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Abstract: Adding time delay to nonlinear systems can significantly improve their performance,
making it possible to construct image-encryption algorithms with higher security. In this paper,
we propose a time-delayed nonlinear combinatorial hyperchaotic map (TD-NCHM) with a wide
hyperchaotic interval. Based on TD-NCHM, we develop a fast and secure image-encryption algorithm
that includes a plaintext-sensitive key-generation method and a simultaneous row-column shuffling-
diffusion encryption process. Plenty of experiments and simulations demonstrate the superiority of
the algorithm in terms of efficiency, security, and practical value in secure communications.

Keywords: time-delayed hyperchaotic map; fast image-encryption algorithm; simultaneous shuffling
and diffusion

1. Introduction

With the rapid development of modern communication and computer technologies,
open channel-based communication is widely used in the multimedia-information ex-
change process. Digital images are a crucial means of conveying multimedia information,
and ensuring the security of image data during transmission and storage has garnered
significant attention. One effective approach is to encrypt the image at the beginning
of transmission and then decrypt it upon acceptance, which can prevent unauthorized
access to the original data [1]. However, compared to text files, digital images contain
more repeated and closely related data. As a result, algorithms suitable for encrypting text
messages, such as DES, AES and RSA, perform poorly when encrypting images. Chaotic
systems are characterized by being pseudo-random, sensitive to initial state, unpredictable
on trajectory, interval traversal and bounded. These non-linear properties make chaotic
systems inherently connected with cryptography. In 1998, J. Fridrich [2] first applied chaotic
systems to digital image encryption and proposed the classical image-encryption algorithm
with a shuffling-diffusion structure. Since then, chaotic image encryption has received
increasing attention from researchers.

Chaotic image-encryption algorithms use two types of chaotic systems: continuous
chaos systems and discrete chaos systems. Among these, discrete chaos systems are more
suitable for image encryption due to their simplicity, ease of circuit implementation, and
low computational complexity [3]. However, some of them are vulnerable to attacks and
destruction due to these characteristics. In a study conducted by Arroyo et al. [4] , an
estimation was made of the trajectories of a one-dimensional chaotic map. The results
of their investigation provided compelling evidence that encryption algorithms based on
this map are susceptible to security breaches. Similarly, reference [5] reported hidden
security problems in the logistic map-based algorithm proposed in [6]. As a result of these
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security flaws in one-dimensional chaotic systems, researchers have attempted to develop
encryption algorithms based on more robust chaotic maps. For example, Zheng et al. [7]
proposed an improved cascaded chaotic map 2D-CLSM and a novel encryption scheme
based on it and an S-box which is capable of meeting encryption requirements. Furthermore,
in reference [8], a universal two-dimensional enhanced cosine coupled model (2D-ECCM)
was introduced, which can be used to create new 2D chaotic systems using most of the
existing two one-dimensional maps. Using this model, two 2D chaotic systems with better
performance were constructed. In addition, Hu et al. [9] designed a 2D-SFCF system
by combining two one-dimensional cosine fractional (1-DCFs) systems. It exhibits more
complex chaotic behavior and a larger parameter space than 1D chaotic systems, while
having a simpler structure than 2D chaotic systems.

Shuffling-diffusion is a typical structure used in chaotic image-encryption
algorithms [10,11]. Block image encryption is a process that involves dividing a digi-
tal image into sub-blocks with the same number of pixels and then shuffling and diffusing
these sub-blocks as a whole. This method is faster than pixel-and-bit encryption algorithms
due to its block-level encryption operations, which have less time complexity. Researchers
have proposed various techniques to improve the efficiency and security of these algo-
rithms [12]. For example, Zhu et al. [13] developed a fast image encryption that takes
the image row (column) as the cyclic encryption unit, and the time overhead is greatly
reduced compared with the algorithm taking the pixel as the encryption unit. Xu L [14]
presented a new chaotic image-encryption algorithm with a block-image shuffling process
and a dynamic index-based diffusion process. This algorithm achieved improvements in
efficiency and complexity, but the keystream is not associated with plaintext pixels. Liu
W et al. [15] proposed a two-dimensional sinusoidal modulation map (2D-SIMM) with
good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high
complexity. Based on this map, they combined the shuffling and diffusion processes and
proposed a fast image-encryption algorithm that shuffles rows and columns simultaneously.
The algorithm is efficient, but the keystream used in the shuffling process is not associated
with the plaintext pixels.

The above discussion clearly shows that despite the relatively fast encryption and
decryption capabilities of block chaotic image-encryption algorithms, there are still some
noticeable problems. First of all, the dynamic properties of the chaotic systems employed
in these algorithms are not complex enough. In particular, the discrete or continuous
chaotic systems used in these algorithms have narrow hyperchaotic intervals and periodic
windows, resulting in shortcomings such as small key space and insufficient randomness.
Another drawback is that the keystream used in these encryption algorithms is not inextri-
cably linked to the plaintext, and, thus, cannot effectively thwart selected plaintext attacks.
Finally, different mixed-state sequences are used in the shuffling and diffusion phases,
which, in turn, leads to a reduction in the usage rate and an increase in the computational
complexity and memory footprint of the algorithm.

To address the above problems, this paper designs a time-delayed nonlinear combi-
natorial hyperchaotic map (TD-NCHM for short) and then presents a fast plaintext-based
image-encryption method with simultaneous shuffling and diffusion. The advantages
of this method are remarkable. First, TD-NCHM has wider hyperchaotic intervals and
complex dynamics without period windows, which can generate random sequences for
image-encryption algorithms. Second, the encryption algorithm combines the shuffling and
diffusion of rows and columns into a single phase. In particular, the position transformation
information of the algorithm is dynamically correlated with the plaintext, which enables
the encryption algorithm to effectively resist plaintext attacks. Additionally, this algo-
rithm is capable of fulfilling the encryption requirement with a single round of encryption,
thereby significantly reducing its computational complexity. The ability to achieve strong
encryption in a single round of computation has important implications for the practical
implementation of the algorithm in real-world scenarios, where computational efficiency is
a critical factor. By streamlining the encryption process, this algorithm has the potential to
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offer improved performance compared to conventional encryption methods that require
multiple rounds of computation to achieve the same level of security.

