focus on
a system composed of a cavity mode (main system) coupled to a set of qubits (auxiliary
systems) described by the Tavis–Cummings (TC) model [30–32] embedded in a Markovian
bath. We are interested in studying the DnM that arises in the main system dynamics
by tracing the auxiliary qubits, creating a tunable bosonic quantum memristor. We will
also explore how the DnM can be manipulated by external control over the auxiliary
systems. We found that by tuning the energy gap of the set of qubits, we can simulate a
time-dependent decay rate in the cavity going from a regime with maximal DnM to another
with minimal DnM and Markovian evolution. This tunable dynamical non-Markovianity
allows us to define variables that follow a memristive behavior, obtaining an experimentally
feasible, scalable and general framework to implement switchable memory devices that are
useful for neuromorphic quantum computing.

2. Model and Methods

We consider a system consisting of a single bosonic mode (resonator) coupled to a set
of n qubits in contact with a thermal reservoir at zero temperature, as shown in Figure 1.
The interaction between the qubits and the resonator is described by the TC model

ĤTC = ĤR + ĤQ + ĤR−Q (1)

where

ĤR = h̄ωR â† â,

ĤQ =
h̄
2

n

∑
j=1

ωQσ̂z,j,

ĤR−Q = h̄
n

∑
j=1

g(σ̂−j â† + σ̂+
j â)), (2)

are the Hamiltonians for the bosonic mode, the qubits, and the resonator–qubits interaction,
respectively. Here, ωR, ωQ, g, and h̄ denote the resonator frequency, the qubit frequency,
the qubit-resonator coupling strength, and the Planck constant, respectively. The operator
â(â†) is the annihilation (creation) operator for the bosonic mode, σ̂z,j is the Pauli z matrix

for the jth qubit, and σ̂
−(+)
j is the lowering (raising) operator for the jth qubits. In order to

ensure the validity of our model, we consider ωQ/ωR ∼ 1 and g/ωR < 0.1. From now on
we will consider h̄ = 1.

We consider that the total system undergoes Markovian dynamics described by the
following master equation,

ρ̇(t) = −i[ĤTC, ρ(t)] +
n

∑
j=0

ΓjD[Ôj]ρ, (3)

with
D[Ôj]ρ = ÔjρÔ†

j −
1
2
{Ô†

j Ôj, ρ}, (4)
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where Ô0 = a and Ôj = σ−j for j > 0 and Γj is the decay rate of the jth channel. We
are interested only in the dynamics of the resonator; thus, we focus on its reduced state
by tracing out the qubits, ρR(t) = TrQ(ρ(t)). In this way, the set of qubits act as an
auxiliary system that introduces non-Markovian properties to the dissipative evolution of
the resonator. We remark that the TC model has been experimentally realized in several
platforms, such as quantum dots [33], trapped ions [34], and superconducting circuits [35].
We highlight that in superconducting circuits, it has been achieved up to 10 qubits coupled
to a single resonator, which is even higher than the number of qubits we consider in this
work to induce non-Markovian dynamics in the resonator.

Environment

Figure 1. Diagram of the model: a cavity (bosonic mode) coupled to a set of qubits embedded
in a Markovian reservoir. Each auxiliary qubit can be dynamically tuned, and the cavity can be
classically driven.

We want to characterize the degree of non-Markovianity of a particular evolution of
our system (the resonator) determined by its initial state. We look for a figure of merit
that can be understood as a degree of non-Markovianity of the particular dynamics of
the system that result from a given initial condition. To this end, we notice that when
the dynamics of the system are Markovian and purely dissipative, then its quantum state
will monotonically approach the corresponding steady state of the environment. We can
characterize this behavior by calculating the trace distance between the instantaneous state
of the system and the steady state of the evolution,

DS(ρR(t)) =
1
2
|ρR(t)− ρSS|, (5)

where the subindex S denotes that the trace distance is taken with respect to the steady
state. For a Markovian evolution, this quantity will decrease monotonically to zero [21],
where |ρ| = Tr[

