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Abstract: It is well known that the traditional Jensen inequality is proved by lower bounding
the given convex function, f (x), by the tangential affine function that passes through the point
(E{X}, f (E{X})), where E{X} is the expectation of the random variable X. While this tangential
affine function yields the tightest lower bound among all lower bounds induced by affine functions
that are tangential to f , it turns out that when the function f is just part of a more complicated
expression whose expectation is to be bounded, the tightest lower bound might belong to a tangential
affine function that passes through a point different than (E{X}, f (E{X})). In this paper, we take
advantage of this observation by optimizing the point of tangency with regard to the specific given
expression in a variety of cases and thereby derive several families of inequalities, henceforth referred
to as “Jensen-like” inequalities, which are new to the best knowledge of the author. The degree of
tightness and the potential usefulness of these inequalities is demonstrated in several application
examples related to information theory.

Keywords: Jensen’s inequality; convex function; concave function; entropy; capacity;
moment-generating function; cumulant-generating function

In memory of Jacob Ziv,
a shining star in the sky of information theory,

whose legacy as a researcher will continue to inspire me and many others
for years to come.

1. Introduction

As is well known, the Jensen inequality is one of the most fundamental and useful
mathematical tools in a variety of fields, including information theory. Interestingly, it
includes many other very well-known inequalities, which are important on their own,
as special cases. Among many examples, we mention the Shwartz–Cauchy inequality
(which in turn supports uncertainty principles and the Cramér–Rao bound), the Lyapunov
inequality, the Hölder inequality, and the inequalities among the harmonic, geometric and
arithmetic means. In the field of information theory, the Jensen inequality stands at the
basis of the information inequality (i.e., the non-negativity of the relative entropy), the
data processing inequality (which in turn leads to the Fano inequality), and the inequality
between conditional and unconditional entropies. Moreover, it plays a central role in
support of the derivation of single-letter formulas in Shannon theory and in the theory of
maximum entropy under moment constraints (see, for example, Chapter 12 of [1]).

During the last two decades, there have been many research efforts around Jensen’s
inequality, which included refinements [2–5], variations [6–8], improvements [9–11], and
extensions [12], just to name a few. There have also many derivations of reversed versions
of the Jensen inequality. For a non-exhaustive list of works, see, e.g., ref. [13] for mixtures
of exponential families, refs. [14–17] for global bounds on the difference between the two
sides of Jensen’s inequality, ref. [18] for functions of self-adjoint operators in Hibert spaces,
refs. [19,20] for inequalities via Green functions, refs. [21,22] for inequalities via Chebychev
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and Chernoff bounds, ref. [23] for quantum Simpson’s and quantum Newton’s inequalities,
and ref. [24] for new quantum Hermite–Hadamard-like inequalities. In most of them, the
derived inequalities are exemplified in many applications, for instance, useful relationships
between arithmetic and geometric means, converse bounds on the entropy, the relative
entropy, as well as the more general f -divergence, converse forms of the Hölder inequality,
and so on. In many of these works, the main results are given in the form of an upper
bound on the difference, E{ f (X)} − f (E{X}), where f is a convex function, E{·} is the
expectation operator, and X is the random variable. However, those bounds depend
mostly on global parameters associated with f , for example, its range and domain, but
not particularly on the underlying probability function (probability density function in the
continuous case, or probability mass function in the discrete case), of X. For one thing, a
desirable property of a reverse Jensen inequality would be that it is tight when X is well
concentrated in the vicinity of its mean, just like the same well-known property of the
ordinary Jensen inequality. In [22], there is an attempt to address this issue.

This paper revisits the Jensen inequality from a completely different angle. It is not
meant to be another improvement of earlier bounds in an existing line of work. It is
meant to propose a different approach for generating useful inequalities in the spirit of
Jensen’s inequality. It is based on the following simple observation, which is rooted in the
proof of Jensen’s inequality: The given convex function, f (x), is lower bounded by the
tangential affine function, `(x) = f (a) + f ′(a)(x− a), where a is an arbitrary number in
the domain of x and f ′(a) is the derivative of f at x = a (provided that f is differentiable
at x = a). By selecting a = E{X} and taking expectations of both sides of the inequality,
f (X) ≥ `(X), the Jensen inequality is readily proved. The point to be remembered is
that here, a∗ = E{X} is the optimal choice of a in the sense of maximizing E{`(X)} over
all possible values of a, thus yielding the tightest lower bound within this class of lower
bounds on E{ f (X)}. The optimal choice of a, however, might be different than E{X}when
the function f (X) is only a part of a more complicated expression whose expectation is to
be lower bounded. For example, one might be interested in lower bounding E{g[ f (X)]},
where g is a monotonically non-decreasing function, or E{ f (X)g(X)}, where g is a non-
negative and/or convex function, or a combination of both, etc.