The rest of this paper is organized as follows: The TD-NCHM is proposed in Section 2,
and its chaotic properties are analyzed and compared with existing chaotic models using
bifurcation diagram, trajectory diagrams, Lyapunov exponents, permutation entropy, and
the NIST-800-22 test. Section 3 provides a detailed description of the image-encryption
algorithm. Additionally, the simulated result of the algorithm is analyzed in Section 4. To
conclude this paper, a summary of the results can be found in Section 5.

2. A Time-Delayed Nonlinear Combinatorial Hyperchaotic Map

Based on the nonlinear combinatorial map proposed by Zhou Y et al. [16], a new non-
linear combinatorial hyperchaotic model is proposed by adding time delay. The structure
of the TD-NCHM model is shown in Figure 1, and the mathematical expression of the
model is shown in Equation (1).

𝑇𝑇𝑎𝑎𝑙𝑙𝑎𝑎𝑦𝑦

𝐹𝐹(𝑖𝑖)

𝑢𝑢𝑜𝑜𝑎𝑎 1

𝑜𝑜

𝑖𝑖𝑛𝑛 𝑖𝑖𝑛𝑛+1

𝐿𝐿(𝑖𝑖)

Figure 1. Structure of the TD-NCHM model.

xn+1 = mod[F(xn + r× xn−1) + L(xn + r× xn−1), 1] (1)

The TD-NCHM is constructed based on the one-dimensional chaotic maps F(.) and
L(.), where the function mod(x, 1) represents the remainder of x divided by 1, and the
parameter r represents the feedback strength of the time delay. By selecting different
one-dimensional chaotic maps for F(.), L(.) and altering the feedback strength of the time
delay, different chaotic maps can be generated.

In this paper, we chose the one-dimensional logistic map as L(.), the one-dimensional
Feigenbaum map as F(.) for constructing the TD-NCHM with a first-order time delay, and
its expression is shown in Equation (2):

xn+1 = mod[µ(xn + r× xn−1)(1− xn − r× xn−1) + sin π(xn + r× xn−1), 1] (2)

where xn ∈ (0, 1) is output, and µ ∈ [0, 20], r ∈ [0, 20] are the control parameters.
To explore the chaotic performance of TD-NCHM, this paper evaluates it using a

bifurcation diagram, trajectory diagram, Lyapunov exponent [17] , permutation entropy [18]
and NIST-800-22 test [19] , and compares it with some recent 2D chaotic systems, such as
the Cross 2D hyperchaotic map system (C2HM) [20] and the 2D hyperchaotic map system
(2D-HM) [21].

The chaotic system of C2HM is shown in Equation (3).{
xn+1 = sin

[
α

sin(yn)

]
yn+1 = β sin[π(xn + yn)]

(3)

where with its control parameter α 6= 0, β ∈ (0, 1], the initial value y0 6= 0, the system
acquires the best chaotic performance at a ∈ [0, 2] and β ∈ [0, 1].

The chaotic system of 2D-HM is shown in Equation (4).{
xn = sin

[
hπ

sin(yn−1)

]
yn = r sin(πxn−1yn−1)

(4)
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where h and r are system parameters and the system acquires the best chaotic performance
at h ∈ [0, 7] and r ∈ [0, 6].

2.1. Bifurcation Diagram Analysis

Bifurcation is a phenomenon in which a dynamic system exhibits a sudden response
triggered by a continuous change in one of its parameters, resulting in a change in its
motion properties. As the system undergoes continuous bifurcation, it enters a chaotic
state from a periodic state. The bifurcation diagram serves to demonstrate the range of
parameters in which the system exists in a chaotic state.

In this paper, we present the bifurcation diagrams of three chaotic systems as the
control parameter increases, as shown in Figure 2. The results indicate that the TD-NCHM
demonstrates unique bifurcation features for both output variables across the entire range
of parameters. On the other hand, C2HM and 2D-HM exhibit distinct periodic states and
uneven distributions in a narrow parameter range. Thus, it is evident that the chaotic range
of TD-NCHM possesses the widest coverage, the most extensive and uniform distribution
within its parameter range, and the best chaotic performance.

(a) (b)

(c) (d)

Figure 2. The bifurcation diagrams of chaotic systems. (a) The bifurcation diagram of xn in TD-
NCHM with µ = 4, r = [0, 20]. (b) The bifurcation diagram of yn in TD-NCHM with µ = 4, r = [0, 20].
(c) The bifurcation diagram of xn in C2HM with α = [0, 2], β = 1. (d) The bifurcation diagram of xn

in 2D-HM with h = [0, 7], r = 5.

2.2. Trajectory Analysis

Trajectory plots are a widely used tool for analyzing the behavior of dynamical systems
by visualizing the distribution of their state variables over time. For chaotic systems, the
range of the trajectory distribution in a finite domain provides insight into the underlying
dynamics of the system. In particular, the width and uniformity of the distribution indicate
the dispersion of the chaotic sequence and the strength of the nonlinear effects.

From Figure 3, it can be observed that the state trajectories of TD-NCHM exhibit
a high degree of uniformity within the interval and are spread over the entire range,
thus showing a more complex dynamical behavior compared to C2HM and 2D-HM. This
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characteristic is indicative of TD-NCHM’s ability to generate more dispersed and pseudo-
random chaotic sequences. The trajectory plot analysis of TD-NCHM shows that it has
highly desirable properties for generating complex and unpredictable chaotic sequences,
making it a valuable tool for various applications in the field of chaos theory.

(a) (b)

(c) (d)

U=4,r=4 U=20,r=20

U=4,r=4 U=20,r=20

Figure 3. The trajectory diagrams of chaotic systems. (a) The trajectory diagram of TD-NCHM with
µ = 4, r = 4. (b) The trajectory diagram of TD-NCHM with µ = 20, r = 20. (c) The trajectory diagram
of C2HM with α = 2, β = 1. (d) The trajectory diagram of 2D-NM with h = 5, r = 5.

2.3. Lyapunov Exponent Analysis

The Lyapunov exponent is a well-established index for quantifying the statistical
properties of dynamical systems. A positive Lyapunov exponent indicates the presence of
chaos in the system, with the degree of nonlinearity increasing as the maximum Lyapunov
exponent increases. In addition, the presence of two positive Lyapunov exponents confirms
the existence of hyperchaotic behavior.