√
ρ†ρ] and ρSS is the steady state of the system. In our case, the temperature

of the environment is zero, and therefore, ρSS = |0〉〈0|. Now, the quantity D(t) allows
us to detect when the evolution deviates from Markovian behavior whenever it is no
longer monotonically decreasing. Therefore, we can characterize the non-Markovianity of
a particular system evolution by considering all the time intervals with non-monotonic
behavior. In this way, we define the DnM as

ND =
∫

ζ>0
ζ(t)dt, (6)
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where ζ(t) = (d/dt)DS(ρR(t)), and the integration time goes from 0 to infinite, which
means until a sufficiently long time as the system reaches the steady state. Notice that
for a given interval t ∈ [τi, τj], in which the trace distance detects information backflow
(derivative is positive), the DnM over that interval is simply DS(ρR(τj)) − DS(ρR(τi)),
which provides a simple way of calculatingND. In addition, this definition is closely related
to the non-Markovianity measure for dissipative channels based on distinguishability [21].
However, our definition considers only the dynamics under study and not an optimization
over all the initial conditions. We emphasize that the evolution of the total system is
Markovian, and thus, it ultimately reaches the thermal steady state corresponding to the
temperature considered. Nonetheless, the reduced dynamics of the resonator will be non-
Markovian since the qubit–resonator coupling will introduce an information backflow from
the set of qubits. In the next section, we will characterize how a given configuration of the
set of qubits affects the behavior of the DnM for such a bosonic quantum memristor.

3. Results
3.1. Dynamical Non-Markovianity (DnM)

For our first case, we will focus on the resonator interacting with one qubit (Jaynes–
Cummings model) and interacting with n = 5 qubits. We will analyze how the DnM
depends on the qubit frequency and coupling strength. It is important to mention that the
set of auxiliary qubits is always initialized in the ground state in order not to introduce
energy into the resonator, since it would undermine the interpretation of the DnM. For our
calculations, we numerically solve the master equation of Equation (3) in Python using
the mesolve method in QuTiP [36]. Then, the DnM is calculated from the reduced state of
the resonator. First, we consider the initial state |ψ0〉 = |1R0Q〉. In Figure 2a, we show the
DnM of the resonator when varying the coupling strength g/ωR and the frequency ratio
ωQ/ωR. We can see that the DnM is largest when the qubit and resonator are in resonance
and when g increases. Notice that for larger values of g/ωR, the qubit–resonator detuning
can yield significant values of DnM. Figure 2b shows the DnM for the case of five auxiliary
qubits. We can observe that the effect of enlarging the set of auxiliary qubits is relaxing the
resonance condition and increasing the value for the DnM.

(a) (b)

Figure 2. Dynamical non-Markovainity of the resonator. (a) One-qubit case. (b) Five-qubit case.
In both cases, the decay rate of qubit and resonator is ΓQ = ΓR = 0.005. We consider resonator
frequency ωR = 1, qubit frequency ωQ/ωR ∈ [0.5, 1.5], the coupling strength g/ωR ∈ [0, 0.1] and the
initial state |ψ0〉 = |1R0Q〉.

This behavior is to be expected since the resonance condition allows for maximal
information transfer and information backflow due to the complete Rabi oscillations (in
the case of n = 1). In addition, the coupling strength g/ωR is related to the speed of the
information transfer and the information backflow. Then, for a small g (slow information
transfer), a stronger resonance condition is needed to have information backflow before
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the system reaches the stationary state. If g increases, the communication between the
auxiliary qubits and the bosonic mode is faster, and a more relaxed resonance condition
will still have information backflow. Increasing the number of qubits increases the channels
for information backflow, which leads to larger values of DnM even at higher detuning.