To demonstrate this fact, consider the example (to be treated in detail in Section 2) of
lower bounding E{ f (X)g(X)}, where g is a non-negative function. In this case,

E{ f (X)g(X)} ≥ E{[ f (a) + f ′(a)(X− a)]g(X)}, (1)

and by maximizing the right-hand side (r.h.s.) over a, we easily obtain that the optimal
choice of a here is a∗ = E{Xg(X)}/E{g(X)}, yielding the inequality,

E{ f (X)g(X)} ≥ f
(
E{Xg(X)}
E{g(X)}

)
·E{g(X)}, (2)

which is useful as long as g is such that we can easily calculate both E{g(X)} and
E{Xg(X)}. While this particular inequality could have been obtained also by apply-
ing the (ordinary) Jensen inequality, E{ f (X)} ≥ f (E{X}), with respect to (with respect to)
the density, p̃(x) = p(x)g(x)/

∫ ∞
−∞ p(x′)g(x′)dx′, we will see in the sequel also various ex-

amples of inequalities with no apparent simple interpretations such as this. We henceforth
refer to these classes of inequalities as Jensen-like inequalities, since they are derived using
the same general idea that underlies the proof the classical Jensen inequality. We will also
demonstrate the usefulness of these inequalities in information theory.

Our contributions, in this work, have the following features:

1. In many cases (such as the one above), the optimal value of the parameter(s) (e.g.,
the parameter a in the above discussion) can be found in closed form. In other cases,
the resulting expressions may not lend themselves to closed-form optimization, and
then we have two possibilities: (i) carry out the optimization numerically, and (ii)
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select an arbitrary choice of a and obtain a valid lower bound, bearing in mind that an
educated guess can potentially result in a good bound.

2. Our inequalities provide two types of bounds: (i) bounds that require the calculation
of the first two moments (or equivalently, the first two cumulants) of X, and (ii) bounds
that require the calculation of the moment-generating function (MGF) of X and its
derivative, or equivalently, the cumulant-generating function (CGF) of X and its
derivative. All these types of moments are often easily calculable in closed form,
especially in situations where X is given by the sum of independent and identically
distributed (i.i.d.) random variables, which is frequently encountered in information–
theoretic applications.

3. Most of our derivations extend to convex functions of more than one variable.
4. The classes of Jensen-like inequalities that we consider allow enough flexibility to

obtain derivations of lower bounds on functions that are not necessarily convex,
and even for some concave functions, and thereby open the door for another route
to reverse Jensen inequalities. This can be accomplished by representing the given
function in one of the categories discussed (e.g., a product of a convex function and a
non-negaive function, a product of two non-negative convex functions, a composition
of a monotone function and a convex function, etc.).

5. We demonstrate the utility of the Jensen-like inequalities in several examples of
information–theoretic relevance. We also display numerical results that exemplify the
degree of tightness of these bounds.

6. Our Jensen-like inequalities have the desirable property of becoming tighter as
X becomes more and more concentrated around its mean, just like the ordinary
Jensen inequality.

7. Throughout the paper, we confine ourselves to lower bounds on expectations of
expressions that include a convex function f , but it should be understood that they all
continue to apply also if f is concave and the inequalities are reversed.

8. It should be understood that the classes of Jensen-like inequalities that we derive in
this work are just examples that demonstrate the basic underlying idea of optimizing
the point of tangency to the given convex function for the specific expression at
hand. It is conceivable that the same idea can be applied to many more situations of
theoretical and practical interest.

In all forthcoming derivations, it will be assumed that the convex functions involved
are weakly convex and differentiable. In other words, we will rely on the well-known
fact that a differentiable convex function, f (x), is nowhere below the supporting line,
`(x) = f (a) + f ′(a)(x − a), for every value of the parameter a in the domain of the
independent variable, x [25] (p. 69, eq. (3.2)). In order to show that the point of zero-
derivative of the lower bound (w.r.t. a) indeed yields a maximum (and not a minimum, etc.)
of the lower bound, we will need to further assume that f is twice differentiable, but such an
assumption will not limit the applicability of the claimed lower bound, because the lower
bound applies to any value of a, including the point of zero-derivative, even if this point
cannot be proved to yield the maximum of the lower bound using the standard methods.
Similar comments apply when the lower bound will depend on more than one parameter.