Based on the results presented in Figure 4, it is clear that all systems exhibit hy-
perchaotic behavior. However, TD-NCHM shows a wider hyperchaotic interval and a
more stable index range within the interval, indicating its potential for use in applications
requiring high levels of nonlinear complexity and safety.
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(a) (b)

(c) (d)

Figure 4. The Lyapunov exponents for chaotic systems. (a) The Lyapunov exponent of TD-NCHM
with µ = 20, r ∈ [0, 20]; (b) The Lyapunov exponent of TD-NCHM with µ = [0, 20], r = 20. (c) The
Lyapunov exponent of C2HM with α = [0, 2], β = 1. (d) The Lyapunov exponent of 2D-HM with
h = [0, 7], r = 5.

2.4. Permutation-Entropy Analysis

Permutation entropy is used for measuring the complexity of chaotic sequences. A
smaller index corresponds to a more regular and ordered sequence, while a higher index
indicates a more complex and disordered sequence. The result of the permutation entropy
comparison is shown in Figure 5.

The result shows that TD-NCHM exhibits a permutation entropy that is consistently
close to 1 and remains smooth throughout the entire parameter interval, without any
significant fluctuations or periodic windows. This observation implies that the TD-NCHM
map generates chaotic sequences with more complex nonlinear dynamical behavior and
greater randomness over a wider parameter interval. In summary, the comparison of
permutation entropies demonstrates that TD-NCHM generates more complex and random
chaotic sequences than the other systems considered in this study. This finding highlights
the potential of TD-NCHM for applications requiring high levels of randomness and
complexity.

2.5. Statistical-Randomness Analysis

The NIST-800-22 test suite uses 15 different tests to assess the randomness of generated
bit sequences. In this study, 150 binary sequences of length 1,000,000 were generated using
the TD-NCHM. The test results were obtained by applying the NIST-800-22 test suite with a
significance level of a = 0.01 and are presented in Table 1. For each test, an average p-value
and a pass rate were calculated. A statistical test is considered passed if the average p-value
is greater than or equal to 0.01 and the pass rate exceeds 96%. It is clear from the results
that the random numbers generated by TD-NCHM pass all the tests with significantly high
p-values and pass rates approaching 100%.
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(a) (b)

(c) (d)

Figure 5. The permutation entropies of chaotic systems. (a) The permutation entropy of TD-NCHM
with µ = 20, r ∈ [2, 20]. (b) The permutation entropy of TD-NCHM with µ = [2, 20], r = 20. (c) The
permutation entropy of C2HM with α = [0, 2], β = 1. (d) The permutation entropy of 2D-HM with
h = [0, 7], r = 5.

Table 1. NIST 800-22 test results.

Test p-Value Pass Rate Results
x y x y x y

Frequency 0.726503 0.494392 98.66% 99.33% Passed Passed
Block frequency 0.419021 0.902420 98.66% 98.00% Passed Passed

Cumulative sums 0.253551 0.589183 99.33% 99.66% Passed Passed
Runs 0.991468 0.588652 100% 99.33% Passed Passed

Longest run 0.137282 0.935716 98.66% 98.66% Passed Passed
Binary matrix rank 0.791880 0.262249 97.33% 100% Passed Passed

Discrete Fourier transform 0.534146 0.574903 98.66% 98.66% Passed Passed
Non-overlapping template 0.961593 0.902420 99.33% 98.66% Passed Passed

Overlapping template 0.883171 0.893001 100% 99.33% Passed Passed
Maurer universal statistical 0.699313 0.171867 98.66% 98.66% Passed Passed

Approximate entropy 0.319084 0.561227 98.00% 99.33% Passed Passed
Random excursions 0.425817 0.953553 98.87% 100% Passed Passed

Random excursions variant 0.919445 0.980883 96.62% 100% Passed Passed
Serial 0.198690 0.942895 99.33% 98.00% Passed Passed

Linear complexity 0.104578 0.935716 100% 100% Passed Passed
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3. A Plaintext Dynamically Related Image-Encryption Scheme Based on TD-NCHM
with Simultaneous Shuffling and Diffusion

Classical chaotic image-encryption algorithms typically involve shuffling and diffusion
stages, which are iterated multiple times to ensure strong encryption. However, the use
of simple shuffling-diffusion operations may compromise the security of the algorithm,
while complex or multi-round algorithms slow down the encryption and decryption
processes. Moreover, most existing chaotic image-encryption algorithms only employ
chaotic sequences to diffuse pixels, bits, or sub-blocks of the plaintext image, without
considering the relationship between the plaintext and the chaotic sequence. As a result,
these algorithms may not be able to effectively resist plaintext selection attacks.

To address these issues, this section proposes a new plaintext dynamically related
chaotic image-encryption scheme based on TD-NCHM with simultaneous shuffling and
diffusion. TD-NCHM is a hyperchaotic map that can generate two pseudo-random hy-
perchaotic sequences in a single run. These sequences are then applied to row shuffling-
diffusion and column shuffling-diffusion operations. By diffusing the plaintext in pixel-
related shuffling operations, the proposed scheme can effectively resist attacks on the
keystream. The structure of the algorithm is presented in Figure 6, and the flowchart of the
encryption process is illustrated in Figure 7.

Input Image Row shuffling
and diffusion

Column shuffling
and diffusion

TD-NCHM Hyperchaotic Sequences

Output Image

SHA-256 Sequence 1 Sequence 2

Input Image Row shuffling
and diffusion

Column shuffling
and diffusion

TD-NCHM Hyperchaotic Sequences

Output Image

SHA-256 Sequence 1 Sequence 2

Input Key

Input Image Row shuffling
and diffusion

Column shuffling
and diffusion

TD-NCHM Hyperchaotic Sequences

Output Image

SHA-256 Sequence 1 Sequence 2

Input Key

Zigzag 
transform

Figure 6. Encryption-algorithm structure.

The proposed scheme aims to strike a balance between encryption speed and security,
by combining the advantages of simultaneous shuffling and diffusion operations and the
use of dynamically related chaotic sequences. The use of TD-NCHM enables the generation
of strong chaotic sequences that are dynamically related to the plaintext image, thereby
enhancing the resistance of the algorithm to attacks. The simultaneous shuffling and
diffusion operations also provide an efficient means of achieving a high level of encryption
while minimizing computational complexity. This scheme presents a promising approach
for achieving efficient and secure chaotic image encryption.