Next, we study the scaling of the DnM with the number of qubits under fixed con-
ditions. In Figure 3, we study ND as a function of the number of qubits (until n = 8) for
different coupling strengths when the resonator is initialized with one excitation. Figure 3a
shows how ND scales with the number of particles (n), with a monotonically increasing
behavior reminiscent of a power law. In Figure 3b, we do a log–log plot of the quantities of
Figure 3a, which confirms the power–law dependence. We perform a linear fit of the data
in Figure 3b and obtain in all instances an R2 coefficient larger than 0.995, which allows us
to approximate the scaling of the DnM by

ND ∝ nk, (7)

where the exponent k depends on the coupling strength g/ωR and the qubit frequency
ωQ/ωR. In Figure 3c,d, we show the dependence of the exponent k on the coupling strength
and the qubit frequency, respectively, which has been numerically calculated by the same
fitting procedure as with Figure 3b. We can see that when the DnM is maximal, that is, for
a large g and ωQ = ωR, the value of k is at a minimum.

(a) (b)

(c) (d)

Figure 3. (a) The DnM of the resonator in terms of the number of qubits n. (b) The log–log plot
of DnM and the number of qubits. For (a,b), we consider three cases, g = 0.01, 0.05, 0.1, with the
resonant condition ωQ = ωR = 1. (c) The exponent k of the power–law dependence as a function
of the coupling strength g/ωR, with qubit and resonator in resonance. (d) The exponent k of the
power–law dependence as a function of the frequency of the qubit ωQ/ωR and a fixed coupling
strength g/ωR = 0.05. For all cases, we consider decay rates ΓQ = ΓR = 0.005ωR, the initial state of
the resonator |ψ0〉 = |1R〉, and all the qubits initialized in the ground state.

The monotonically increasing behavior of the DnM obtained in Equation (7) is due
to the frequency of the Rabi oscillations between the cavity and the set of qubits, which
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increases with the number of qubits and is caused by the collective enhancement of the
coupling strength of the Tavis–Cummings model with n qubits [30]. This phenomenon
behaves effectively as a cavity interacting with a single qubit with coupling strength

√
ng.

Therefore, with faster Rabi oscillations, there are more time intervals where the trace
distance is positive from the information backflow and yields a higher value of DnM.
Increasing the number of qubits also reduces the relaxation time, and the initial excitation
is dissipated faster, but with the parameters we have considered, increasing the number
of qubits increases the Rabi oscillations faster than the relaxation. Thus, we obtain the
behavior of Equation (7). We need to mention that as the Hilbert space of our system grows
exponentially with the number of qubits, we can only calculate Figure 3a until eight qubits.
Nevertheless, it is interesting in that it provides more numerical evidence of the power–law
dependence given in Equation (7). In addition, an analysis of the thermodynamic limit of
the proof of Equation (7) for a large qubit limit would be interesting but is out of the scope
of the present study

We have seen that the DnM of the resonator strongly depends on the parameters of
the set of auxiliary qubits. It is then interesting to consider whether we can have dynamic
control over the DnM by manipulating the set of auxiliary qubits. In what follows, we
apply a driving term in the z-direction to the set of auxiliary qubits in order to dynamically
modulate the qubit gap and control the degree of DnM in the evolution. The driving is
chosen so that it does not introduce energy into the qubits, which could excite the resonator
and be interpreted as information backflow by the DnM. This situation is described by the
following Hamiltonian:

Ĥ = HTC + h̄ΩQ

n

∑
j

sin(µQt)σ̂z
j , (8)

where HTC is the Hamiltonian of Equation (1), and ΩQ and µQ are the amplitude and
frequency of the driving over the qubits, respectively. Notice that we consider that each
qubit is driven by the same signal.

We numerically calculate ND for different values of the driving frequency and am-
plitude, which we show in Figure 4. In Figure 4a, we show the case of one auxiliary
qubit. Here, there is a non-zero DnM over the whole range of parameters. However, it is
interesting to notice the dark lines that are spanned from near the origin, where the DnM is
almost completely suppressed. A similar behavior occurs when we increase the number of
qubits, as is shown in Figure 4b for the five qubits case, where the DnM is suppressed over
thin lines in the frequency/amplitude plane. Although the suppression is not as strong as
in the one-qubit case, these lines show a significant decrease in the DnM. This indicates
that by modulating either the frequency or the amplitude of the driving, we can enhance or
suppress the DnM of the resonator.