In the remaining part of this article, each section is devoted to a different class of Jensen-
like inequalities, which corresponds to a different form of an expression that includes the
convex function, f .

2. A Product of a Convex Function and a Non-Negative Function

In this section, we focus on lower bounding expressions of the form E{ f (X)g(X)},
where f is convex and g is non-negative. Indeed, let f : R→ R be a convex function and
let g : R→ R+ be a non-negative function. Then, for any a ∈ R,

E{ f (X)g(X)} ≥ E{[ f (a) + f ′(a)(X− a)]g(X)} (3)

= [ f (a)− a f ′(a)]E{g(X)}+ f ′(a)E{Xg(X)}. (4)
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To find the value of a that maximizes the r.h.s., we equate the derivative to zero and obtain:

[ f ′(a)− f ′(a)− a f ′′(a)]E{g(X)}+ f ′′(a)E{Xg(X)} = 0 (5)

or equivalently,
f ′′(a)[E{Xg(X)} − aE{g(X)}] = 0, (6)

whose solution is readily obtained as

a = a∗
4
=

E{Xg(X)}
E{g(X)} , (7)

and it is easy to verify that the second derivative at a = a∗ is − f ′′(a∗)E{g(X)} < 0,
which means that it is a maximum (at least a local one). The resulting lower bound on
E{ f (X)g(X)} is then given by

E{ f (X)g(X)} ≥ f
(
E{Xg(X)}
E{g(X)}

)
·E{g(X)}. (8)

This result extends straightforwardly to the case where X is a vector provided that f is
jointly convex and differentiable in all components of X. In particular, it extends to the case
where f and g act as different random variables, X and Y, with a joint distribution:

E{ f (X)g(Y)} ≥ f
(
E{Xg(Y)}
E{g(Y)}

)
·E{g(Y)}. (9)

We next consider several examples.

Example 1. Let f (x) = − ln x and g(x) = x, x > 0. Applying Inequality (8),

E{−X ln X} ≥ −E{X} · ln E{X2}
E{X} = −E{X} · ln(E{X})−E{X} · ln

(
1 +

Var{X}
[E{X}]2

)
. (10)

Note that the function −x ln x is concave, rather than convex, yet we have here a lower bound
(rather than an upper bound) to its expectation, namely, a reversed Jensen inequality. The first
term on the right-most side is the (ordinary) Jensen upper bound on E{−X ln X}, and the second
term is the gap, which depends not only on the expectation of X but also on its variance, which
manifests the fluctuations around E{X}. Clearly, if Var{X} = 0, the second term vanishes, which
makes sense, because when X is a degenerated random variable, Jensen’s inequality is achieved with
equality and there is no gap. This inequality has an immediate application for obtaining a lower
bound to the expectation of the empirical entropy of a sequence drawn by a memoryless source,
which is relevant in the context of universal source coding [26]. Each term of the empirical entropy
is of the form −X ln X, where X = N(u)/N, N(u) is the number of occurrences of a letter u in
a randomly drawn N-tuple from a memoryless source, P, with a finite alphabet, U . Clearly, each
N(u) is a binomial random variable with N trials and probability of success, P(u). In this case,
E{X} = P(u) and Var{X} = P(u)[1− P(u)]/N. Thus, denoting the entropy and the empirical
entropy, respectively, by

H = − ∑
u∈U

P(u) ln P(u) (11)

Ĥ = − ∑
u∈U

N(u)
N

ln
(

N(u)
N

)
, (12)

with the convention that 0 ln 0
4
= 0, we have:
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E{Ĥ} ≥ − ∑
u∈U

P(u) ln P(u)− ∑
u∈U

P(u) ln
[

1 +
P(u)[1− P(u)]/N

P2(u)

]
= H − ∑

u∈U
P(u) ln

(
1 +

1− P(u)
NP(u)

)
≥ H − ∑

u∈U
P(u) · 1− P(u)

NP(u)

= H − 1
N ∑

u∈U
[1− P(u)]

= H − |U| − 1
N

, (13)

where |U | is the cardinality of U . The use of the ordinary Jensen inequality yields an upper bound
rather than a lower bound, E{Ĥ} ≤ H. We conclude that the expected empirical entropy, E{Ĥ},
is sandwiched between H and H − (|U | − 1)/N, which is reasonable because the variance of the
empirical probabilities, N(u)/N, decays at the rate of 1/N.