3.1. Initial Value Generation

We use a randomly generated 256-bit key as the encryption-algorithm key. In addition,
the SHA-256 hash value of the plaintext is used to perturb the key to resist selected plaintext
attacks. Based on the key and the hash value, a new initial-value algorithm for chaotic
systems is proposed. First, an XOR operation between the 256-bit key K and a hash value
H is performed to obtain a 256-bit binary array KH. Then KH is divided into 32 segments,
KH1, KH2, . . . , KH32, where each segment consists of 8 bits. The process of splitting KH is
shown in Figure 8.



Entropy 2023, 25, 753 9 of 22

𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 𝑃
𝑠𝑖𝑧𝑒:𝑀×𝑁

traverse S, 𝑠𝑒𝑡 𝑗 𝑎𝑠 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑆
𝑙𝑒𝑡 𝑖𝑛𝑑𝑒𝑥, 𝐿 = 1, 𝑅 = 𝑀, 𝑖 = 1

𝑖𝑓 𝑖𝑛𝑑𝑒𝑥 = 0

𝐿 = 𝐿 + 1
j=L

𝑅 = 𝑅 − 1
𝑗 = 𝑅

𝑖𝑓 𝑖 = 1

𝑖𝑛𝑑𝑒𝑥 = 𝜇×10!"𝑚𝑜𝑑 2
𝑐_𝑣𝑎𝑙𝑢𝑒 = 𝑧𝑒𝑟𝑜𝑠(𝑀)

𝑖𝑛𝑑𝑒𝑥 = 𝑠𝑢𝑚(𝐶 𝑖 − 1, : ) 𝑚𝑜𝑑 2
𝑐_𝑣𝑎𝑙𝑢𝑒 = 𝐶(𝑖 − 1, : )

𝐶 𝑖, : = 𝑃(𝑆 𝑗 , : )⨁𝑐_𝑣𝑎𝑙𝑢𝑒⨁𝑓𝑙𝑜𝑜𝑟(𝐸(𝑖, : )×10!"𝑚𝑜𝑑 255)

𝑖𝑓 𝑖 = 𝑀

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑆!, 𝑠𝑒𝑡 𝑗 𝑎𝑠 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑆!
𝑙𝑒𝑡 𝑖𝑛𝑑𝑒𝑥, 𝐿 = 1, 𝑅 = 𝑁, 𝑖 = 1

𝑖𝑓 𝑖 = 1

𝑖𝑛𝑑𝑒𝑥 = 𝜇×10!"𝑚𝑜𝑑 2
𝑐_𝑣𝑎𝑙𝑢𝑒 = 𝑧𝑒𝑟𝑜𝑠(𝑁)

𝑖𝑛𝑑𝑒𝑥 = 𝑠𝑢𝑚(𝐶 : , 𝑖 − 1 ) 𝑚𝑜𝑑 2
𝑐_𝑣𝑎𝑙𝑢𝑒 = 𝐶(: , 𝑖 − 1)

𝑖𝑓 𝑖𝑛𝑑𝑒𝑥 = 0

𝐿 = 𝐿 + 1
j=L

𝑅 = 𝑅 − 1
𝑗 = 𝑅

𝐶 : , 𝑖 = 𝑃(: , 𝑆!(𝑗)⨁𝑐_𝑣𝑎𝑙𝑢𝑒⨁𝑓𝑙𝑜𝑜𝑟(𝐸!(: , 𝑖)×10!"𝑚𝑜𝑑 255)

𝑖𝑓 𝑖 = 𝑁ciphertext C

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑆
𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔

𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑠𝑢𝑚(𝐸(𝑖, : ))

𝑐ℎ𝑎𝑜𝑡𝑖𝑐 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐸
𝑠𝑖𝑧𝑒:𝑀×𝑁

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝜇, 𝑟 …

𝑇𝐷 − 𝑁𝐶𝐻𝑀

𝑐ℎ𝑎𝑜𝑡𝑖𝑐 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐸!
𝑠𝑖𝑧𝑒:𝑀×𝑁

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑆! 𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑠𝑢𝑚(𝐸!(𝑖, : ))

YES NO

YES NO

YES

NO

YES NO

YES NO

YES NO

𝑖 + +

𝑥

𝑦𝑁# +𝑀×𝑁

iteration

𝑁#

𝑖𝑛𝑝𝑢𝑡 key 𝐾
𝑙𝑒𝑛𝑔𝑡ℎ: 256 𝑏𝑖𝑡

𝐻

𝐾
𝑆𝐻𝐴 − 256

𝑍𝑖𝑔𝑧𝑎𝑔 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚

Figure 7. Flowchart of the encryption process.



Entropy 2023, 25, 753 10 of 22
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8 bits 8 bits 8 bits 8 bits

𝐾𝐻! 𝐾𝐻# ... 𝐾𝐻"! 𝐾𝐻"#

8 bits 8 bits 8 bits 8 bits

Figure 8. Split the 256-bit KH into KH1, KH2, . . . , KH32.

Next, calculate h1, h2, h3, h4 by KH1, KH2, . . . , KH32, the method is shown in Equation (5),
where⊕ reprints XOR operation.

h1 = 4× KH1⊕···⊕KH8
255

h2 = h1 + 3× KH9⊕···⊕KH16
255

h3 = 2× h2 + 2× KH17⊕···⊕KH24
255

h4 = h3 + 3× KH25⊕···⊕KH32
255

(5)

Finally, µ, r, x0, y0 are calculated with h1, h2, h3, and h4. Since the initial values of
TD-NCHM have a certain range, an offset is set for the generation to ensure that the initial
parameters and initial conditions are within the hyperchaotic interval of the system. In
this paper, we set µ = 2, r = 2, x0 = 0.2 and y0 = 0.3. The initial values and parameter-
generation rules are shown in Equation (6).

µ = µ +
mod[(h1+h2)×1016,256]

255 × 18

r = r +
mod[(h1+h3)×1016,256]

255 × 18

x0 = x0 +
mod[(h2+h4)×1014,256]

255

y0 = y0 +
mod[(h3+h4)×1014,256]

255

(6)

3.2. Row-Column Shuffling and Diffusion Encryption Method

In order to achieve fast encryption, this paper employs rows and columns as the
smallest encryption units and conducts diffusion operations during shuffling. To enhance
resistance to chosen plaintext attacks, both the shuffling and diffusion processes are associ-
ated with the plaintext pixels, so that any change in a pixel will induce a complete change
in the encryption result.