Such suppression of the DnM could be explained by the phenomena of coherent
destruction of tunneling [37]. It can be understood as the suppression of coherent evolution
between two states of a system due to a coherent driving. We note that we are considering a
TC model with at most one excitation evolving only under an amplitude damping channel.
In such a situation, our model can be described as a three-level system, where we only
populate the states |1R〉|0̄Q〉, |0R〉|1̄Q〉 and |0R〉|0̄Q〉, where the state |1̄Q〉 is the uniform
superposition of one excitation in the set of qubits, and |0̄Q〉 is the ground state for all
the qubits. It has been shown that coherent destruction of tunneling is presented in a
three-level system [38], as well as for the Jaynes–Cummings model [39], which suggests
that for a particular value of frequency µq and amplitude Ωq, the coherent information
transfer between the set of qubits and the cavity is suppressed, and therefore, the DnM
goes to zero.

Similarly, we study the DnM in terms of the coupling strength for different numbers
of qubits in the auxiliary system. Here, we will consider the driving parameters that yield
the maximum and minimum DnM obtained from Figure 4 and the analogous calculations
for n = 2, 3, 4, 5. In Figure 5a, we plot the minimal DnM for different coupling strengths
g. We can see that up to g = 0.02, we can essentially completely suppress the non-
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Markovian behavior by a suitable choice of driving parameters. Increasing the number of
qubits decreases the necessary value of the coupling strength that allows for a completely
suppressed DnM. On the other hand, in Figure 4b, we plot the maximal DnM for different
coupling strengths g. Here, we can see that ND has a linear dependence on the coupling
strength, except for a small range around zero. From these results, we have that, provided
we choose a suitable value of the coupling strength, we can switch between Markovian and
non-Markovian dynamics for the resonator just by controlling the auxiliary set of qubits.

(a) (b)

Figure 4. The non-Markovainity of the resonator. (a) One-qubit case. (b) Five-qubit case. Parameters:
In both cases, the decaying rate of qubit and resonator is ΓQ = ΓR = 0.005ωR. The driving frequency
of qubit µQ/ωR ∈ [0, 1], the driving amplitude of the qubit ΩQ/ωR ∈ [0, 1], the qubit frequency
ωQ/ωR = 1, and the coupling strength g/ωR = 0.1. The initial state is |ψ0〉 = |1R0Q〉.

(b)(a)

Figure 5. The minimum (a) and maximum (b) of DnM for the resonator with a different number
of auxiliary qubits. In both cases, the decaying rate is ΓQ = ΓR = 0.005ωR. The frequency of qubit
ωQ/ωR = 1, and the initial state is of resonator |ψ0〉 = |1R〉. The qubits are all initialized in the
ground state.

In Figure 6, we show how we can dynamically switch the non-Markovian behavior
on and off just by changing the driving frequency of the qubits. Here, we plot the trace
distance as a function of time. At the start of the evolution, we choose a driving frequency
that yields maximum non-Markovianity (µQ = ωR); later, at t = 350ω−1

R , we switch the
driving frequency to µQ = 0.75ωR, which yields the minimum DnM. As can be seen in the
figure, at t = 350ω−1

R , the trace distance switches from non-monotonic to monotonically
decreasing behavior, which characterizes Markovian evolution.
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Figure 6. Transition from non-Markovian to Markovian dynamics by changing the driving frequency
over the auxiliary qubits. Parameters: the driving amplitude of qubit is Ωq = 0.5, the number qubit
n = 1, decaying rate is ΓQ = ΓR = 0.005, frequency ωQ = ωR, and coupling strength g = 0.05.

Finally, we analyze the effect of the decay rates on the dynamical non-Markovianity.
We consider varying the decay rates in three cases: varying it only for the qubits, only
for the resonator, or varying both simultaneously. We plot the three cases in Figure 7;
in general, we can see that smaller decay rates will yield larger values of dynamical non-
Markovianity since the original excitation will survive longer in the system before being
dissipated. Fixing all the other parameters, in all three cases considered, the DnM appears
to exponentially decay as the decay rate increases, with the strongest effect being the case
where the qubits and the cavity decay rate are changed simultaneously.