Example 2. Let s and t be two real numbers whose difference, s− t, is either negative or larger
than unity. Now, let g(x) = xt, and f (x) = xs−t. Then,

E{Xs} = E{XtXs−t}

≥
(
E{Xt+1}
E{Xt}

)s−t

·E{Xt}

=
(E{Xt+1})s−t

(E{Xt})s−t−1 . (14)

In particular, for t = 1 and s /∈ (1, 2), this becomes

E{Xs} ≥ (E{X2})s−1

(E{X})s−2 = [E{X}]s ·
(

1 +
Var{X}
[E{X}]2

)s−1

(15)

which is, once again, a bound that depends only on the first two moments of X. For s ∈ (0, 1), the
function xs is concave, and so, this is a reversed version of the Jensen inequality. For s ≤ 0 and
s ≥ 2, the function xs is convex, and so, this is an improved version of the Jensen inequality: While
the first factor, [E{X}]s, corresponds to the ordinary Jensen inequality, the second factor expresses
the improvement, which depends on the relative fluctuation term, Var{X}/[E{X}]2. The degree of
improvement depends, of course, on the variance of X. If the variance vanishes, there is nothing to
improve because the ordinary Jensen inequality becomes an equality. On the other hand, the larger
the variance, the larger the gap between the ordinary Jensen bound, [E{X}]s, and the improved one.
Accordingly, this also demonstrates the role of the optimization of the parameter a as opposed to the
default choice of a = E{X} of the ordinary Jensen inequality.

To particularize this example even further, consider the problem of randomized guessing under
a distribution Q (see, e.g., [27] and many references therein). Then, the probability of a single
success in guessing a discrete alphabet random variable, X, given that we know that X = x (but
not the guesser), is Q(x). In sequential guessing until the first success, the number of guesses, G,
is a geometric RV with parameter p = Q(x), whose mean and variance are 1/p and (1− p)/p2,
respectively. For s ∈ (1, 2),

E{Gs} ≥
(

1
p

)s
·
(

1 +
(1− p)/p2

1/p2

)s−1

=
(2− p)s−1

ps =
[2−Q(x)]s−1

[Q(x)]s
. (16)
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Example 3. Let f be an arbitrary convex function and let g(x) = esx, where s is a given real
number. Then, Inequality (8) becomes:

E{ f (X)esX} ≥ f (ψ′(s)) · eψ(s) (17)

where
ψ(s) = lnE{esX} (18)

is the CGF of X and ψ′(s) is its derivative. This gives a lower bound in terms of the CGF of X
and its derivative. The ordinary Jensen inequality is obtained as the special case of s = 0, where
ψ(0) = 0 and ψ′(0) = E{X}.

3. A Composition of a Monotone Function and a Convex Function

Another family of Jensen-like inequalities corresponds to the need to lower bound an
expression of the form E{g[ f (X)]}, where f is convex as before and g is a monotonically
non-decreasing function. The general idea is to carry out the optimization of the r.h.s. of
the following inequality.

E{g[ f (X)]} ≥ sup
a

E{g[ f (a) + f ′(a)(X− a)]}. (19)

In the important special case where g(x) = ex, we have:

E{e f (X)} ≥ sup
a

E{e f (a)+ f ′(a)(X−a)}

= sup
a

e f (a)−a f ′(a)E{eX f ′(a)}

= exp
{

sup
a
{ f (a)− a f ′(a) + ψ[ f ′(a)]}

}
, (20)

where ψ(·) is again the CGF of X. The optimal value, a∗, of a, is the solution to the equation
obtained by equating the derivative of the exponent to zero, i.e.,

ψ′[ f ′(a∗)] = a∗, provided that f ′′(a∗)ψ′′[ f ′(a∗)] < 1, (21)

where ψ′(·) and ψ′′(·) are the first and the second derivatives of ψ(·), respectively.