The encryption process consists of two stages. The first stage is the row shuffling-and-
diffusion process, where the pixel to be shuffled is determined by the chaotic sequence and
the previous diffusion result, and the diffusion result is determined by the chaotic sequence
and the row pixel values after shuffling. The second stage is the column shuffling and
diffusion process, which follows the same principle as the first stage but utilizes a different
chaotic sequence. The encryption scheme is described in detail as follows.

Input: The plaintext image file F, a randomly generated key K.
Step 1: Let P be the pixel matrix size of M× N. Initialize a matrix C with the same

size as P to store encryption results.
Step 2: A hash value H is obtained from the image F using SHA-256 algorithm, and KH

is obtained by bitwise XOR with K. Then the initial values I = {µ, r, x1, y1} are generated
according to the initial value-generation rules.

Step 3: The K of control parameters and initial values are input to the TD-NCHM for
N0 + M×N iterations. As the iterations are carried out, two sequences of random numbers
X and Y of length N0 + M× N are obtained from the x output and y output of TD-NCHM,
respectively. Both are of type 0 to 1 fractional. Since chaotic systems can have transient
effects (i.e., some of the initial outputs lack randomness), the first N outputs are removed
(N0 = 200 is chosen in this paper), the remaining X and Y are converted into matrices of
size M× N, denoted as E and E1, respectively.
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Step 4: Sum each row of E, then sort the sum result in descending order; the index
matrix S is obtained. In the same way, E1 is summed and sorted by columns to obtain the
ordinal matrix S1. The length of the matrix S is M and the length of the matrix S1 is N. The
process of obtaining S from E is depicted in Figure 9.

6.7540 5.2807 7.7991 7.8662 5.0739 5.3084 7.8526 7.9315

5.0739 5.2807 5.3084 6.7540 7.7991 7.8526 7.8662 7.9315

�� ��������� �����

5 2 6 1 3 7 4 8

���(�(�, : ))

�:

���(�(�, : ))

Figure 9. Obtain number sequence S from the ascending order sequence of E.

Step 5: Row shuffling-and-diffusion encryption. First, a sequence number i is selected
according to a predetermined rule, where i ∈ [1, M]. Then, the S(i)-th row of the image P
is selected as the encryption target. Next, random numbers E(j, :), where j = 1, 2, . . . , M,
are selected along with the previous encryption result C(j− 1, :) (if it exists) to encrypt the
selected row P(S(i), :). The encrypted result is stored in the ciphertext matrix C(j, :).

The sequence number i is selected in a manner determined by a 0–1 value called index,
if index = 0, the first unused value is selected incrementally from 1, if index = 1, the first
unused value is selected decrementally from M. The value of the index is recalculated after
each use and is calculated as follows.

index =

{
mod(µ× 1016, 2), j = 1
mod[sum[C(j− 1, :)], 2], j > 1

(7)

After selecting the target row to be encrypted according to the rules, encryption is
performed using the following. Note that since the elements in E are decimals between 0
and 1, the encryption process must be formatted as integers between 0 and 255.

C(j, :) =
{

P[S(i), :]⊕ f loor[mod[E(j, :)× 1016, 256]], j = 1
P[S(i), :]⊕ f loor[mod[E(j, :)× 1016, 256]]⊕ C(j− 1, :), j > 1

(8)

An example of this process is shown in Figure 10.

… …�(�, : ):

�(�(1), : ) … … �(�(� ∗ �), : )�(�, : ):

�� ����� = 0

�(�, : )):

�(1, : )

�(�(1), : )⨁�����(���(�(1, :) ∗ 1016, 255)) …

�(� ∗ �, : )

�� ����� = 1

�(�(� ∗ �), : )⨁�����(���(�(1, :) ∗ 1016, 255)) …

�(1, : ) �(� ∗ �, : )

… …�(�, :): �(1, : ) �(� ∗ �, : )

�(�, : )):

�(1, : )

�(1, : )

Figure 10. Process of simultaneous shuffling and diffusion.
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Step 6: Use the zigzag conversion to further enhance the dislocation and diffusion
effects. An example of this conversion is shown in Figure 11.

1 2 3

4 5 6

7 8 9

1 2 4

7 5 3

6 8 9

Figure 11. Zigzag transform.

Step 7: Column shuffling-and-diffusion encryption based on C obtained. The process
differs from Step 5 only in that the row transformation becomes a column transformation,
using the sequence E1 instead of E, and the sequence S1 instead of S.

As a result, the traversal direction changes dynamically during the traversal process
based on the previous encryption result. If the pixel value of a row in the plaintext image
changes, the positions of all following rows are changed accordingly.

Algorithm 1 shows the pseudo-code of the row-column shuffling and diffusion en-
cryption method.

3.3. Decryption Process

The decryption process is the reversal of the encryption process and is performed as
follows.

Input: The cipher images matrix of size M× N, and the shuffled key KH obtained
from the plaintext image file.

Step 1: Initialize a two-dimensional matrix P size of M × N to store the plaintext.
Follow Step 1 in Section 3.2 to obtain the sequence E, E1, S, and S1.

Step 2: The method to reverse the diffusion process of the encryption process in
iterating through the ciphertext C, and use the chaotic sequence E1 to perform XOR to
decrypt the diffusion process, is shown in Equation (9).

C(:, j) =
{

C(:, j)⊕ f loor[mod[E(:, j)× 1016, 256]], j = 1
C(:, j)⊕ f loor[mod[E(:, j)× 1016, 256]]⊕ C(:, j− 1), j > 1

(9)

Step 3: To decrypt the column shuffling process of the encryption process. First,
iterate through the sequence S1 in the same way as Step 5 in the encryption process. S1(j),
obtained from the iterations, is the position of column i in the plaintext. In this way, we can
restore the shuffling operation. The restore rule is as follows, where j ∈ [1, N].

P(:, S1(i)) = C(:, j) (10)

Step 4: Inverse the zigzag transformation. The matrix after column decryption is read
in the order of inclusion and then column decryption, and then assigned according to the
traversal direction of the zigzag transform, and, finally, the image matrix after the inverse
transform is obtained.

Step 5: Repeat steps 2 and 3, replacing the operation target with rows instead of
columns, and replacing S1 with S, replacing E1 with E.