Figure 7. Dynamical non-Markovainity of the resonator varies with decaying rate. In the blue line,
the decay rate of resonator ΓR = 0.005, and qubit decay rate ΓQ = Γ. In the green line, the decay
rate of qubit ΓQ = 0.005, and resonator decay rate ΓR = Γ. In the orange line, the decay rate of qubit
and resonator are the same, ΓQ = ΓR = Γ. We consider that qubit and resonator are in resonance
(ωQ = ωR = 1), the coupling strength g/ωR = 0.05, and the initial state |ψ0〉 = |1R0Q〉.
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3.2. Time-Dependent Decay Rate

The observed memory effect can be understood as the system effectively interacting
with an environment with a time-dependent decay rate, which becomes negative during
some time intervals, favoring the information backflow [40]. To understand this statement,
consider a resonator with state ρ̃ undergoing dissipative dynamics with a time-dependent
decay rate and without any interaction with an auxiliary system; the system is then de-
scribed by the following master equation:

˙̃ρ(t) = −i[H, ρ̃] + Γ(t)
(

aρ̃a† − 1
2
{ρ̃, a†a}

)
(9)

where H = h̄ωRa†a, and Γ(t) is a time-dependent decay rate that can be negative. Here,
ρ̃ represents the state of the resonator undergoing dynamics as described above and is
different from ρR, which is the reduced state of the resonator as described by Hamilto-
nian (1). For Γ(t) > 0, the energy of the resonator dissipates to the environment, meaning
that the information in the resonator is continuously lost. Meanwhile, for Γ(t) < 0, there
is energy entering the resonator, giving way to information backflow and therefore to a
non-Markovian process.

We consider the time-dependent decay rate parametrized as Γ1(t) = A(sin(Bt) + C).
Notice that the master equation in Equation (9) has the same steady state as that of our
original system in Equation (3). Therefore, for a given dynamic induced by the set of
auxiliary qubits, we can find the closest non-Markovian dynamic corresponding to a
negative decay rate by finding A, B, and C that optimize the cost function

∫
|D(ρR(t))−

D(ρ̃(t))|2, where ρ̃(t) is the density operator calculated using the time-dependent decay
rate. In Figure 8, we plot DS(ρR(t)) and DS(ρ̃opt(t)), where ρR(t) is for one qubit case and
ρ̃opt(t) is the resonator evolved with the optimal parameters for the decay rate.

(a) (b) (c)

(d)
(d)

Figure 8. Trace distance of the resonator and the DnM under different driving frequencies. Top (a),
the blue line—the frequency of driving µ1 = 0.419, the green line—the resonator’s decaying rate
is constant Γ(t) = 0.005. (b) The blue line—the frequency of driving µ2 = 0.20, the green line—
the resonator’s decaying rate is Γ1(t) = 0.05(sin(0.023t) + 0.09). (c) The blue line—the frequency of
driving µ3 = 1. The green line—the resonator’s decaying rate is Γ1(t) = 0.25(sin(0.079t) + 0.021).
Bottom (d), the DnM of resonator in different driving frequencies µQ ∈ (0, 1). Parameters: the
number qubit n = 1, decaying rate is ΓQ = ΓR = 0.005, frequency ωQ = ωR, coupling strength
g = 0.05, and driving amplitude ΩQ = 0.5ωR.
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We consider three cases:in Figure 8a, the effective decay rate is time-independent
Γ = 0.005, corresponding to Markovian behavior, whereas for the time-dependent decay
rate we have in Figure 8b is Γ(t) = 0.05[sin(0.023t) + 0.09] and in Figure 8c it is Γ(t) =
0.25[sin(0.079t)+0.021]. Finally, Figure 8d shows the DnM as a function of the qubit-driving
frequency, where it displays the qubit-driving frequency corresponding to Figure 8a–c. We
can see that for time-dependent decay, the behavior of both trace distance is almost the
same, which means that the set of auxiliary qubits can switch on/off highly non-Markovian
dynamics.

Finally, it is interesting to study how this simulated time-dependent decay rate can
affect the response of the cavity over external driving, in order to control the memristive
properties of the dynamics.