Example 4. Consider the case where f (x) = sx2/2 and X ∼ N (µ, σ2), where σ2 < 1/s, as
otherwise, E{esX2} = ∞. In this case, the condition f ′′(a∗)ψ′′[ f ′(a∗)] < 1 is equivalent to
σ2 < 1/s, and we have f ′(a) = sa, ψ(t) = µt + σ2t2/2, and so, ψ′(t) = µ + σ2t, which means
that ψ′[ f ′(a)] = µ + σ2sa. The equation for the optimal a becomes then

µ + σ2sa = a, (22)

whose solution is
a = a∗

4
=

µ

1− σ2s
, (23)

which yields

E
{

esX2/2
}
≥ exp

{
sa2
∗/2− sa2

∗ + µsa∗ + σ2s2a2
∗/2

}
= exp

{
µ2s

2(1− σ2s)

}
. (24)

The ordinary Jensen inequality yields

E
{

esX2/2
}
≥ exp

{
sE{X2}/2

}
= es(µ2+σ2)/2, (25)

which does not capture the singularity at s = 1/σ2. The exact calculation yields
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E
{

esX2/2
}
=

1√
1− σ2s

· exp
{

µ2s
2(1− σ2s)

}
, (26)

namely, the Jensen-like bound (24) gives the correct exponential term (along with the singularity at
s = 1/σ2) and differs from the exact quantity only in the pre-exponential factor. Once again, this
demonstrates the fact that optimizing the point of tangency, a, rather than using the default value,
a = E{X}, can make a significant difference.

4. A Product of a Convex Function and a Monotone-Convex Composition

Yet another class of Jensen-like inequalities corresponds to lower bounding the expec-
tation of the product of two functions, where one is convex and the other is a composition
of a non-negative monotonically non-decreasing function and a convex function, i.e.,

E{h[ f (X)]g(X)} ≥ sup
a,b

E{h[ f (a) + f ′(a)(X− a)] · [g(b) + g′(b)(X− b)]}, (27)

where f and g are convex and h is monotonically non-decreasing and non-negative. For
the case where h(x) = ex, we end up with a bound that depends on the CGF of X and
its derivative:

E{e f (X)g(X)} ≥ E
{

e f (a)+ f ′(a)(X−a)[g(b) + g′(b)(X− b)]
}

(28)

= e f (a)−a f ′(a)E
{

eX f ′(a)[g(b)− bg′(b) + g′(b)X]
}

(29)

= exp{ f (a)− a f ′(a) + ψ[ f ′(a)]}{g(b) + g′(b)(ψ′[ f ′(a)]− b)}. (30)

Maximizing with respect to b while a is kept fixed yields b∗ = ψ′[ f ′(a)], and we obtain:

E{e f (X)g(X)} ≥ sup
a

exp{ f (a)− a f ′(a) + ψ[ f ′(a)]} · g(ψ′[ f ′(a)]). (31)

Example 5. Considering the case where f (x) = − ln x and g(x) = x ln x, we may obtain a
reversed Jensen-like inequality, namely, a lower bound to the expectation of the concave function
ln X:

E{ln X} = E
{

e− ln X · X ln X
}

(32)

≥ sup
a≥0

exp{− ln a + 1 + ψ(−1/a)} · ψ′(−1/a) ln ψ′(−1/a) (33)

= sup
α≥0

exp{ln α + 1 + ψ(−α)}ψ′(−α) ln ψ′(−α) (34)

= e · sup
α≥0

αeψ(−α)ψ′(−α) ln ψ′(−α) (35)

= e · sup
α≥0

αE{Xe−αX} ln
E{Xe−αX}
E{e−αX} . (36)

Defining the MGF φ(s) = E{esX} = eψ(s), we have:

E{ln X} ≥ e · sup
α≥0

αφ′(−α) ln ψ′(−α) (37)

= e · sup
α≥0

αφ(−α)ψ′(−α) ln ψ′(−α) (38)

= e · sup
α≥0

αφ′(−α) ln
φ′(−α)

φ(−α)
. (39)

We obtained a lower bound in terms of the MGF and its derivative (or, equivalently, the CGF and its
derivative), which is appealing in cases where X is the sum of i.i.d. random variables.
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Accordingly, we now particularize this example further by examining the case where
X = 1 + ∑k

i=1 Y2
i , with Yi ∼ N (0, σ2), i = 1, . . . , k, being independent random variables.

The motivation of assessing an expression of the form, E
{

ln
(

1 + ∑k
i=1 Y2

i

)}
, is two-fold.