The result of this step is the decrypted plaintext image P.
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Algorithm 1 Row-column shuffling and diffusion.

Input: The plaintext image file F.
1: Read the pixel values of image F into matrix P, with size M× N, initialize a matrix C

with the same size as P to store encryption results;
/* Generate random sequences */

2: H = SHA− 256(F), KH = K⊕ H, I = {µ, r, x0, y0} ← KH;
3: N0 = 200, X = [ ], Y = [ ];
4: for i = 1 to N0 + M× N do
5: {xi, yi} = TD− NCHM(µ, r, xi−1, yi−1);
6: X(i) = xi, Y(i) = yi;
7: end for
8: E = reshape(X(N0 : end), M, N), E1 = reshape(Y(N0 : end), M, N);
9: S = sort(sum(E, 2)), S1 = sort(sum(E1, 1));

/* Row Shuffling and diffusion */
10: le f t = 0, right = M + 1, j = 1, Cl = [ ];
11: for i = 1 to M do
12: if i = 1 then
13: index = mod(u× 1016, 2);
14: else
15: index = mod[sum(Cl , :), 2];
16: end if
17: if index = 0 then
18: j = le f t + 1;
19: else
20: j = right− 1;
21: end if
22: C(i, :) = P[S(k), :]⊕ f loor[mod[E(i, :)× 1016, 255]]⊕ Cl ;
23: Cl = C(i, :);
24: end for

/* Zigzag transform */
25: C = Zigzag(C);

/* Column Shuffling and diffusion */
26: le f t = 0, right = N + 1, j = 1, Cl = [ ];
27: for i = 1 to N do
28: if i = 1 then
29: index = mod(u× 1016, 2);
30: else
31: index = mod[sum[C(i− 1), :], 2];
32: end if
33: if index = 0 then
34: j = le f t + 1;
35: else
36: j = right− 1;
37: end if
38: C(:, i) = C[:, S1(k)]⊕ round[mod[E1(:, i)× 1016, 255]]⊕ Cl ;
39: Cl = C(:, i);
40: end for
Output: The cipher image file C.

4. Security Analyses and Experimental Results
4.1. Simulation Results

In this study, the test images used for evaluation were Girl, Baboon, Cameraman,
and Peppers. The effectiveness of the proposed encryption algorithm was assessed by
examining the experimental results, as illustrated in Figure 12. The encrypted images
were observed to exhibit a random distribution of pixels, and the decryption process
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produced clear and complete reconstruction of the original images, indicating the success
of the algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Simulation results. (a–d) the original images of Girl, Baboon, Cameraman, and Peppers,
respectively. (e–h) the encrypted images of Girl, Baboon, Cameraman, and Peppers, respectively.
(i–l) the decrypted images of Girl, Baboon, Cameraman and Peppers, respectively.

4.2. Key-Space and Key-Sensitivity Analyses

A secure and effective encryption algorithm requires the support of a sufficiently
large key space. The key of this algorithm consists of 256 binary digits, so its key space is
2256. Due to current computer hardware conditions, this key has enough space to resist
brute-force cracking.

To evaluate the sensitivity of the proposed algorithm to key changes, we randomly
altered one bit of the 256-bit secret key and attempted to decrypt the encrypted image
using the modified key. The decryption results are presented in Figure 13, which shows
that the decrypted images are completely distorted and do not resemble the original ones
at all. This confirms that the proposed algorithm is highly sensitive to key changes and can
effectively resist attacks on the key.
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(a) (b) (c)

(d) (e) (f)
Figure 13. Sensitivity test results of the Girl image. (a) The decrypted result with the correct key.
(b–f) The decrypted results with a key that was randomly changed by one bit.

4.3. Histogram Analyses

The histograms of the original images and the encrypted images are displayed in
Figure 14. The histograms depict the pixel-value distributions of the images. The original
images have regular pixel-value distributions, with concentrated features at some pixel
values and scattered features at others. In contrast, the encrypted images show a distri-
bution of pixel values that is close to uniform. This indicates that the encryption process
disrupts the regularity of the original images and effectively resists statistical attacks on
pixel values.

In addition, we use the Chi-square test to quantitatively evaluate the distribution of
pixels in the ciphertext. The Chi-square test formula is as follows.

χ2 =
255

∑
i=0

(
Ei − P

P

)
(11)

where Ei and P represent the expected and actual frequency values for each gray value,
respectively. A smaller value of χ2 indicates a more uniform distribution of gray values
in the image. For a 256-level grayscale image, with the confidence interval set at 0.05,
the critical value of χ2 is 293.2478. As long as χ2 does not exceed the critical value, it is
considered to pass this test.

Table 2 shows the values of χ2 on different images. From the table, it can be seen
that for the encryption algorithm proposed in this paper, the χ2 values of all the images
are less than the critical value, indicating that the images encrypted using the algorithm
in this paper accept the assumption of random-like images, i.e., the pixel distribution
is uniform. This shows that the method proposed in this paper has strong resistance to
statistical analysis.
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Figure 14. Histograms. (a) The histograms of Girl and encrypted Girl. (b) The histograms of Baboon
and encrypted Baboon. (c) The histograms of Cameraman and encrypted Cameraman. (d) The
histograms of Peppers and encrypted Peppers.

Table 2. Chi-square test results for various images.

Image χ2 (Plain) χ2 (Cipher)
p-Value
(Cipher) Result (Cipher)

Girl 40,416.5367 238.8003 0.1419 H = 0; Passed
Baboon 106,079.5250 243.1576 0.4218 H = 0; Passed

Cameraman 34,735.4844 228.0975 0.5469 H = 0; Passed
Peppers 62,194.0781 207.9058 0.6324 H = 0; Passed

Lena 40,416.5000 258.6743 0.1847 H = 0; Passed

4.4. Correlation-Coefficient Analyses

The images in their original state typically exhibit high degrees of correlation between
adjacent pixels, resulting in the presence of significant meaningful information. However, a
key objective of image encryption is to disrupt the correlations between neighboring pixels
of the original images. In this regard, this paper employs Equation (12) as the method of
calculating the correlations between the pixels of the images.