3.3. Bosonic Quantum Memristor

One interesting application of our results is to induce memristive behavior into the
bosonic mode, which can be tuned by the set of auxiliary qubits. In Ref. [41], it was shown
that a certain kind of time-dependent decay rate produces a quantum memristor, which
could be reached in a superconducting circuits platform. Later, in Ref. [42], a memristive
dynamic was obtained in a quantum computer by the simulation of a non-Markovian bath.
In this line, we analyze the response of the cavity under an external driving, obtaining a
Hamiltonian of the form

Ĥ = HTC + h̄ΩQ

n

∑
j

sin(µQt)σ̂z
j + F(t)(a + a†). (10)

Now, we define the variables I = −〈i(a− a†)〉 and O = 〈Ṅ〉+ α〈N〉 with α a constant.
If we consider α = Γc as the natural decay rate of the cavity, we have that

O = F(t)I + G(t), (11)

and for more details see Appendix A. The function G(t) depends on the DnM of the system,
which means that we can control the memristive relation

O = F(t)I, (12)

by controlling the value of G(t). Now, if we choose F(t) = Ωc[1− sin(cos µct)], it is possible
to obtain the typical pinched hysteresis loop that characterizes a quantum memristor.

This situation is shown in Figure 9, where we obtain the pinched hysteresis loop
(green curve) in a similar way as it has been obtained for previous proposals of quantum
memristos [12,14,41] as a signature of memristive behavior. It is interesting to note that
such bosonic quantum memristor dynamics appear when the auxiliary qubits are not
driven and off-resonant with the cavity, which means that in an effective way, the qubits
are decoupled from the cavity. In contrast, we can observe that when we drive the qubits,
the memristive behavior can be destroyed for different cases, obtaining a way to go from
memristive dynamics to non-memristive dynamics. It means that we also can control
the memory properties induced by the decay rate in the cavity, which can be helpful in
neuromorphic computing, considering that the proposed system can be implemented
in many platforms such as optical devices, trapped ions, and superconducting circuits,
among others. We also need to remark that our proposal can work as a switchable bosonic
quantum memristor. This suggests that our formalism allows for implementing devices
with controllable and switchable memory properties only by tuning the energy gap of
auxiliary qubits. This proposal opens the door for the experimental implementation of
memristive devices, providing a general, platform-free, and scalable model for the next
generation of neuromorphic quantum computing technology.
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Figure 9. Memristive behavior; the green line shows the dynamics when the auxiliary qubits are
not driven and off-resonant, and the blue curve is when we add a driving over the auxiliary qubits.
(a) Larger-DnM case—the number of qubits n = 1 and driving frequency µc = 1. (b) Medium-DnM
case—the number of qubits n = 1 and driving frequency µc = 0.2. (c) Larger-DnM case—the number
of qubits n = 5 and driving frequency µc = 1. (d) Medium-DnM case—the number of qubits n = 5
and driving frequency µc = 0.2. Parameters: the driving amplitude of qubit is Ωq = 0.5, decaying
rate is ΓQ = ΓR = 0.005, frequency ωQ = ωR, coupling strength g = 0.05, the driving amplitude of
cavity Ωc = 0.2, and frequency µc = 0.5.

In the present study, we have shown results for the homogeneous TC model, where
all auxiliary qubits are identical in frequency, dissipation, and coupling with the cavity.
The extension of our study to an inhomogeneous system is an interesting possibility for
future research, which may focus on controlling the response of the cavity, opening the
door to designing memristive devices with a given response. Nevertheless, the extension
of our study to such disordered systems is computationally demanding and is left for
future studies.