The first is that it is useful for bounding the ergodic capacity of the single-input, multiple-
output (SIMO) channel, where {Yi} designates random channel transfer coefficients (see,
e.g., [22,28,29] and references therein). The second is that it is relevant for bounding the joint
differential entropy associated with the multivariate Cauchy density. Here, (Y1, . . . , Yk) are
not Gaussian as defined above, but their multivariate Cauchy density can be represented
as a continuous mixture of i.i.d. zero-mean Gaussian random variables, where the mixture
is taken over all possible variances—see [22] (Example 6) for the details. In this case,

φ(s) = E
{

exp

(
s

[
1 +

k

∑
i=1

Y2
i

])}
(40)

= es
(
E{esY2}

)k
(41)

=
es

(1− 2sσ2)k/2 , s <
1

2σ2 . (42)

Thus,

ψ(s) = s− k
2

ln(1− 2sσ2), (43)

and

ψ′(s) = 1 +
kσ2

1− 2sσ2 . (44)

It follows that

E
{

ln

(
1 +

k

∑
i=1

Y2
i

)}
≥ e · sup

α≥0

{
αe−α

(1 + 2ασ2)k/2

(
1 +

kσ2

1 + 2ασ2

)
ln
(

1 +
kσ2

1 + 2ασ2

)}
. (45)

The Jensen upper bound, ln(1 + kσ2), and the lower bound (45) are displayed in Figure 1
for σ2 = 1 and k = 1, 2, . . . , 100. As can be seen, the bounds are quite close. Interestingly,
the choice α = 1/(kσ2) yields results that are very close to those of the optimal α.
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Figure 1. Upper and lower bounds on E
{

ln
(

1 + ∑k
i=1 Y2

i

)}
, where Yi ∼ N (0, σ2) are i.i.d., for σ2 = 1

and k = 1, 2, . . . , 100. The red curve is the upper bound, ln(1 + kσ2), which is obtained by applying
the ordinary Jensen inequality. The blue curve is the lower bound of Equation (45), where the search
over α was carried out with a resolution of 0.001.
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Another instance of this example is the circularly symmetric complex Gaussian channel
whose signal-to-noise ratio (SNR), Z, is a random variable (e.g., due to fading), which is
known to both the transmitter and the receiver. The capacity is given by C = E{ln(1+ gZ)},
where g is a certain deterministic gain factor and the expectation is with respect to the
randomness of Z. For simplicity, let us assume that Z is distributed exponentially, i.e.,

p(z) =
{

θe−θz z ≥ 0
0 z < 0

(46)

where the parameter θ > 0 is given. In this case,

φ(−α) =
θe−α

θ + gα
(47)

and
ψ(−α) = ln θ − ln(θ + gα)− α, (48)

and so,

E{ln(1 + gZ)} ≥ eθ · sup
α≥0

αe−α

θ + gα
·
(

1 +
g

g + θα

)
ln
(

1 +
g

g + θα

)
. (49)

In Figure 2, we plot this lower bound as a function of θ for g = 5 and compare it to the Jensen
upper bound, ln(1 + g/θ) (red curve) and to the lower bound of [22] (Sect. 4.1, Example 1).
As can be seen, the lower bound proposed here is considerably tighter, especially for
small θ.
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s

Figure 2. Upper and lower bounds on E{ln(1 + gZ)}, where Z is distributed exponentially with
parameter θ, as functions of θ, for g = 5. The red curve is the upper bound, ln(1 + g/θ), obtained
by applying the ordinary Jensen inequality. The blue curve is the lower bound of of Equation (49),
where the search over α was carried out with resolution of 0.001. The green curve is the lower bound
of [22] (Example 1).

Example 6. Yet another example of this family of Jensen-like inequalities applies to obtaining a
lower bound to E{Xt}, where t is an arbitrary real. For a given t, let s ≥ 0 be either larger
than 1− t or smaller than −t, and consider the case where f (x) = xt+s, g(x) = −s ln x and
h(x) = ex. Then,
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E{Xt} = E{e−s ln XXt+s} (50)

≥ E
{

exp
[

s
(
− ln a− 1

a
(X− a)

)]
·
[
bt+s + (t + s)bt+s−1(X− b)

]}
(51)

= es[1−ln a]φ
(
− s

a

)[
bt+s + (t + s)bt+s−1

(
ψ′
(
− s

a

)
− b
)]

. (52)

Choosing b = ψ′(−s/a), and changing the optimization variable a into α = 1/a,
we obtain

E{Xt} ≥ sup
α≥0

(αe)sφ(−αs)[ψ′(−αs)]t+s. (53)

More specifically, if X = ∑n
i=1 Yi, where {Yi} are Bernoulli i.i.d., with parameter p, then