ρxy =
E[[x− E(x)][y− E(y)]]√

D(x)
√

D(y)
(12)

where E(x) = 1
l ∑l

i=1 xi and D(x) = 1
l ∑l

i=1[xi − E(x)]2 represent the mean and the vari-
ance in l pixels, respectively.
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In this study, 10,000 pixels selected randomly from the horizontal, vertical, and di-
agonal directions are utilized to compute image correlations. The calculated correlation
coefficients before and after image encryption are compared in Table 3. The purpose of im-
age encryption is to break the high degree of correlation between neighboring pixels in the
original images. The results in Table 3 indicate that the relationship between neighboring
pixels is significantly reduced after encryption, rendering the resulting images with almost
no discernible regularity.

Table 3. Comparison of correlation coefficient values with existing schemes for various images.

Algorithm Image Horizontal Vertical Diagonal
Plain Cipher Plain Cipher Plain Cipher

Proposed

Girl 0.9853 0.0022 0.9853 0.0037 0.9853 −0.0013
Baboon 0.8470 0.0017 0.829 0.0031 0.7757 −0.0018

Cameraman 0.9227 0.0027 0.9007 −0.0024 0.9058 0.0035
Peppers 0.9612 0.0010 0.9696 0.0031 0.9436 −0.0015

Lena 0.9557 0.0011 0.9276 −0.0017 0.8845 0.0007
Ref. [22] Lena - 0.0013 - −0.0049 - 0.0057
Ref. [23] Lena - 0.0081 - 0.0065 - 0.0182
Ref. [24] Lena - 0.0024 - 0.0009 - 0.0016
Ref. [25] Lena - 0.0040 - −0.0035 - 0.0010
Ref. [26] Lena - 0.0083 - −0.0021 - −0.0025

Figure 15 shows the distributions of the neighboring pixels of the original and en-
crypted images. The results indicate that the pixels in the original images are clustered
around the line, implying a strong correlation between neighboring pixels in all three
directions. Conversely, the encrypted image exhibits a uniform distribution of pixels across
the entire interval. This outcome can be attributed to the disturbance and alteration of the
construction and display pattern of the plaintext image during the encryption process. Con-
sequently, statistical attacks are unable to extract sufficient information from the encrypted
image due to the disrupted patterns and correlations, thereby ensuring the security and
robustness of the proposed encryption algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 15. The distributions of adjacent pixels in the original image and encrypted image of Lena.
(a–c) The distributions of the original image in the horizontal, vertical, and diagonal directions,
respectively. (d–f) The distributions of the encrypted image in the horizontal, vertical, and diagonal
directions, respectively.
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4.5. Information-Entropy Analyses

In the context of image encryption, the information entropy value of an image is a
measure of the degree of randomness or confusion among its pixels. Specifically, a higher
entropy value of the encrypted image implies a more effective encryption result. The
formula for calculating the information entropy is as follows:

H(m) =
2n−1

∑
i=0

p(mi)log2
1

p(mi)
(13)

In the case of gray images, the theoretical upper limit of information entropy is 8.
Table 4 presents the information-entropy values of the original and encrypted images.
The results reveal that the information-entropy value of the encrypted image is in close
proximity to the theoretical maximum, indicating a significant degree of pixel confusion
in the encrypted image. Furthermore, a comparative analysis reveals that the proposed
algorithm yields the smallest difference between the obtained information entropy and
the theoretical maximum among all the comparison results. These findings suggest that
the proposed algorithm is effective in achieving a high level of encryption by significantly
disrupting the pixel patterns and randomness of the original image.

Table 4. Comparison of information entropy values with existing schemes for various images.

Algorithm Image Information Entropy
Plain Cipher

Proposed

Girl 7.6608 7.9979
Baboon 6.9172 7.9982

Cameraman 7.5988 7.9977
Peppers 7.2571 7.9980

Lena 7.5151 7.9979
Ref. [27] Lena - 7.9914
Ref. [28] Lena - 7.9973
Ref. [29] Lena - 7.9973
Ref. [30] Lena - 7.9976
Ref. [31] Lena - 7.9974

4.6. Differential-Attack Analyses

Differential attacks are a class of attacks that target encryption algorithms and keys
by analyzing the propagation of changes in plaintext images with slight variations after
encryption. To mitigate the risk of differential attacks, encryption algorithms should aim to
minimize the similarity between the plaintext and ciphertext images. In this study, three
metrics, namely, the Number of Pixel Changes Rate (NPCR), the Unified Average Change
Intensity (UACI) [32], and the Block Average Change Intensity (BACI) [33], are employed
to quantify the similarity between two images. These metrics are calculated as follows:

NPCR(P, C) =
M

∑
i=1

N

∑
j=1

D(i, j)
M× N

× 100 (14)

UACI(P, C) =
M

∑
i=1

N

∑
j=1

|P(i, j)− C(i, j)|
M× N × 255

× 100 (15)

BACI(P, C) =
1

(m− 1)(n− 1)

m−1

∑
i=1

n−1

∑
j=1

mij(P, C)
255

(16)

where

D(i, j) =
{

0, P(i, j) = C(i, j)
1, P(i, j) 6= C(i, j)

(17)
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mi,j(P, C) =
1
6

3

∑
l=1

4

∑
k=l+1

∣∣∣d(i,j),l − d(i,j),k
∣∣∣ (18)

d(i,j),1 = Pi,j − Ci,j, d(i,j),2 = Pi,j+1 − Ci,j+1 (19)

d(i,j),3 = Pi+1,j − Ci+1,j, d(i,j),4 = Pi+1,j+1 − Ci+1,j+1 (20)

The theoretical values of these metrics for grayscale images are 99.6094%, 33.4635%,
and 26.7712%, respectively. To evaluate the effectiveness of the algorithm against differential
attacks, a pixel is randomly selected from the images and its least significant bit is XORed
with 1 to modify its value. The modified images are then encrypted to compute the NPCR,
UACI, and BACI. This process is repeated 150 times and the results are shown in Table 5.

Table 5. The NPCR, UACI, and BACI values of various images.