4. Conclusions

We have considered a cavity coupled to a set of auxiliary qubits, which induce a
controllable dynamical non-Markovianity (DnM). We show that by the dynamical tuning
of the energy gap of the auxiliary qubits, we can go from high to low values of DnM.
The dynamics induced by the auxiliary qubits can be considered as an effective time-
dependent and tunable decay rate. We also showed that the induced DnM in the cavity
mode follows a power–law dependence with the number of auxiliary qubits, at least for a
low number of qubits. Finally, we showed as an application that we can define memristive
response in the cavity mode, which can be switched off by controlling the energy gap
of the auxiliary qubits. This means that we can control the dynamical response of the
cavity by external control of the auxiliary system, obtaining a switchable bosonic quantum
memristor. These results provide a general protocol to obtain controllable bosonic quantum
memristors, which can be useful in neuromorphic quantum computing. As our proposal
only considers a Tavis–Cummings model where qubits are considered with a tunable energy
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gap, our work is experimentally feasible in different platforms, such as trapped ions and a
superconducting circuit. Finally, the present work opens the door for the implementation
of quantum memristors with minimal experimental requirements, paving the way for
implementable neuromorphic quantum computing in the near future.
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Appendix A

The derivative of expectation for the number of photons 〈â† â〉

d〈â† â〉
dt

= Tr
[
− i

h̄
[H, ρ]â† â

]
+ Tr

[
L(ρ)a†a

]
= S1 + S2 (A1)

we set h̄ = 1, S1 and S2 is

S1 = −iTr

[[
ωca†a + ωq

n

∑
j=1

σz
j +

n

∑
j=1

g(a†σj + aσ+
j ) +

n

∑
j=1

Ωq sin(µqt)σz
j + F(t)(a + a†), ρ

]
â† â

]

= −iTr

[(
n

∑
j=1

g(a†σj + aσ+
j )ρ− ρ

n

∑
j=1

g(a†σj + aσ+
j ) + F(t)(a + a†)ρ− ρF(t)(a + a†)

)
â† â

]

= −iTr

[
n

∑
j=1

g
(

σjρa†aa† − σ+
j ρa†aa− ρa†σja†a− ρaσ+

j a†a
)
+ F(t)ρ

(
ρa†a + ρa†aa†a− ρaa†a− ρa†a†a

)]

= −iTr

[
n

∑
j=1

gρ
(

σ+
(

a†a− aa†
)

a + σa†
(

aa† − a†a
))

+ F(t)ρ
((

a†a− aa†
)

a + a†
(

aa† − a†a
))]

= −iTr

[
n

∑
j=1

gρ
(
−σ+a + σa†

)
+ F(t)ρ

(
−a + a†

)]

=

〈
n

∑
j=1

ig
(
−σ+a + σa†

)〉
+ F(t)

〈
i(−a + a†)

〉
=

n

∑
j=1

g
〈

i
(
−σ+a + σa†

)〉
− F(t)

〈
P̂
〉

(A2)
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S2 = Tr
[

Γc

(
aρa† − 1

2

(
a†aρ + ρa†a

))
a†a + Γq

(
σρσ+ − 1

2
(
σ+a + ρσ+σ

))
a†a
]

= Tr
[

Γcρ

(
a†a†aa− 1

2
a†aa†a− 1

2
a†aa†a

)]
= Tr

[
Γcρ

(
a†(aa† − 1)a− 1

2
a†aa†a− 1

2
a†aa†a

)]
= −Γc

〈
(a†a)

〉
(A3)

so the derivative of expectation photon number is

d〈â† â〉
dt

=
n

∑
j=1

g
〈

i
(
−σ+a + σa†

)〉
− F(t)

〈
P̂
〉
− Γc

〈
(a†a)

〉
(A4)

The input and output are
〈 Î〉 = −〈P̂〉 (A5)

〈Ô〉 = d〈â† â〉
dt

+ Γc

〈
(a†a)

〉
− G(t) (A6)

where G(t) =
n
∑

j=1
g
〈
i
(
−σ+a + σa†)〉. As G(t) depends on the interaction between the

qubits and the cavity, it can be controlled by the external driving over the set of auxiliary
qubits. This means that G(t) will be close to zero when the qubits are off-resonance with
the cavity, in which case we can neglect this term and write the output as

〈Ô〉 = d〈â† â〉
dt

+ Γc

〈
(a†a)

〉
(A7)

The relation between input and output is

Ô = F(t) Î (A8)

where F(t) is Ωc((1− sin(cos µct)).
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