φ(s) = (pes + q)n, where q = 1− p. We then obtain

E{Xt} ≥ sup
α≥0

(αe)s(pe−αs + q)n ·
(

npe−αs

pe−αs + q

)t+s

. (54)

Selecting α = 1/(np), we obtain

E{Xt} ≥ (np)t · es(pe−s/(np) + q)ne−s(t+s)/(np)

(pe−s/(np) + q)t+s
. (55)

The first factor is (EX)t. The second factor tends to unity as n grows, because pe−s/np + q ≈
p(1− s/(np)) + q = 1− s/n, and so, (pe−s/np + q)n ≈ (1− s/n)n ≈ e−s. For t ≥ 1 and
t ≤ 0, the function f (x) = xt is convex, and so, (EX)t is the ordinary Jensen lower bound.
In this case, the bound is valuable if the multiplicative factor,

es(pe−s/(np) + q)ne−s(t+s)/(np)

(pe−s/(np) + q)t+s
,

is larger than unity. If 0 < t < 1, the function f (x) = xt is concave, and then (EX)t is an
upper bound. Of course, the parameter s can be optimized, too. Some numerical results
for t = 0.5 are depicted in Figure 3. As can be seen, the upper and the lower bounds are
fairly close.

0 10 20 30 40 50 60 70 80 90 100

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m
o
m

e
n
t 
b
o
u
n
d
s

Figure 3. Upper and lower bounds on E{
√

∑n
t=1 Yt} as functions of n, where {Yt} are i.i.d.,

Bernoulli(0.2). The red curve is the Jensen upper bound,
√

np, and the blue curve is the proposed
lower bound where α is optimized in the range [0, 10] and s is optimized in the range [0.5, 10], both
with resolution of 0.01.
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Another application of this example is related to estimation theory. Let θ ∈ R and let
Y1, . . . , Yn be i.i.d., with mean θ and variance σ2. Consider the t-th moment of the estimation

error, Eθ

∣∣∣∣ 1
n ∑n

i=1 Yi − θ|t. Defining X =
(

1
n ∑n

i=1 Yi − θ
)2

, we have

φ(s) =
1√

1− 2sσ2/n
; ψ(s) = −1

2
ln
(

1− 2sσ2

n

)
. (56)

and so,

φ(−αs) =
1√

1 + 2αsσ2/n
; ψ′(−αs) =

σ2/n
1 + 2αsσ2/n

. (57)

Eθ

∣∣∣∣ 1n n

∑
i=1

Yi − θ

∣∣∣∣t = EθXt/2 (58)

≥ (αe)s
√

1 + 2αsσ2/n

(
σ2/n

1 + 2αsσ2/n

)t/2+s

=

(
σ2

n

)t/2+s

· (αe)s

(1 + 2αsσ2/n)(t+1)/2+s
. (59)

with either s ≥ 1− t/2 or s ≤ −t/2. For α = ζn/σ2 (ζ > 0 being a constant), we have:

Eθ

∣∣∣∣ 1n n

∑
i=1

Yi − θ

∣∣∣∣t ≥ σt

nt/2 · sup
ζ>0, s>1−t/2

(ζe)s

(1 + 2ζs)(t+1)/2+s
(60)

where for t ∈ [0, 2], the first factor, σt/nt/2, is the Jensen upper bound. The second factor,

µt = sup
ζ>0, s>1−t/2

(ζe)s

(1 + 2ζs)(t+1)/2+s
, (61)

is the gap between the Jensen upper bound and the proposed lower bound. In Figure 4,
we display this factor. The result µ2 = 1 is expected, because for t = 2 and s = 0, the
calculation is trivially exact. Note that the maximization over ζ, for a given s, can be carried
out in closed form by equating to zero the partial derivative of ln[(ζe)s/(1 + 2ζs)(t+1)/2+s]
with respect to ζ. The optimal ζ turns out to be equal to 1/(t + 1) (independently of s),
and so,

µt = sup
s>1−t/2

(
t + 1

t + 2s + 1

)(t+1)/2
·
(

e
t + 2s + 1

)s
. (62)

Finally, it should be pointed out that this family of Jensen-like bounds opens the door
also to lower-bound calculations on the form E{ f (X)/g(X)}, where f is non-negative
convex and g is non-negative and concave. Using the fact the identity 1/s =

∫ ∞
0 e−stdt,

we have:

E
{

f (X)

g(X)

}
= E

{
f (X) ·

∫ ∞

0
e−tg(X)dt

}
(63)

=
∫ ∞

0
E
{

e−tg(X) f (X)
}

dt (64)

and we can apply the same ideas as before to the integrand, having the freedom to optimize
the bound parameters with possible dependence on t.
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Figure 4. The gap factor, µt, as a function of t. The parameter s is optimized in the range [1− t/2, 10]
with a resolution of 0.001.