Image Type Min (%) Max (%) Mean (%)

Girl
NPCR 99.5529 (−0.0565) 99.6643 (+0.0549) 99.6044 (−0.0050)
UACI 33.3037 (−0.1598) 33.7188 (+0.2550) 33.4644 (+0.0009)
BACI 26.6286 (−0.1426) 26.9439 (+0.1727) 26.7698 (−0.0014)

Baboon
NPCR 99.5544 (−0.0550) 99.6704 (+0.0610) 99.6063 (−0.0031)
UACI 33.3030 (−0.1605) 33.7193 (+0.2558) 33.4579 (−0.0056)
BACI 26.6267 (−0.1445) 26.9442 (+0.1730) 26.7713 (+0.0001)

Cameraman
NPCR 99.5483 (−0.0611) 99.6689 (+0.0595) 99.6062 (−0.0032)
UACI 33.3036 (−0.1599) 33.7189 (+0.2554) 33.4696 (+0.0061)
BACI 26.6296 (−0.1416) 26.9439 (+0.1727) 26.7789 (+0.0077)

Peppers
NPCR 99.5529 (−0.0565) 99.6689 (+0.0595) 99.6093 (−0.0001)
UACI 33.3034 (−0.1601) 33.7192 (+0.2557) 33.4567 (−0.0068)
BACI 26.6276 (−0.1436) 26.9435 (+0.1723) 26.7638 (−0.0074)

Lena
NPCR 99.5483 (−0.0611) 99.6765 (+0.0671) 99.6103 (+0.0009)
UACI 33.3033 (−0.1602) 33.7192 (+0.2557) 33.4658 (+0.0023)
BACI 26.6288 (−0.1424) 26.9440 (+0.1728) 26.7726 (+0.0014)

The numbers in parentheses indicate the distance from the corresponding theoretical values.

It can be seen from the table that the mean, maximum, and minimum values of NPCR,
UACI, and BACI are very close to the theoretical values, indicating that the proposed
algorithm has a high and stable resistance to differential attacks for each image in the
dataset. Thus, it is verified that the proposed image-encryption scheme is effective in
resisting differential attacks.

Table 6 presents the comparison result of the Lena image with other existing image-
encryption algorithms. The comparison is based on the NPCR, UACI, and BACI metrics.
As can be observed from the table, the gaps between the NPCR and UACI indices of our
algorithm and their theoretical values are smaller than those of other algorithms. Moreover,
the difference between the BACI value of our algorithm and its standard value is only 0.0083,
indicating that our algorithm outperforms other algorithms in resisting differential attacks.

Table 6. Comparison of NPCR, UACI, BACI values of various algorithms for Lena image.

Algorithm NPCR UACI BACI

Proposed 99.6103 (+0.0009) 33.4658 (+0.0023) 26.7726 (+0.0014)
Ref. [34] 99.6369 (+0.0275) 33.4335 (−0.0300) 26.8290 (−0.0578)
Ref. [35] 99.6060 (−0.0034) 33.5126 (+0.0491) 26.7603 (+0.0109)
Ref. [36] 99.6000 (−0.0094) 33.5700 (+0.1065) 26.5702 (+0.2010)
Ref. [37] 99.6236 (+0.0142) 33.4898 (+0.0263) 26.7844 (−0.0132)

The numbers in parentheses indicate the gaps from the corresponding standard values.
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4.7. Encryption-Efficiency Analyses

When evaluating an encryption algorithm, it is important to consider not only its
security performance but also its efficiency. In this paper, we use three metrics to measure
the efficiency of the proposed algorithm, namely, encryption time, encryption throughput
(ET), and the number of machine cycles. The ET and the number of machine cycles are
defined as follows:

ET =
imagesize(byte)

encryptiontime(second)
(21)

machine cycles =
CPUspeed(Hertz)

ET(byte)
(22)

The experimental environment comprises MATLAB R2016a, Inter(R) Core (TM) i7-
7700HQ CPU @ 2.80 GHz and 16 GB RAM on Windows 10. Encryption time was computed
as the average value after 100 encryptions of the Lena image. Table 7 presents a comparison
of encryption time among different algorithms for different image sizes. The results show
that for varying input image sizes, the algorithms proposed in this paper exhibit the least
time taken. This indicates that the proposed algorithm has high encryption efficiency for
the same amount of work.

Table 7. Comparison of encryption times required by different encryption algorithms for Lena image.

Image
Size Proposed Ref. [38] Ref. [39] Ref. [40] Ref. [41] Ref. [42]

256 × 256 0.0553 0.2695 3.1342 0.4389 0.1690 0.3100
512 × 512 0.2003 1.1869 12.6917 1.8112 0.7080 1.6200

1024× 1024 0.5547 5.7164 56.0985 7.8457 3.4229 8.2887
2048× 2048 2.3573 23.4563 229.9568 35.6795 14.1337 40.6077
4096× 4096 9.6189 107.6835 1066.0248 138.3123 56.5163 220.7666

Table 8 presents the comparisons of encryption throughput (ET) and the number of
machine cycles between our proposed algorithm and other algorithms for Lena image of
size 256 × 256. It is evident from the table that our algorithm performs well in terms of ET
and machine cycles when compared with other algorithms.

Table 8. Comparison of ETs and machine cycles required by different encryption algorithms for Lena
image of size 256 × 256.

Algorithm ET Number of Cycles

Proposed 0.9247 2462.04
Ref. [38] 0.2319 10,692.34
Ref. [39] 0.0473 50,405.62
Ref. [40] 0.1650 20,229.45
Ref. [41] 0.2700 10,596.38
Ref. [42] 0.2016 11,904.76

5. Conclusions

This paper proposes a new nonlinear combinatorial hyperchaotic map named TD-
NCHM with time delays and evaluates its dynamics using various methods such as a
bifurcation diagram, trajectory diagram, Lyapunov exponent, permutation entropy, and
NIST-800-22 test. The results indicate that TD-NCHM has a well-distributed dispersed
trajectory, a wider hyperchaotic interval, a larger maximum Lyapunov exponent, and a
stable higher permutation entropy exponent. Based on TD-NCHM, a plaintext dynamics-
based image-encryption algorithm is presented, which utilizes simultaneous row-column
shuffling and diffusion. The proposed algorithm reduces the number of encryption rounds
and dynamically associates all shuffling and diffusion with plaintext pixels, thereby en-
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hancing its resistance to attacks. Moreover, the entire encryption simulation requires only
one round of operation, thus increasing the encryption efficiency. The experimental results
demonstrate that the encryption algorithm has a complex key structure, is sensitive to the
keystream, and can withstand brute-force cracking, differential attacks, chosen-plaintext
attacks, and chosen-ciphertext attacks. It also excels in encryption speed and efficiency.
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