5. A Product of Two Non-Negative Convex Functions

The last family of Jensen-like bounds that we present in this work is associated with
the product of two non-negative convex functions. Let both f and g be non-negative convex
functions of x ≥ 0. Then,

E{ f (X)g(X)} ≥ E{[ f (a) + f ′(a)(X− a)] · g(X)} (65)

= [ f (a)− a f ′(a)]E{g(X)}+ f ′(a)E{Xg(X))} (66)

≥ [ f (a)− a f ′(a)]E{[g(b) + g′(b)(X− b)]}+
f ′(a)E{X[g(c) + g′(c)(X− c)]} f (a) ≥ a f ′(a) ≥ 0 (67)

= [ f (a)− a f ′(a)] · [g(b)− bg′(b) + g′(b)E{X}] +
f ′(a)[(g(c)− cg′(c))E{X}+ g′(c)E{X2}}]. (68)

The optimal b and c are b∗ = E{X} and c∗ = E{X2}/E{X}, respectively. Thus,

E{ f (X)g(X)} ≥ [ f (a)− a f ′(a)] · g(E{X}) + f ′(a)E{X} · g
(
E{X2}
E{X}

)
. (69)

Let

a∗ =
E{X} · g(E{X2}/E{X})

g(E{X}) (70)

and assume that f (a∗) ≥ a∗ f ′(a∗) ≥ 0. Then, a∗ is the optimal value of a, which yields

E{ f (X)g(X)} ≥ f
(
E{X} · g(E{X2}/E{X})

g(E{X})

)
· g(E{X}). (71)

More generally, when X and Y are two random variables with a joint distribution, the
above derivation easily extends to

E{ f (X)g(Y)} ≥ f
(
E{X} · g(E{XY}/E{X})

g(E{Y})

)
· g(E{Y}). (72)

If f and g are both concave, rather than convex, then the inequalities are reversed.



Entropy 2023, 25, 752 13 of 14

Example 7. Consider again the example of the capacity of the AWGN with a random SNR,
c(Z) = ln(1 + gZ), and suppose that we wish to bound the variance of c(Z) in order to assess the
fluctuations (e.g., for the purpose of bounding the outage probability). Then, obviously,

Var{c(Z)} = E{c2(Z)} − [E{c(Z)}]2 = E{ln2(1 + gZ)} − [E{ln(1 + gZ)}]2. (73)

To upper bound Var{c(Z)}, we may derive an upper bound to E{ln2(1 + gZ)} and a lower bound
to E{ln(1 + gZ)}. For the latter, a lower bound was already proposed earlier in Example 5. For
the former, we may use the present inequality with the choice f (z) = g(z) = ln(1 + gz), which
can easily be shown to satisfy the requirements. We then obtain the following upper bound, which
depends merely on the first two moments of Z:

E{ln2(1 + gZ)} ≤ ln(1 + gE{Z}) · ln
(

1 +
gE{Z} ln(1 + gE{Z2}/E{Z})

ln(1 + gE{Z})

)
. (74)

Interestingly, the function ln2(1 + gx) is neither convex nor concave, yet our approach offers an
upper bound, which is fairly easy to calculate provided that one can compute the first two moments
of Z.

6. Conclusions

In this work, we have revisited the Jensen inequality on the basis of taking advantage
of the freedom to optimize the choice of the supporting line that is tangential to the given
convex function. This optimal choice might be different than the ordinary one when the
convex function does not stand alone, but it is rather only part of a more complicated
expression. This more complicated expression can sometimes be created in an artificial
manner, such as in Examples 2, 5 and 6. The resulting bounds depend on either the first
two moments of the independent variable, X, or on its MGF and its derivative. Both
types of moments often lend themselves to relatively easy calculations. The proposed
methodology can be used both for improving on the ordinary Jensen inequality (such as in
Examples 2 and 4), and for generating lower bounds to expectations of non-convex or even
concave (rather than convex) functions (such as in Examples 1, 2, 5 and 7). Several families
of Jensen-like inequalities have been derived along with a demonstration of numerical
examples with application to information theory. The tightness of the inequalities obtained
was also demonstrated in those examples.
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